Skip to main content

Fungal Biodiversity: A Potential Tool in Plant Disease Management

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Fungal flora is considerably rich and diverse. Biodiversity of fungal flora in a region is represented by a number of taxonomic groups in different habitats. The rich diversity of fungus in the form of fungal biocontrol agents are now being potentially explored as an important tool in the management of plant diseases. Excessive use of pesticides results in the form of pest resistance, disturbance in ecosystem due to destruction of natural enemies and environmental pollution which leads to health problems. Thus fungal biocontrol agents have high potential to replace the use of synthetic chemicals. Some of the most widely used biocontrol agents in the world belong to the fungal genus Trichoderma. In particular isolates of Trichoderma harzianum, T. virens, T. hamatum, are used against diseases in a wide variety of economically important crops. They have been used with success against soilborne, seedborne, storage rots and diseases in the phyllosphere. T. harzianum and Gliocladium virens have been successfully used against Botrytis cineria in different crops. Many other fungi have been shown to antagonize and inhibit numerous fungal pathogens of aerial plant parts. Chaetomium, Tuberculina maxima, Verticillium lecanii, Ampelomyces quisqualis, Tilletiopsis and Gonatobotrys simplex are some of the most effectively used biocontrol agents against Athelia bombacina, Venturia inequalis, Cronartium ribicola, Puccinia, Erysiphe ovata, Sphaerotheca fuliginea and Alternaria alternata respectively. This review provides a broad perspective on the range of diversity of fungal biocontrol agents available for commercial exploitation, mechanism, commercial formulations in use and bottle necks in biocontrol of plant diseases. The fungal bioagents are expected to have great potential in addressing some of the key pest problems in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubaker K (2010) Cell wall degrading enzymes and interaction between Trichoderma aggressivum and Agaricus bisporus. Dissertation, University St. Catharines, St. Catharines

    Google Scholar 

  • Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol 28:59–72

    Article  CAS  PubMed  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Anderson AJ, Tari PH, Tepper CS (1988) Genetic studies on the role of an agglutinin in root colonization by Pseudomonas putida. Appl Environ Microbiol 54:375–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Askary H, Carriere Y, Bélanger RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Sci Technol 8:23–32

    Article  Google Scholar 

  • Baker KF, Cook RJ (eds) (1974) Biological control of plant pathogens. W. H. Freeman, San Francisco, 433 pp

    Google Scholar 

  • Barak R, Elad Y, Mirelman D, Chet I (1985) Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 75:458–462

    Article  CAS  Google Scholar 

  • Belanger RR, Labbe C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society, St. Paul, pp 256–267

    Google Scholar 

  • Belanger RR, Dufour N, Caron J, Benhamou N (1995) Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Sci Technol 5:41

    Article  Google Scholar 

  • Benítez T, Rincón MA, Limón MC, Codón CA (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bernett HL, Binder FL (1973) The fungal host parasite relationship. Annu Rev Phytopathol 11:273–292

    Article  Google Scholar 

  • Boogert van den PHJF (1989) Nutritional requirement of the Mycoparasitism fungus. Verticillium biguttatum. Neth J Plant Pathol 95:149–156

    Article  Google Scholar 

  • Boosalis MG (1956) Effect of soil temperature and green manure amendmend of unsterilized soil on parasitism of Rhizoctonia solani by Penicillium vermiculatum and Trichoderma spp. Phytopathology 46:473–478

    Google Scholar 

  • Boudreau MA, Andrews JH (1987) Factors influencing antagonism of Chaetomium globosum to Venturia inaequalis: a case study in failed biocontrol. Phytopathology 77:1470

    Article  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    Article  CAS  PubMed  Google Scholar 

  • Chawda HT, Rajasab AH (1992) Effect of culture filtrate of Myrothecium verrucaria on the conidial germination of some pathogens of onion. Onion Newsl Tropics 4:62–65

    Google Scholar 

  • Chet I, Baker R (1981) Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology 71:286–290

    Article  Google Scholar 

  • Chet I, Baker R, Harman GE (1981) Trichoderma hamatum: its hyphal interaction with Rhizoctonia solani and Pythium sp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganism for biological control of plant pathogens. Ann Rev Phytopathol 81:53–80

    Article  Google Scholar 

  • Diop-Bruckler M, Molot PM (1987) Intéret de quelques hyperparasites dans la lutte contre Leveillula taurica, Sphaerotheca fuliginea. Bull OEPP 17:593–600

    Article  Google Scholar 

  • DiPietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: isolation, characterization and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerle CM, Monte E, Mukherje PK, Zeilinger S, Grigorie IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Chet I, Boyle P, Henis Y (1983) Parasitism of Trichoderma spp on Rhizoctonia solani and Sclerotium rolfsii scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Ecol Epidemiol 75:1047–1052

    CAS  Google Scholar 

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Article  Google Scholar 

  • FAOSTA T (2000). Food and Agriculture Organization of United Nations. http://apps.fao.org/.

  • Fokkema NJ (1971) The effect of pollen in the phyllosphere of rye on colonization by Saprophytic fungi and on infection by Helminthosporium sativum and other leaf Pathogens. Neth J Plant Pathol 77(Suppl. 1):1–60

    Article  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fravel DR, Rhodes DJ, Larkin RP (1999) Production and commercialization of biocontrol products. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Dordrecht, 545, pp 365–376

    Google Scholar 

  • Fries EM (1825) Systema Orbis Vegetabilis, vol 1. Typographia Academica, Lund

    Google Scholar 

  • Gerlagh M, Goossen-van der geijn HM, Verdam B, Fokkema NJ (1995) Biological control of white mould (Scleotinia sclerotiorum) in various crops by application of Coniothyrium minitans. In: Whipps JM, Gerlagh T (eds) Biological control of Sclerotium forming fungi, IOBC/WPRS Bulletin 18(3):13–17

    Google Scholar 

  • Gullino ML (1992) Control of botrytis rot of grapes and vegetables with Trichoderma spp. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases, progress and challenges for the future. Plenum Press, New York, pp 125–132

    Chapter  Google Scholar 

  • Gullinos ML, Albajes R, van Lenteren JE (1999) Setting the stage: characteristics of protected cultivation and tools for sustainable crop production. In: Albajes R, Lodovica Gullino M, van Lenteren JE, Elad Y (eds) Integrated pest management in greenhouse crops. Kluwer Academic Publishers, Dorcrecht, pp 1–15, 545

    Chapter  Google Scholar 

  • Hannusch DJ, Boland L (1996a) Humidity on biological control of white mould of bean (Sclerotinia sclerotiarum). Phytopathology 86:156

    Article  Google Scholar 

  • Hannusch DJ, Boland GL (1996b) Humidity and biological control agents on grey mold bean. Eur J Plant Pathol 102:133

    Article  Google Scholar 

  • Harman GE (2001) In: Tzeng DDS, Huang JW (eds) Proceedings of international symposium on biological control of plant diseases for the new century – mode of action and application technology. National Chung Hsing University, Taichung City, pp 71–84

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biological control: change in perceptions desired from research on Trichoderma harzianum T-22. Plant Dis 84(4):377–393

    Article  Google Scholar 

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CK, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 229–265

    Google Scholar 

  • Harris AR (1999) Biocontrol of Rhizoctonia solani and Pythium ultimumon Capsicum by Trichoderma koningii in potting medium. Microbiol Res 154:333–337

    Article  Google Scholar 

  • Hawksworth DL (1981) A survey of the fungicolous conidial fungi. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol I. Academic, New York, pp 171–235

    Chapter  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL, Sutton BC, Ainsworth GC (1983) Ainsworth & Bisby’s dictionary of the fungi, 7th edn. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Heidi IG Abo-Elnaga (2012) Biological control of damping off and root rot of wheat and sugar beet with Trichoderma harzianum. Plant Pathol J 11:25–31

    Google Scholar 

  • Heintz C, Blaich R (1990) Verticillium lecanii als hyperparasit des rebmehltaus (uncinula necator). Vitis 29:229–232

    Google Scholar 

  • Hewitt HG (1998) Fungicides in crop protection. CABI Publishing, Wallingford

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hijwegen T (1989) Effect of culture filtrates of seventeen fungicolous fungi on sporulation of cucumber powdery mildew. Neth J Plant Pathol 95(Suppl 1):95–98

    Article  Google Scholar 

  • Hijwegen T (1992) Biological control of cucumber powdery mildew with Tilletiopsis minor under greenhouse conditions. Neth J Plant Pathol 98:221–225

    Article  Google Scholar 

  • Hijwegen T, Buchenauer H (1984) Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Neth J Plant Pathol 90:79–84

    Article  Google Scholar 

  • Hijwegen T (1988) Effect of seventeen fungicolous fungi on sporulation of cucumber powdery mildew. Neth J Plant Pathol 94:185–190

    Article  Google Scholar 

  • Hofstein R, Daoust RA, Aeschlimann JP (1996) Constraints to the development of biofungicides: the example of ‘AQ-10’, a new product for controlling powdery mildews. Entomophaga 41:455–460

    Article  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham S (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Imtiaj A, Tae L (2008) Antagonistic effect of three Trichoderma species on the Alternaria porri Pathogen of onion Blotch. World J Agric Sci 4:13–17

    Google Scholar 

  • Inbar J, Chet I (1992) Biomimics of fungal cell – cell recognition by use of lectin-coated nylon fibers. J Bacteriol 174:1055–1059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jager G, Ten Hoopen A, Velvis H (1979) Hyperparasites of Rhizoctonia solani in Dutch potatoe feilds. Neth J Plant Pathol 85:253–268

    Article  Google Scholar 

  • James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • Jarvis W R, Slingsby K (1977) The control of powdery mildew of greenhouse cucumber by water sprays and Ampelomyces quisqualis. Plant Dis Rep 61:728–730

    Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationship. CAB International, Oxon, pp 9–12

    Google Scholar 

  • Jones EE, Stewart A (2011) Coniothyrium minitans survival in soil and ability to infect sclerotia of Sclerotinia sclerotiorum. N Z Plant Prot 64:168–174

    Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, Soytong K, Kongsaree P, Suksamrarn A (2002) Antimycobacterial anthraquinonechromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med 68:834–836

    Article  CAS  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Loungsysouphanh S, Soytong K, Isobe M, Kongsaeree K, Prabpai S, Suksamran A (2006) Antifungal azaphilones from the fungus; Chaetomium cupreum. J Nat Prod 69:891–895

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur J, Singh RS (2010) Nonpathogenic Fusarium as a biological control agent. Plant Pathol J 9:79–91

    Article  CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahir G, Defago G (1989) Iron sufficiency is a prerequisit for suppression of tobacco black root rot by Pseudomonas fluorescnes strain CHA0 under gnotobiotic contiditions. Phytopathology 79:584–589

    Article  Google Scholar 

  • Kiss L (1998) Natural occurrence of Ampelomyces mycoparasites in mycelia of powdery mildew fungi. New Phytol 140:709–714

    Article  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    Article  CAS  PubMed  Google Scholar 

  • Kiss L, Russell JC, Sznentivanyi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Technol 17:635–651

    Article  Google Scholar 

  • Knudsen IMB, Skou JP (1993) The affectivity of Tilletiopsis albescens in biocontrol of powdery mildew. Ann Appl Biol 123:173–185

    Article  Google Scholar 

  • Kotamraju VKK (2010) Management of sheath blight and enhancement of growth and yield of rice with plant growth-promoting rhizobacteria. Dissertation, Auburn University Alabama

    Google Scholar 

  • Kulkarni M, Chaudhari R, Chaudhari A (2007) Novel tensio-active microbial compounds for biocontrol applications. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Dordrecht, pp 295–304

    Chapter  Google Scholar 

  • Kumar P (2007) Biological management of Alternaria blight of onion. Dissertation, University of Agricultural Science, Dharwad

    Google Scholar 

  • Kuter GA (1984) Hyphal interaction of Rhizoctonia solani and some Verticillium spp. Mycologia 76:936–940

    Article  Google Scholar 

  • Legler et al. (2011) New perspectives for the use of Ampelomyces-based biofungicides for effective control of powdery mildew on grapevine. Paper presented at the 4th international conference on non chemical crop protection methods, Lille, 8–10 Mar 2011

    Google Scholar 

  • Lo CT, Nelson EB, Harman GE (1997) Biological control of Pythium, Rhizoctonia and Sclerotinia infected diseases of turfgrass with Trichoderma harzianum. Phytopathology 84:1372–1379

    Google Scholar 

  • Lo CT, Nelson EB, Hayes CK, Harman GE (1998) Ecological studies of transformed Trichoderma harzianum strain 1295–22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129–136

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions of plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Madrigal C, Pascual S, Melgarejo P (1994) Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathol 43:554

    Article  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Google Scholar 

  • Mathur M, Mukerji KG (1981) Antagonistic behaviour of Cladosporium spongiosum against Phyllactinia dalbergiae on Dalbergia sissoo. Angew Bot 55:75–77

    Google Scholar 

  • McDougall P. (2006) Agriservice Report. Pathhead, Midlothian, Scotland

    Google Scholar 

  • McNeely JA, Miller KR, Mittermeier R, Werner TB (1990) Conserving the world’s biological diversity. International Union for Conservation of Nature and Natural Resources, Gland

    Google Scholar 

  • Melo IS, Faull JL (2000) Parasitism of Rhizoctonia solani by strains of Trichoderm

    Google Scholar 

  • Melo IS, Faull JL, Graeme-Cook KA (1997) Relationship between in vitro cellulose production of UV-induced mutants of Trichoderma harzianum and their bean rhizosphere competence. Mycol Res 101:1389–1392

    Article  CAS  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Molan YY (2009) Detection of presumptive mycoparasites in soil placed on host-colonized agar plates in Riyadh region, Saudi Arabia. Asian J Plant Pathol 3:22–26

    Article  Google Scholar 

  • Mukherjee PK et al (2011) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45. doi:10.1099/mic. 0.053629-0

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS (2000) Plant beneficial rhizosphere competent bacteria. Proc Natl Acad Sci India 70:107–123

    Google Scholar 

  • Ordentlinch A, Nachmias A, Chet I (1990) Integrated control of Verticillium dahlia in potatoe by Trichoderma harzianum and captan. Crop Prot 9:363–366

    Article  Google Scholar 

  • Pal KK, Mc Spadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02

  • Pascoe IG (1990) History of systematic mycology in Australia. In: Short PS (ed) History of systematic botany in Australia. Australian Systematic Botany Society, South Yarra, pp 259–264

    Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Persson Y (1991) Mycoparasitism by the nematode trapping fungus Arthrobotrys oligospora. Ph.D. thesis, University of Lund, Lund

    Google Scholar 

  • Perveen K, Bokhari NA (2012) Antagonistic activity of Trichoderma harzianum and Trichoderma viride isolated from soil of date palm field against Fusarium oxysporum African. J Microbiol Res 6(13):3348–3353

    Google Scholar 

  • Pfender WF, Wootke SL (1988) Microbial communities of Pyrenophora-infested wheat straw as examined by multivariate analysis. Microb Ecol 15:95–113

    Article  CAS  PubMed  Google Scholar 

  • Philipp WD, Beuther E, Hermann D, Klinkert F, Oberwalder C, Schmidtke M, Straub B (1990) Zur Formulierung des Mehltauhyperparasiten Ampelomyces quisqualis Ces. Z Pflkrankh Pflschutz 97:120–132

    Google Scholar 

  • Pimentel D, Levitan L (1986) Pesticides: amounts applied amounts reaching pests. Biosciences 36:86–91

    Article  CAS  Google Scholar 

  • Prasad V et al (2008) Microorganism mediated management of plant pathogens. In: Maheshwari DK, Dubey RC (eds) Potential microorganism for sustainable agriculture. IK International Publishing House, New Delhi

    Google Scholar 

  • Raghavendra Rao NN, Pavgi MS (1978) Two mycoparasites on powdery mildews. Sydowia 30:145–147

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Ridout CJ, Coley-Smith JR, Lynch JM (1988) Fractionation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum. Enzyme Microb Technol 10:180–187

    Article  CAS  Google Scholar 

  • Rossman AY (1994) A strategy for an all-taxa inventory of fungal diversity. In: Peng CI, Chen CH (eds) Biodiversity and terrestrial ecosystems. Institute of Botany, Academia Sinica, Taipei, pp 169–194

    Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan AI, Scala F, Harman GE, Kubicek C (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenicfungi. Appl Environ Microbiol 60:4364–4370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147(4):2147–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  • Soytong K, Srinon W, Rattanacherdchai K, Kanokmedhakul S, Kanokmedhakul K (2005) Application of antagonistic fungi to control antracnose disease of grape. Int J Agric Technol 1:33–41

    Google Scholar 

  • Srivastava SL, Bisht S (1986) Inhibitory effect of some phylloplane fungi on powdery mildew disease development. Indian Phytopathol 39:83–86

    Google Scholar 

  • Swati S, Adholeya A (2008) Biological control alternative paradigm for commercialization. In: Maheshwari DK, Dubey RC (eds) Potential microorganism for sustainable agriculture. IK International Publishing House, India

    Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Thrane C, Tronsmo A, Jensen DF (1997) Endo-1, 3-b-glucanase and cellulose from Trichoderma harzianum: purification and partial characterization, induction by and biological activity against plant pathogenic Pythium spp. Eur J Plant Pathol 103:331–344

    Article  CAS  Google Scholar 

  • Traquair JA, Shaw LA, Jarvis WR (1988) New species of Stephanoascus with Sporothrix anamorphs. Can J Bot 66:926–933

    Article  Google Scholar 

  • Turhan G (1990) Further hyperparasitism of rhizoctonia solani as promising candidate for biological control. Zeitshrift Pflanzenkrankheiten Pflanzenshutz 97:208–215

    Google Scholar 

  • Urquhart EJ, Menzies JG, Punja ZK (1994) Growth and biological control activity of Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84:341–351

    Article  Google Scholar 

  • Vinalea F, Sivasithamparamb K, Emilio L, Ghisalbertic MR, Sheridan L, Lorito WM (2008) Review article trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Weindling R (1932) Studies on a lethal principle defective in the parasitic action of Trichoderma lignorum on Rizoctonia solani and other soil fungi. Phytopathology 26:1068–1070

    Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM, Gerlagh M (1992) Mycol Res 96:897–907

    Article  Google Scholar 

  • Whipps JM (1998) Microbial interactions as basis for biological control of fungi diseases. In: 7th international congress of plant pathology, invited papers abstract, vol 1:2.10.1S. BSPP, Edinburgh, Scotland, 1998

    Google Scholar 

  • Yoder KS (2000) Effect of powdery mildew on apple yield and economic benefits of its management in Virginia. Plant Dis 84:1171–1176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabbir Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ashraf, S., Zuhaib, M. (2013). Fungal Biodiversity: A Potential Tool in Plant Disease Management. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_4

Download citation

Publish with us

Policies and ethics