Skip to main content

Plant Growth Promoting Rhizobacteria (PGPR): Microbes in Sustainable Agriculture

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Plant growth promoting rhizobacteria (PGPR) contain diverse type of plant growth promoting attributes that has many beneficial effects on crop productivity. The PGPR appear to promote the plant growth via – suppression of plant disease (bio-controls), enhanced nutrient achievement, or phytohormone production (bio-fertilizers). The PGPR protect plants from several biotic and abiotic stresses. Co-inoculation of PGPR can ease the adverse effects on crop plants due to various environmental stresses such as soil salinity, droughts, temperature and nutrient deficiency. During the last couple of decades given the negative environmental impact of artificial fertilizers and their increasing costs, the use of PGPR for sustainable environment and safe agriculture has increased globally. Thus, the PGPR offer an environmentally sustainable approach to increase crop production for future generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and Fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2001) Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. J Oil Palm Res 13:42–49

    CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Hasnain S, Berge O (2004) Bacterial exo-polysaccharides and productivity of the salt affected soils. II. Effect of exo-polysaccharides (EPS) producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Tech 3:45–53

    Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2:157–160

    Article  CAS  Google Scholar 

  • Banasco P, Fuente L De La, Gaultieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as bio-control agents against forage legume root pathogenic fungi. Soil Biol Biochem 10:1317–1323

    Article  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2007) Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plant 1:68–82

    Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytoWrmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraquio WL, Segubre EM, Gonzalez MS, Verma SC, James EK, Ladha JK, Tripathi AK (2000) Diazotrophic enterobacteria: what is their role in the rhizosphere? In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Manila, pp 93–118

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Basu PS, Ghosh AC (2001) Production of indole acetic acid in cultures by a Rhizobium species from the root nodules of a mono cotyledonous tree, Roystonea regia. Acta Biotechnol 1:65–72

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Berg G (2009) Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in culture of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Cacciari I, Lippi D, Ippoliti S, Pietrosanti W, Pietrosanti W (1989) Response to oxygen of diazotrophic Azospirillum brasiliense-Arthobacter giacomelloi mixed batch culture. Arch Microbiol 152:111–114

    Article  CAS  Google Scholar 

  • Cattelana AJ, Hartela PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  Google Scholar 

  • Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci Technol J 8:18–23

    Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Ma S, Liu L (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in. Bioresour Technol 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Kim J, Kim J, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline Quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cocking EC (2000) Helping plants get more nitrogen from air. Eur Rev 8:193–200

    Article  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-acetic pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    CAS  PubMed  Google Scholar 

  • Cowan AK, Cairns ALP, Bartels-Rahm B (1999) Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 50:595–603

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin/Heidelberg, 288

    Book  Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Dileep C, Kumar BSD, Dube HC (1998) Promotion of plant growth and yield by two rhizoplane fluorescent Pseudomonas. Ind J Exp Biol 36:399–402

    Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the bio-control of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Duijff BJ, de Kogel WJ, Bakker PAHM, Schippers B (1994) Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1688

    Article  CAS  Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32:9–15

    Google Scholar 

  • Egamberdiyeva D (2005) Plant-growth-promoting rhizobacteria isolated from a calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA, Jadidi M, Aliakbari A (2009) Effect of superior IAA producing rhizobia on N, P, K uptake by wheat grown under greenhouse condition. World J Appl Sci 6:1629–1633

    CAS  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 77–86

    Google Scholar 

  • Figueiredo VB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Galal YGM (2003) Assessment of nitrogen availability to wheat (Triticum aestivum L.) from inorganic and organic N sources as affected by Azospirillum brasilense and Rhizobium leguminosarum inoculation. Egypt J Microbiol 38:57–73

    Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  CAS  PubMed  Google Scholar 

  • Garagulia AD, Kiprianova EA, Boiko OI (1974) Antibiotic effect of bacteria from the genus Pseudomonas on phytopathogenic fungi. Mikrobiol Zh (Kiev) 36:197–202

    CAS  Google Scholar 

  • Gaur R, Shani N, Kawaljeet Johri BN, Rossi P, Aragno M (2004) Diacetyl phloroglucinol-producing Pseudomonas does not influence AM fungi in wheat rhizosphere. Curr Sci 86:453–457

    CAS  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264

    Article  Google Scholar 

  • Ghosh AC, Basu PS (2002) Growth behaviour and bioproduction of indole acetic acid by a Rhizobium species isolated from root nodules of a leguminous tree Dalbergia lanceolarea. Ind Exp Biol 40:796–801

    CAS  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, 234

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halimi MS, Raffidah Z, Ismail MR (2000) Growth responses of tomatoes (Lycopersicon esculentum Mill) under protected environment to rhizobacterial inoculation. Trans Malays Soc Plant Physiol 9:235–239

    Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • Hernandez M, Chailloux M (2004) Las microrizas arbusculares y las bacterias rizosfe’ricas como alternativa a la nutricion mineral del tomate. Cultivos Tropicales 25:5–16

    Google Scholar 

  • Hiifte M, Vande Woestyne M, Verstraete W (1994) Role of siderophores in plant growth promotion and plant protection by fluorescent pseudomonads. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micro-nutrients in the rhizosphere. Lewis Publishers, Boca Raton, pp 81–92

    Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288

    Article  CAS  PubMed  Google Scholar 

  • Horemans S, de Koninck K, Neuray J, Hermans R, Valassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341–346

    CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 1:141–152

    Google Scholar 

  • Jousset A, Rall B, Kalinkat G, Scheu S, Brose U (2009) Extracellular toxin production by soil bacteria cause a shift from a type III to type IV functional response by microfaunal predators [Oral presentation]. The 39th annual meeting of the ecological, Society of Germany, Austria/Switzerland

    Google Scholar 

  • Kapsalis A, Gravanis F, Gowen S (2008) Involvement of phenazine-1-carboxylic acid, siderophores and hydrogen cyanide in suppression of Rhizoctonia solani and Pythium spp. damping-off by Pseudomonas oryzihabitans and Xenorhabdus nematophila. J Food Agric Environ 6:168–171

    Google Scholar 

  • Khakipour N, Khavazi K, Mojallali H, Pazira E, Asadirahmani H (2008) Production of Auxin hormone by Fluorescent Pseudomonads. Am Eurasian J Agric Environ Sci 4:687–692

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(8):473–480

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate solubilizing bacteria and vesicular–arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kim H, Sang MK, Myung I, Chun S, Kim KD (2009) Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a bio-control agent of Phytophthora blight of pepper. J Plant Pathol 25:62–69

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kogan FN (1997) Global drought watch from space. Bull Bridge University Press, New York

    Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage 22:298–304

    Article  Google Scholar 

  • Kohler J et al (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kraus J, Loper J (1995) Characterization of genomic region required for production of antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer RJ, Kennedy AC (1996) Rhizobacteria as bio-control agents of weeds. Weed Technol 10:601–609

    Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305

    Article  CAS  Google Scholar 

  • Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1465–1466

    Google Scholar 

  • Laville J, Blumer C, Schroetter CV, Gaia V, Defago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic bio-control agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Srivastava S (2008) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Mandal SM, Mondal KC, Dey S, Pati BR (2007) Optimization of cultural and nutritional conditions for indol-3-acetic acid (IAA) production by a Rhizobium sp. isolated from rot nodules of Vigna mungo (L) hepper. Res J Microbiol 2:239–246

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales LJ, Soto-Urzua L, Baca BE, Sanchez-Ahedo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  CAS  PubMed  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC Press, Boca Raton

    Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and/3-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M, Shahzad SM (2006) Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25:78–84

    Google Scholar 

  • Nagorska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful bio-control agent. Acta Biochim Pol 54:495–508

    CAS  PubMed  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52:119–129

    CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Google Scholar 

  • Negi YK, Garg SK, Kumar J (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and bio-control agents in pea. Curr Sci 89:25

    Google Scholar 

  • Noel TC, Cheng C, Yost CK, Pharis RP, Hynes FM (1996) Rhizobium leguminosarum as a plant-growth rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2, 4-diacetylphloroglucinol by the bio-control agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066

    Article  CAS  Google Scholar 

  • O’Donnell PJ, Calvert CM, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Article  PubMed Central  PubMed  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2000) Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Res Microbiol 155:233–242

    Article  CAS  Google Scholar 

  • Pandey A, Palni LMS (1998) Isolation of Pseudomonas corrugate from Sikkim, Himalaya. World J Microbiol Biotechnol 14:411–413

    Article  Google Scholar 

  • Papavizas GC, Ayers WA (1974) Aphanomyces species and their root diseases in pea and sugarbeet. A review. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Paul D, Sarma YR (2006) Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici, foot rot pathogen of black pepper (Piper nigrum L). Arch Phytopathol Plant Prot 39:113–118

    Article  CAS  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    Article  CAS  Google Scholar 

  • Rai R, Hunt PG (1993) Inoculation of maize varieties with salt tolerant mutants of Azospirillum brasilense and VAM fungi in saline calcareous soil. Microbiol Release 1:243–251

    CAS  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan S, Loganathan P, Saleena LM, Nair S (2001) Diversity of pseudomonads isolated from three different plant rhizospheres. J Appl Microbiol 91:742–749

    Article  CAS  PubMed  Google Scholar 

  • Reddy BP, Rao KS (2009) Biochemical and PCR- RAPD characterization of Pseudomonas fluorescent produced antifungal compounds inhibit the rice fungal pathogens in vitro. Electron J Environ Agric Food Chem 8:1062–1067

    CAS  Google Scholar 

  • Reddy BP, Reddy KRN, Rao SM, Rao KS (2008) Efficacy of antimicrobial metabolites of Pseudomonas fluorescens against rice fungal pathogens. Curr Trends Biotechnol Pharm 2:178–182

    CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation of chickpea (Cicer arietinum L) under field conditions. J Agric Environ Sci 3:253–257

    Google Scholar 

  • Roy M, Basu PS (2004) Studies on root nodules of leguminous plants bioproduction of indole acetic acid by a Rhizobium sp. from a twiner Clitorea ternatea L. Acta Biotechnol 12:453–460

    Article  Google Scholar 

  • Saad MS, Shabuddin ASA, Yunus AG, Shamsuddin ZH (1999) Effects of Azospirillum inoculation on sweet potato grown on sandy tin-tailing soil. Commun Soil Sci Plant Anal 30:583–1592

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Pub. Co., Belmont, p 682

    Google Scholar 

  • Saraf M, Thakker A, Patel BV (2008) Bio-control activity of different species of Pseudomonas against phytopathogenic fungi In vivo and In vitro conditions. Int J Biotechnol Biochem 4:223–232

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas Xuorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci 110:271–277

    Article  Google Scholar 

  • Sarwar M, Frankenberger WT (1994) Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant Soil 160:97–104

    Article  CAS  Google Scholar 

  • Seshadri S, Ignacimuthu S, Vadivelu M, Lakshminarasimhan C (2007) Inorganic phosphate solubilization by two insect pathogenic Bacillus sp. Dev Plant Soil Sci 102:351–355

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad A, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Shinozaki YK (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, pp 11–28

    Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2007) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Biochem J 41:1768–1774

    Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective bio-control agents of plant pathogens. In: PGPR: bio-control and biofertilization. Springer, Dordrecht, pp 111–142

    Chapter  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a bio-control factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    Article  CAS  PubMed  Google Scholar 

  • Souchie EL, Azcon R, Barea JM, Saggin-Junior OJ, da Silva EMR (2007) Indolacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci Biol Sci 29:315–320

    Article  CAS  Google Scholar 

  • Sridevi M, Mallaiah KV (2007) Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban (L) Merr. Iran J Biotechnol 5:178–182

    CAS  Google Scholar 

  • Sridevi M, Yadav NCS, Mallaiah KV (2008) Production of indol-acetic acid by Rhizobium isolates from Crotalaria species. Res J Microbiol 3:276–281

    Article  CAS  Google Scholar 

  • Stefan M, Mihasan M, Dunca S (2008) Plant growth promoting rhizobacteria can inhibit the in vitro germination of Glycine Max L seeds. Scientific Annals of University “Alexandru Ioan Cuza” Iasi, Section Genetics and Molecular Biology, T. IX, 3:105–110

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York, 427

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  Google Scholar 

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. US patent no. 4, 988, p 586

    Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth promoting rhizobacteria salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidants status of wheat plant under saline condition. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes. Controlled-environment studies. Can J Plant Sci 82:282–290

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Wiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol 124:1149–1157

    Article  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas bio-control agents of soil borne pathogens: looking back over 30 years. Annu Rev Phytopathol 40:309–348

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Wilhite DA (2000) Drought as a natural hazard. In: Wilhite DA (ed) Drought: a global assessment. Routledge, London, pp 3–18

    Google Scholar 

  • Zadeh HR, Khavazi K, Asgharzadeh A, Hosseinimazinani M, Mot RD (2008) Bio-control of Pseudomonas Savastanoi, causative agent of olive knot disease: antagonistic potential of non-pathogenic rhizosphere isolates of Fluorescent Pseudomonas. Commun Agric Appl Biol Sci 73:199–203

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Head of the Department of Environmental Microbiology and Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow for providing infrastructure facilities. Financial support from UGC, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Shankar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, J.S., Singh, D.P. (2013). Plant Growth Promoting Rhizobacteria (PGPR): Microbes in Sustainable Agriculture. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_14

Download citation

Publish with us

Policies and ethics