Skip to main content

Current Aspects of Metal Resistant Bacteria in Bioremediation: From Genes to Ecosystem

  • Chapter
Book cover Management of Microbial Resources in the Environment

Abstract

Global industrialization has resulted in a widespread contamination of the environment with persistent addition of organic and inorganic wastes. The contaminants enter the environment either by natural processes or through human activity. The natural contamination originates from excessive withering of minerals from rocks or displacement from the groundwater or subsurface layers of the soil. Disposal of industrial effluents, sewage sludge, deposition of air-borne industrial wastes, military operations, mining, land-fill operations, industrial solid-waste disposal and the growing use of agricultural chemicals such as pesticides, herbicides and fertilizers are sources of human-assisted contamination of the environment. Heavy metals exert some important roles in some biochemical reactions, being essential to the growth and development of microorganisms, plant and animals. However, in high concentrations they can form unspecific compounds, creating cytotoxic effects. They exhibit a range of toxicities towards microorganisms, depending on physico-chemical factors, speciation etc., while toxic effects can arise from natural processes in the soil, and on microbial communities are more commonly associated with anthropogenic contamination or redistribution of toxic metals in terrestrial ecosystems. A variety of mechanisms have been implicated in the adaptation, tolerance, and resistance of microorganisms to a metal pollutant: precipitation of metals as phosphates, carbonates, and/or sulfides, volatilization via methylation or ethylation, physical exclusion of electronegative components in membranes and extracellular polymeric substances (EPS), energy-dependent metal efflux systems, and intracellular sequestration with low molecular weight, cysteine-rich proteins. The efficiency of these mechanisms depends on many parameters, among which the metal itself, the species studied, time, temperature, pH, presence of plant communities near the microfauna, interactions of the metal with other compounds. Most microorganisms are known to have specific genes for resistance to toxic ions of heavy metals. This chapter summarizes the recent progress in the field of molecular microbial ecology of metal resistant bacteria with emphasis that how the genetic capacity of the organisms can be exploited for the remediation of heavy metal pollution. Genetic improvement may help to develop the field of existing methodologies to decontamination processes are also discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  PubMed  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Agrawal J, Sherameti I, Varma A (2011) Detoxification of heavy metals: state of art. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Heidelberg

    Google Scholar 

  • Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166:36–59

    Article  CAS  PubMed  Google Scholar 

  • Akinola OM, Njoku LKL, Ifitezue VN (2011) Assessment of heavy metals (lead and cadmium) concentration in Paspalum orbiculare near municipal refuse dumpsites in Lagos State, Nigeria. J Ecol Nat Environ 3:509–514

    CAS  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  PubMed  Google Scholar 

  • Ansari MI, Masood F, Malik A (2011) Bacterial biosorption: a technique for remediation of heavy metals. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York

    Google Scholar 

  • Avery SV (2001) Metal toxicity in yeast and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Schaefer JJ (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  PubMed  Google Scholar 

  • Barkay TS, Miller M, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  CAS  PubMed  Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benzerara K, Morin G, Yoon TH, Miot J, Tyliszczak T, Casiot C, Bruneel O, Farges F, Brown GE Jr (2008) Nanoscale study of as biomineralization in an acid mine drainage system. Geochim Cosmochim Acta 72:3949–3963

    Article  CAS  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379

    Article  CAS  PubMed  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    Article  CAS  PubMed  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Cases I, de Lorenzo V (2005a) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Cases I, de Lorenzo V (2005b) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-Garcia J (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin

    Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF (2009) Iron oxihydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818

    Article  CAS  Google Scholar 

  • Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26

    Article  CAS  PubMed  Google Scholar 

  • Cooksey DA (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14:381–386

    Article  CAS  PubMed  Google Scholar 

  • Corbitt RA (1999) Standard hand book of environmental engineering, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • DiChristina TJ, Fredrickson JK, Zachara JM (2005) Enzymology of electron transport: energy generation with geochemical consequences. Rev Miner Geochem 59:27–52

    Article  CAS  Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32:749–3755

    Article  Google Scholar 

  • Du X, Boonchayaanant B, Wu W, Fendorf S, Bargar J, Criddle CS (2011) Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions. Environ Sci Technol 45:4718–4725

    Article  CAS  PubMed  Google Scholar 

  • Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation J 3:171–188

    Article  CAS  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  CAS  Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357

    Article  CAS  Google Scholar 

  • Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366

    Article  CAS  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005a) Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71:371–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Colpaert JV, Gadd GM (2005b) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM (2007) Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature 356:140–142

    Article  CAS  Google Scholar 

  • Frentiu T, Ponta M, Levei E, Cordos EA (2009) Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure. Chem Pap 63:239–248

    Article  CAS  Google Scholar 

  • Gadd GM (2005) Microorganisms in toxic metal-polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Heidelberg

    Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    Article  CAS  Google Scholar 

  • Gadd GM (1996) Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20:150–156

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:4792

    Google Scholar 

  • Gadd GM (2001) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise, vol 10, special processes. Wiley, Weinheim, pp 225–264

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Geets J, Vangronsveld J, Diels L, Taghavi S, van der Lelie D (2008) Microbial activities, monitoring and application as part of a management strategy for heavy metal-contaminated soil and ground water. In: Naidu R (ed) Developments in soil science. Elsevier B.V., London, pp 521–559

    Google Scholar 

  • Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305

    Article  CAS  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Hameed MSA (2006) Continuous removal and recovery of lead by alginate beads free and alginate-immobilized Chlorella vulgaris. Afr J Biotechnol 5:1819–1823

    Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal–microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  PubMed  Google Scholar 

  • Hasin AA, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PE (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405

    Article  CAS  PubMed  Google Scholar 

  • Haveman SA, Pedersen K (2002) Microbially mediated redox processes in natural analogues for radioactive waste. J Contam Hydrol 55:161–174

    Article  CAS  PubMed  Google Scholar 

  • Hietala KA, Roane TM (2009) Microbial remediation of metals in soils. In: Singh A et al. (eds) Advances in applied bioremediation, Soil biology, vol 17, Springer, Berlin/Heidelberg, pp 201–220

    Chapter  Google Scholar 

  • Holden JF, Adams MWW (2003) Microbe–metal interactions in marine hydrothermal vents. Curr Opin Chem Biol 7:160–165

    Article  CAS  PubMed  Google Scholar 

  • Hobman JL, Wilson JR, Brown NL (2000) Microbial mercury reduction. In: Lovley DR (ed) Environmental microbe-metal interactions. Am Soc Microbiol Washington, pp 177–197

    Google Scholar 

  • Hu P, Brodie EO, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavymetal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang PM (2008) Impacts of physicochemical–biological interactions on metal and metalloid transformations in soils: an overview. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. John Wiley and Sons, Wiley, Chichester

    Google Scholar 

  • Huang PM, Wang MC, Wang MK (2004) Mineral–organic–microbial interactions. In: Hillel D, Rosenzweig C, Powlson DS, Scow KM, Singer MJ, Sparks DL, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Joerger K, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating-bacteria and their potential for material science. Trends Biotechnol 19:15–20

    Article  PubMed  Google Scholar 

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut 3:47–66

    Article  CAS  Google Scholar 

  • Jussila MM, Zhao J, Suominen L, Lindström K (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut 146:510–524

    Article  CAS  PubMed  Google Scholar 

  • Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  CAS  PubMed  Google Scholar 

  • Kannan SK, Krishnamoorthy R (2006) Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury – a case study in Pulicat Lake North of Chennai, South East India. Sci Total Environ 367:341–353

    Article  CAS  PubMed  Google Scholar 

  • Karlson U, Frankenberger WT (1988) Effects of carbon and trace element addition on alkylselenide production by soil. Soil Sci Soc Am J 52:1640–1644

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753

    Article  CAS  Google Scholar 

  • Komeili A (2007) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–366

    Article  CAS  PubMed  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Landa ER (2005) Microbial biogeochemistry of uranium mill tailings. Adv Appl Microbiol 57:113–130

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-A, Hendson M, Panopoulus NJ, Schrott MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Grass G, Rensing C, Barrett SR, Yates CJD, Stoyanov JV, Brown NL (2002) The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:19–41

    Article  CAS  Google Scholar 

  • Levin SV, Guzev VS, Aseeva IV, Babeva IP, Marfenina OE, Umarov MM (1989) Heavy metals as a factor of anthropogenic impact on the soil microbiota. Mosk Gos University, pp 5–46

    Google Scholar 

  • Li YH, Ding J, Luan ZK, Di ZC, Zhu YF, Xu C, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Lian B, Chen Y, Zhu L, Yang R (2008a) Effect of microbial weathering on carbonate rocks. Earth Sci Front 15:90–99

    Article  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008b) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun GX (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260

    Article  CAS  PubMed  Google Scholar 

  • Losi ME, Frankenberger WT (1998) Microbial oxidation and solubilization of precipitated elemental selenium in soil. J Environ Qual 27:836–843

    Article  CAS  Google Scholar 

  • Lovley DR (2001) Anaerobes to the rescue. Science 293:1444–1446

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  PubMed  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, Mcdermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  CAS  PubMed  Google Scholar 

  • Maier RM (2000) Microorganisms and organic pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic, San Diego

    Google Scholar 

  • Masood F, Malik A (2011) Biosorption of metal ions from aqueous solution and tannery effluents by Bacillus sp. FM1. J Environ Sci Health Part A 46:1667–1674

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behavior of metals in soils. In: Ground water issue EPA/540/S-92/018. US-EPA, Ground Water and Ecosystems Restoration Division, Ada Oklahoma

    Google Scholar 

  • McLean JS, Lee JU, Beveridge TJ (2002) Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, New York, pp 227–261

    Google Scholar 

  • Merkle SA (2006) Engineering forest trees with heavy metal resistance genes. Silvae Genetica 55:263–268

    Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattinez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  CAS  PubMed  Google Scholar 

  • Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, Ferard C, Skouri-Panet F, Guigner JM, Posth N, Galvez M, Brown GE Jr, Guyot F (2009) Iron biomineralization by neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711

    Article  CAS  Google Scholar 

  • Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD (2005) Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 57:27–40

    Article  CAS  PubMed  Google Scholar 

  • Moral R, Gilkes RJ, Jordan MM (2005) Distribution of heavy metals in calcareous and non-calcareous soils in Spain. Water Air Soil Pollut 162:127–142

    Article  CAS  Google Scholar 

  • Morillo JA, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2006) Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol 53:189–193

    Article  CAS  PubMed  Google Scholar 

  • Muhammad A, Muhammad S, Sarfraz H (2008) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  CAS  PubMed  Google Scholar 

  • Muralisastry, Ahmad A, Khan MI, Rajivkumar (2003) Biosynthesis of metal nanoparticles using fungi and actinnomycetes. Curr Sci 85:162–170

    Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol 27:313–339

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. Ind J Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Nilgiriwala KS, Alahari A, Rao AS, Apte SK (2008) Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl Environ Microbiol 74:5516–5523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oremland R, Stolz J (2000) Dissimilatory reduction of selenate and arsenate in nature. In: Lovley DR (ed) Environmental microbe–metal interactions. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  CAS  PubMed  Google Scholar 

  • Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen JI, Tiedje JM (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110:943–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poljsak B, Pócsi I, Raspor P, Pesti M (2010) Interference of chromium with biological systems in yeast and fungi: a review. J Basic Microbiol 50:21–36

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  • Rawlings DE (1997) Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin, pp 229–245

    Chapter  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Ray MK (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2:57–63

    CAS  Google Scholar 

  • Rensing C, Newby DT, Pepper IL (2002) The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol Biochem 34:285–296

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    Article  CAS  PubMed  Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    Article  CAS  PubMed  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulphides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schottel J, Mandal A, Clark D, Silver S, Hedges RW (1974) Volatilization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337

    Article  CAS  PubMed  Google Scholar 

  • Schue M, Dover LG, Besra GS, Parkhill J, Brown NL (2009) Sequence and analysis of a plasmid encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 19:439–444

    Article  CAS  Google Scholar 

  • Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496

    Article  CAS  PubMed  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Siddiqui MH, Kumar A, Kesari KK, Arif JM (2009) Biomining-a useful approach toward metal extraction. Am Eurasian J Agron 2:84–88

    Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2009) Heavy metals, bacterial resistance. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford

    Google Scholar 

  • Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy MH, Rosenberg H (1981) Inducible 92 plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 146:983–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  CAS  PubMed  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  CAS  PubMed  Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  CAS  PubMed  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides–1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Bio Technol 4:115–156

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005b) Developments in bioremediation of soils and sediments polluted with metals and radionuclides–1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  • Thomas KW (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    Article  CAS  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211

    Article  CAS  Google Scholar 

  • Unaldi MN, Korkmaz H, Ankan B, Coral G (2003) Plasmid-encoded heavy metal resistance in Pseudomonas sp. Bull Environ Contam Toxicol 71:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMS) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    Article  CAS  PubMed  Google Scholar 

  • Van Hullebusch ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4:185–212

    Article  CAS  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Voloudakis AE, Reignier TM, Cooksey DA (2005) Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 71:782–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Watanabe ME (2001) Can bioremediation bounce back? Nat Biotechnol 19:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1997) An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation. J Ind Microbiol 18:414–421

    Article  CAS  Google Scholar 

  • White C, Gadd GM (2000) Copper accumulation by sulphate reducing bacterial biofilms and effects on growth. FEMS Microbiol Lett 183:313–318

    Article  CAS  PubMed  Google Scholar 

  • Williams CJ, Aderhold D, Edyvean GJ (1998) Comparison between biosorbents for the removal of metal ions from aqueous solution. Water Res 32:216–224

    Article  CAS  Google Scholar 

  • Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffe PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235

    Article  CAS  PubMed  Google Scholar 

  • Yee N, Kobayashi DY (2008) Molecular genetics of selenate reduction by Enterobacter cloacae SLD1a-1. Adv Appl Microbiol 64:107–123

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2007) Pyridine-2, 6-bis (thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic. Biometals 20:145–158

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Wu M, Yang J (2011) Mobilities and leachabilities of heavy metals in sludge with humus soil. J Environ Sci 23:247–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Masood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Masood, F., Malik, A. (2013). Current Aspects of Metal Resistant Bacteria in Bioremediation: From Genes to Ecosystem. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_11

Download citation

Publish with us

Policies and ethics