Skip to main content

The Role of Marine Anaerobic Bacteria and Archaea in Bioenergy Production

  • Chapter

Abstract

The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at € 2.8 billion with a cumulative annual growth rate of 5–10% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010).

Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology.

The marine environment represents more than 70% of the Earth’s surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on ocean’s microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the world’s oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae.

This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.

A.J. Cavaleiro and A.A. Abreu contributed equally to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu A, Karakashev D, Angelidaki I, Sousa D, Alves M (2012) Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnol Biofuels 5:6. doi:10.1186/1754-6834-5-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alves AS, Paquete CM, Fonseca BM, Louro RO (2011) Exploration of the ‘cytochromome’ of Desulfuromonas acetoxidans, a marine bacterium capable of powering microbial fuel cells. Metallomics 3:349–353. doi:10.1039/C0MT00084A

    Article  CAS  PubMed  Google Scholar 

  • Arrieta JM, Arnaud-Haond S, Duarte CM (2010) What lies underneath: conserving the oceans’ genetic resources. Proc Natl Acad Sci USA 107:18318–18324. doi:10.1073/pnas.0911897107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ, Kim M-K, Lee J-H, Kang SG (2012) H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol Lett 34:75–79. doi:10.1007/s10529-011-0732-3

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361. doi:10.1099/00207713-27-4-355

    Article  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888. doi:10.1080/09593331003710236

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485. doi:10.1126/science.1066771

    Article  CAS  PubMed  Google Scholar 

  • Børresen T, Boyen C, Dobson A, Höfle M, Ianora A, Jaspars M, Kijjoa A, Olafsen J, Querellou J, Rigos G, Wijffels R (2010) In: McDonough N (ed) Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Marine Board-ESF, Beernem

    Google Scholar 

  • Busalmen JP, Esteve-Núñez A, Berná A, Feliu JM (2008) C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Ed 47:4874–4877. doi:10.1002/anie.200801310

    Article  CAS  Google Scholar 

  • Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically Active Bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232. doi:10.1038/nbt867

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi:10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  • Chou CJ, Shockley KR, Conners SB, Lewis DL, Comfort DA, Adams MWW, Kelly RM (2007) Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 73:6842–6853. doi:10.1128/AEM.00597-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360. doi:10.1021/es062580r

    Article  CAS  PubMed  Google Scholar 

  • de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12. doi:10.1186/1754-6834-2-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Debabov V (2008) Electricity from microorganisms. Microbiology 77:123–131. doi:10.1134/S002626170802001X

    Article  CAS  Google Scholar 

  • DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol 49:474–484. doi:10.1007/PL00006570

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473. doi:10.1016/j.electacta.2007.06.069

    Article  CAS  Google Scholar 

  • Eloe EA, Fadrosh DW, Novotny M, Zeigler Allen L, Kim M, Lombardo MJ, Yee-Greenbaum J, Yooseph S, Allen EE, Lasken R, Williamson SJ, Bartlett DH (2011) Going deeper: metagenome of a hadopelagic microbial community. PLoS ONE 6:e20388. doi:10.1371/journal.pone.0020388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fardeau ML, Salinas MB, L’Haridon S, Jeanthon C, Verhe F, Cayol JL, Patel BKC, Garcia JL, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp nov., comb. nov as four novel subspecies. Int J Syst Evol Microbiol 54:467–474. doi:10.1099/ijs.0.02711-0

    Article  CAS  PubMed  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61. doi:10.1007/BF00413027

    Article  CAS  Google Scholar 

  • Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673. doi:10.1099/ijs.0.02298-0

    Article  CAS  PubMed  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304. doi:10.1016/j.ymben.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  • Flynn CM, Hunt KA, Gralnick JA, Srienc F (2012) Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems 107:120–128. doi:10.1016/j.biosystems.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  • Frock AD, Notey JS, Kelly RM (2010) The genus Thermotoga: recent developments. Environ Technol 31:1169–1181. doi:10.1080/09593330.2010.484076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285. doi:10.3354/meps150275

    Article  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363. doi:10.1101/gr.3003105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye WJ, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li WX, Liu JF, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, de Macario EC, Ferry JG, Jarrell KF, Jing H, Macario AJL, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542. doi:10.1101/gr.223902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Genthner BRS, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    Google Scholar 

  • Glöckner FO, Stal LJ, Sandraa R-A, Gasol JM, O’Gara F, Hernandez F, Labrenz M, Stoica E, Varela MM, Bordalo A, Pitta P (2012) In: Calewaert JB, McDonough N (eds) Marine microbial diversity and its role in ecosystem functioning and environmental change. Marine Board Position Paper 17. Marine Board-ESF, Ostend

    Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9. doi:10.1016/j.biortech.2012.01.103

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123. doi:10.1038/nbt749

    Article  CAS  PubMed  Google Scholar 

  • Henstra AM (2006) CO metabolisms of Carboxydothermus hydrogenoformans and Archaeoglobus fulgidus. PhD thesis, Wageningen University

    Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007a) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206. doi:10.1016/j.copbio.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  • Henstra AM, Dijkema C, Stams AJ (2007b) Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol 9:1836–1841. doi:10.1111/j.1462-2920.2007.01306.x

    Article  CAS  PubMed  Google Scholar 

  • Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR (2004a) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190. doi:10.1007/s00248-003-0004-4

    Article  CAS  PubMed  Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004b) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030. doi:10.1128/AEM.70.10.6023-6030.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR (2007) Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57:701–707. doi:10.1099/ijs.0.64296-0

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1998) Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol 1:291–295. doi:10.1016/S1369-5274(98)80032-5

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Langworthy TA, Kunig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90  ºC. Arch Microbiol 144:324–333. doi:10.1007/BF00409880

    Article  CAS  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, JØrgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820. doi:10.1073/pnas.0511033103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghearachchi HS, Singh S, Sarma PM, Aginihotri A, Lal B (2010) Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline. Int J Hydrogen Energy 35:6665–6673. doi:10.1016/j.ijhydene.2010.04.034

    Article  CAS  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282. doi:10.1016/j.jbiotec.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Bartlett DH (1997) The molecular biology of barophilic bacteria. Extremophiles 1:111–116. doi:10.1007/s007920050023

    Article  CAS  PubMed  Google Scholar 

  • Kengen SWM, Stams AJM (1994a) Growth and energy conservation in batch cultures of Pyrococcus furiosus. FEMS Microbiol Lett 117:305–309. doi:10.1111/j.1574-6968.1994.tb06784.x

    Article  CAS  Google Scholar 

  • Kengen SWM, Stams AJM (1994b) Formation of l-alanine as a reduced end-product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175. doi:10.1007/BF00276479

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152. doi:10.1016/S0141-0229(01)00478-1

    Article  CAS  Google Scholar 

  • Kivistö AT, Karp MT (2011) Halophilic anaerobic fermentative bacteria. J Biotechnol 152:114–124. doi:10.1016/j.jbiotec.2010.08.014

    Article  PubMed  CAS  Google Scholar 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb Technol 14:602–608. doi:10.1016/0141-0229(92)90033-K

    Article  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, Mcneil LK, Badger JH, Glodek A, Zhou LX, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, DAndrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390(10.1038/37052):364–370. doi:10.1038/37052

    CAS  PubMed  Google Scholar 

  • Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092. doi:10.1073/pnas.1004716107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson PA, Allen TD, Caldwell ME, Tanner RS (2011) Anaerobes: a piece in the puzzle for alternative biofuels. Anaerobe 17:206–210. doi:10.1016/j.anaerobe.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499. doi:10.1128/JB.00746-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43:1352–1358. doi:10.1016/j.procbio.2008.08.005

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046. doi:10.1021/es0499344

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285. doi:10.1021/es034923g

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662. doi:10.1021/es048927c

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952. doi:10.1016/j.watres.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508. doi:10.1038/nrmicro1442

    Article  CAS  PubMed  Google Scholar 

  • Lowy DA, Tender LM (2008) Harvesting energy from the marine sediment-water interface: III. Kinetic activity of quinone- and antimony-based anode materials. J Power Sources 185:70–75. doi:10.1016/j.jpowsour.2008.06.079

    Article  CAS  Google Scholar 

  • Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98:1171–1182. doi:10.1002/bit.21533

    Article  CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ et al (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrogen Energy 35:7730–7737. doi:10.1016/j.ijhydene.2010.05.063

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973. doi:10.1073/pnas.0710525105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathis B, Marshall C, Milliken C, Makkar R, Creager S, May H (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78:147–155. doi:/10.1007/s00253-007-1266-4

    Article  CAS  PubMed  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. doi:10.1016/S0960-8524(01)00120-1

    Article  CAS  PubMed  Google Scholar 

  • Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042. doi:10.1002/btpr.201

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Tamburini C, Arístegui J, Baltar F, Bochdansky AB, Fonda-Umani S, Fukuda H, Gogou A, Hansell DA, Hansman RL, Herndl GJ, Panagiotopoulos C, Reinthaler T, Sohrin R, Verdugo P, Yamada N, Yamashita Y, Yokokawa T, Bartlett DH (2010) Emerging concepts on microbial processes in the bathypelagic ocean − ecology, biogeochemistry, and genomics. Deep Sea Res Pt II 57:1519–1536. doi:10.1016/j.dsr2.2010.02.019

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329. doi:10.1038/20601

    Article  CAS  PubMed  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. doi:10.1128/MMBR.00039-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355. doi:10.1002/bit.10501

    Article  CAS  PubMed  Google Scholar 

  • Parshina SN, Kleerebezem R, Sanz JLS, Lettinga G, Nozhevnikova AN et al (2003) Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 53:1791–1799. doi:10.1099/ijs.0.02668-0

    Article  CAS  PubMed  Google Scholar 

  • Pedrós-Alió C (2006) Genomics and marine microbial ecology. Int Microbiol 9:191–197

    PubMed  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12. doi:10.1007/BF00416962

    Article  CAS  PubMed  Google Scholar 

  • Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thurmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Muller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7. doi:10.1371/journal.pone.0033439

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535. doi:10.1023/A:1025484009367

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. doi:10.1128/AEM.70.9.5373-5382.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi:10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. doi:10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41:4053–4058. doi:10.1021/es070426e

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Richard TL, Logan BE (2008) Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 101:1163–1169. doi:10.1002/bit.22015

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Richard TL, Logan BE (2009) Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid−substrate microbial fuel cells. J Power Sources 192:304–309. doi:10.1016/j.jpowsour.2009.03.023

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634. doi:10.1021/es052254w

    Article  CAS  PubMed  Google Scholar 

  • Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD et al (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Hyperthermophilic Enzymes Pt A 330:134–157. doi:10.1016/S0076-6879(01)30372-5

    Article  CAS  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934. doi:10.1073/pnas.0407486101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640. doi:10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755. doi:10.1016/j.elecom.2009.07.008

    Article  CAS  Google Scholar 

  • Schicho RN, Ma K, Adams MWW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers A, Kock D, Höft C, Köweker G, Siegert M (2012) Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia. Front Microbiol 3:1–11. doi:10.3389/fmicb.2012.00016

    Article  Google Scholar 

  • Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470. doi:10.1007/BF00307766

    CAS  Google Scholar 

  • Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457. doi:10.1128/JB.01582-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh WY, Chen A-L, Chiu H-H (2000) Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329. doi:10.1099/00207713-50-1-321

    Article  CAS  PubMed  Google Scholar 

  • Sipma J (2006) Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization. PhD thesis, Wageningen University.

    Google Scholar 

  • Sokolova TG, González JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149. doi:10.1099/00207713-51-1-141

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323. doi:10.1007/s00792-004-0389-0

    Article  CAS  PubMed  Google Scholar 

  • Sowers KR, Ferry JG (2003) Methanogenesis in the marine environment. Encyclopedia of environmental microbiology. Wiley, New York

    Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Article  Google Scholar 

  • Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J (2011) Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res 39:D546–D551. doi:10.1093/nar/gkq1102

    Article  CAS  PubMed  Google Scholar 

  • Svetlichny VA, Sokolova TG, Gerhardt M, Kostrikina NA, Zavarzin GA (1991) Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands. Microbiol Ecol 21:1–10

    Article  CAS  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825. doi:10.1038/nbt716

    Article  CAS  PubMed  Google Scholar 

  • Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575. doi:10.1016/j.jpowsour.2007.12.123

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697. doi:10.1007/s00253-007-1198-z

    Article  CAS  PubMed  Google Scholar 

  • Tront JM, Fortner JD, Plötze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590. doi:10.1016/j.bios.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724. doi:10.1099/00207713-49-2-705

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi:10.1126/science.1093857

    Article  CAS  PubMed  Google Scholar 

  • Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003. doi:10.1080/09593331003710244

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811. doi:10.1016/j.ijhydene.2008.11.015

    Article  CAS  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020. doi:10.1111/j.1462-2920.2009.02145.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su X, Chen F, Wang Y, Jiao L, Dong H, Huang Y, Jiang H (2012) Microbial diversity in cold seep sediments from the northern South China Sea. Geosci Front 3:301–316. doi:10.1016/j.gsf.2011.11.014

    Article  CAS  Google Scholar 

  • Zhu D, Wang G, Qiao H, Cai J (2008) Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge. Int J Hydrogen Energy 33:6116–6123. doi:10.1016/j.ijhydene.2008.07.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cavaleiro, A.J., Abreu, A.A., Sousa, D.Z., Pereira, M.A., Alves, M.M. (2013). The Role of Marine Anaerobic Bacteria and Archaea in Bioenergy Production. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_18

Download citation

Publish with us

Policies and ethics