Skip to main content

Some Ruminations on Australopith Diets

  • Chapter
  • First Online:

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

There are few data regarding hominin diets prior to 3.6 Ma, and thus we have only vague notions about the role of diet in early human evolution. We do know that the australopith masticatory package (e.g., robust mandibles, thick enamel, megadont molars) is evident in an incipient state over 4 Ma, and that these features are consistent with a diet of hard and/or abrasive foods. Nonetheless, recent studies found great similarities in the dental microwear of Australopithecus afarensis and extant African apes, especially the gorilla, and no evidence for the consumption of hard foods. This may indicate that these hominins consumed diets qualitatively similar to those of gorillas and chimpanzees during much of the year, but then utilized harder and/or more abrasive fallback foods when preferred resources (probably fleshy fruits) were scarce (the “fallback hypothesis”). We might speculate by analogy that the earliest East African hominins had large home ranges when in savanna woodlands much like extant chimpanzees, as such environments make it necessary to range widely to obtain sufficient preferred “forest” resources. South African australopiths, in contrast, more regularly consumed significant quantities of hard foods and C4 resources which would have enabled them to utilize savanna woodlands more efficiently. This might have led to reduced home ranges and increased population densities, which might have redounded to their locomotor adaptations. However, the idea that australopith diets largely differed from those of extant African apes in their fallback foods has significant weaknesses, and recent studies suggest the possibility that extant ape and East African australopith diets differed profoundly. Thus, formulation of competitors to the fallback hypothesis is warranted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barton, R. A., Whiten, A., Byrne, R. W., & English, M. (1993). Chemical composition of baboon plant foods: Implications for the interpretation of intra- and interspecific differences in diet. Folia Primatologia, 61, 1–20.

    Article  Google Scholar 

  • Benefit, B. R., & McCrossin, M. L. (1990). Diet, species diversity, and distribution of African fossil baboons. Kroeber Anthropological Society Papers, 71(72), 79–93.

    Google Scholar 

  • Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66, 564–584.

    Article  Google Scholar 

  • Bonnefille, R., Potts, R., Chalie, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12125–12129.

    Article  Google Scholar 

  • Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–151.

    Article  Google Scholar 

  • Cerling, T. E. (1992). Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 241–247.

    Article  Google Scholar 

  • Cerling, T. E., Mbua, E., Kirera, F. M., Grine, F. E., Leakey, M. G., Sponheimer, M., et al. (2011). Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proceedings of the National Academy of Sciences of the United States of America, 108, 9337–9341.

    Article  Google Scholar 

  • Codron, D., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2005a). Inter- and intra-habitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15 N and %N. American Journal of Physical Anthropology, 129, 204–214.

    Google Scholar 

  • Codron, D., Luyt, J., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2005b). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101, 245–248.

    Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., & Smith, C. C. (2002). A two-stage model of increased dietary quality in early hominid evolution: The role of fiber. In P. S. Ungar & M. F. Teaford (Eds.), Human diet: Its origin and evolution (pp. 61–76). Westport: Bergin and Garvey.

    Google Scholar 

  • Daegling, D. J., & Grine, F. E. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40, 559–572.

    Article  Google Scholar 

  • deMenocal, P. B. (1995). Plio-Pleistocene African climate. Science, 270, 53–59.

    Article  Google Scholar 

  • Feakins, S. J., deMenocal, P. B., & Eglinton, T. I. (2005). Biomarker records of Late Neogene changes in northeast African vegetation. Geology, 33, 977–980.

    Article  Google Scholar 

  • Fleagle, J. G. (1998). Primate adaptation and evolution (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Fourie, N. H., Lee-Thorp, J. A., & Ackermann, R. R. (2008). Biogeochemical and craniometric investigation of dietary ecology, niche separation, and taxonomy of Plio-Pleistocene cercopithecoids from the Makapansgat Limeworks. American Journal of Physical Anthropology, 135, 121–135.

    Article  Google Scholar 

  • Grine, F. E. (1986). Dental evidence for dietary differences in Australopithecus and Paranthropus. Journal of Human Evolution, 15, 783–822.

    Article  Google Scholar 

  • Grine, F., & Kay, R. (1988). Early hominid diets from quantitative image analysis of dental microwear. Nature, 333, 765–768.

    Article  Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006a). Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319.

    Article  Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F. (2006b). Was the Early Pliocene hominin ‘Australopithecus’ anamensis a hard object feeder? South African Journal of Science, 102, 301–310.

    Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaarari, S. (2013). Molar microwear, diet and adaptation in a purported hominin species lineage from the Pliocene of east Africa. In K. E. Reed, J. G., Fleagle & R. E. Leakey (Eds.), The paleobiology of Australopithecus (pp. 213–223). Dordrecht: Springer.

    Google Scholar 

  • Hamilton, W. (1985). Demographic consequences of a food and water shortage to desert Chacma Baboons, Papio ursinus. International Journal of Primatology, 6, 451–462.

    Article  Google Scholar 

  • Hanya, G., Matsubara, M., Sugiura, H., Hayakawa, S., Goto, S., Tanaka, T., et al. (2004). Mass mortality of Japanese macaques in a western coastal forest of Yakushima. Ecological Research, 19, 179–188.

    Article  Google Scholar 

  • Hatley, T., & Kappelman, J. (1980). Bears, pigs, and Plio-Pleistocene hominids: Case for exploitation of belowground food resources. Human Ecology, 8, 371–387.

    Article  Google Scholar 

  • Hay, R. L. (1976). Geology of the Olduvai Gorge. Berkley: University of California Press.

    Google Scholar 

  • Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In F. E. Grine (Ed.), Evolutionary history of the “Robust” australopithecines (pp. 55–84). New York: Aldine de Gruyter.

    Google Scholar 

  • Jolly, C. J. (1970). The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man, 5, 5–26.

    Article  Google Scholar 

  • Kay, R. (1985). Dental evidence for the diet of Australopithecus. Annual Reviews of Anthropology, 14, 315–341.

    Article  Google Scholar 

  • Laden, G., & Wrangham, R. W. (2005). The rise of the hominid as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and austalopith origins. Journal of Human Evolution, 49, 482–498.

    Article  Google Scholar 

  • Lambert, J. E., Chapman, C. A., Wrangham, R. W., & Conklin-Brittain, N. L. (2004). Hardness of cercopithecine foods: Implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology, 125, 363–368.

    Article  Google Scholar 

  • Leakey, L. S. B. (1959). A new fossil skull from Olduvai. Nature, 184, 491–493.

    Article  Google Scholar 

  • Leakey, M. G., Feibel, C. S., McDougall, I., & Walker, A. (1995). New four million-year old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–571.

    Article  Google Scholar 

  • Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27, 361–372.

    Article  Google Scholar 

  • Levin, N. E., Simpson, S. W., Quade, J., Cerling ,T. E., & Frost, S. R. (2008). Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. In J. Quade, J. G. Wynn (Eds.), The Geology of Early Humans in the Horn of Africa. Geological Society of America Special Paper, 446, 215–234.

    Google Scholar 

  • Louchart, A., Wesselman, H., Blumenschine, R. J., Hlusko, L. J., Njau, J. K., Black, M. T., et al. (2009). Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science, 326, 66e1–66e4.

    Google Scholar 

  • Lucas, P. W., Corlett, R. T., & Luke, D. A. (1985). Plio-Pleistocene hominid diets: An approach combining masticatory and ecological analysis. Journal of Human Evolution, 14, 187–202.

    Article  Google Scholar 

  • Macho, G. A., Shimizu, D., Jiang, Y., & Spears, I. R. (2005). Australopithecus anamensis: A finite-element approach to studying the functional adaptations of extinct hominins. Anatomical Record, 283A, 310–318.

    Article  Google Scholar 

  • McGrew, W. C., Baldwin, P. J., & Tutin, C. E. G. (1981). Chimpanzees in a hot, dry and open habitat: Mt. Assirik, Senegal, West Africa. Journal of Human Evolution, 10, 227–244.

    Article  Google Scholar 

  • McGrew, W. C., Baldwin, P. J., & Tutin, C. E. G. (1988). Diet of wild chimpanzees (Pan troglodytes verus) at Mt. Assirik, Senegal: I. composition. American Journal of Primatology, 16, 213–226.

    Article  Google Scholar 

  • McHenry, H. M., & Coffing, K. (2000). Australopithecus to Homo: Transformations in body and mind. Annual Review of Anthropology, 29, 125–146.

    Article  Google Scholar 

  • Moore, J. (1996). Savanna chimpanzees, referential models and the last common ancestor. In W. C. McGrew, L. F. Marchant, & T. Nishida (Eds.), Great ape societies (pp. 275–292). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Nakagawa, N., Ohsawa, H., & Muroyama, Y. (2003). Life-history parameters of a wild group of West African patas monkeys (Erythrocebus patas patas). Primates, 44, 281–290.

    Article  Google Scholar 

  • Reed, K. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.

    Article  Google Scholar 

  • Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.

    Article  Google Scholar 

  • Rhine, R., Norton, G., Wynn, G., & Wynn, R. (1989). Plant feeding of yellow baboons (Papio cynocephalus) in Mikumi national park, Tanzania, and the relationship between seasonal feeding and immature survival. International Journal of Primatology, 10, 319–342.

    Article  Google Scholar 

  • Robinson, J. T. (1954). Prehominid dentition and hominid evolution. Evolution, 8, 324–334.

    Article  Google Scholar 

  • Robinson, B. W., & Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem’s paradox. American Naturalist, 151, 223–235.

    Article  Google Scholar 

  • Schoeninger, M. J., Moore, J., & Sept, M. (1999). Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology, 49, 297–314.

    Article  Google Scholar 

  • Schubert, B., Ungar, P., Sponheimer, M., & Reed, K. (2006). Microwear evidence for Plio-Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 301–319.

    Article  Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., et al. (2005). Dental microwear texture analysis shows within-species dietary variability in fossil hominins. Nature, 436, 693–695.

    Article  Google Scholar 

  • Scott, R. S., Teaford, M. F., & Ungar, P. S. (2009). Dietary diversity and dental microwear variability in Theropithecus gelada and Papio cynocephalus. American Journal of Physical Anthropology, S48, 234.

    Google Scholar 

  • Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l’Académie des Sciences, Series IIA, Earth and Planetary Science, 332, 137–144.

    Google Scholar 

  • Sillen, A. (1992). Strontium-Calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. Journal of Human Evolution, 23, 495–516.

    Article  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (1999). Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science, 283, 368–370.

    Article  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (2006). Enamel diagenesis at South African australopith sites: Implications for paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta, 70, 1644–1654.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A. T., et al. (2005). Hominins, sedges, and termites: New carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution, 48, 301–312.

    Article  Google Scholar 

  • Sponheimer, M., Loudon, J. E., Codron, D., Howells, M. E., Pruetz, J. D., Codron, J., et al. (2006a). Do “savanna” chimpanzees consume C4 resources? Journal of Human Evolution, 51, 128–133.

    Article  Google Scholar 

  • Sponheimer, M., Passey, B. H., de Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., & Lee-Thorp, J. A. (2006b). Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science, 314, 980–982.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J. A., & de Ruiter, D. (2007). Icarus, isotopes, and australopith diets. In P. Ungar (Ed.), The known, the unknown, and the unknowable in human diet (pp. 132–149). Oxford: Oxford University Press.

    Google Scholar 

  • Stanford, C. B., & Nkurunungi, J. B. (2003). Sympatric ecology of chimpanzees and gorillas in Bwindi Impenetrable National Park, Uganda: Diet. International Journal of Primatology, 24, 901–918.

    Article  Google Scholar 

  • Teaford, M. F. (1992). Dental microwear and diet in extant and extinct Theropithecus: Preliminary analyses. In N. Jablonski (Ed.), Theropithecus: The rise and fall of a primate genus (pp. 331–349). Cambridge: Cambridge University Press.

    Google Scholar 

  • Teaford, M. F., Ungar, P. S., & Grine, F. E. (2002). Paleontological evidence for the diets of African Plio-Pleistocene hominins with special reference to early Homo. In P. S. Ungar & M. F. Teaford (Eds.), Human diet: Its origin and evolution (pp. 143–166). Westport: Bergin and Garvey.

    Google Scholar 

  • Tutin, C. E. G., & Fernandez, M. (1985). Food consumed by sympatric populations of Gorilla g. gorilla and Pan. t. troglodytes in Gabon: Some preliminary data. International Journal of Primatology, 6, 27–43.

    Article  Google Scholar 

  • Ungar, P. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622.

    Article  Google Scholar 

  • Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE, 3, e2044.

    Article  Google Scholar 

  • van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A., & Luyt, J. (2003). The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution, 44, 581–597.

    Article  Google Scholar 

  • van der Merwe, N. J., Masao, F. T., & Bamford, R. J. (2008). Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. South African Journal of Science, 104, 153–155.

    Google Scholar 

  • Verhaegen, M., & Puech, P. F. (2000). Hominid lifestyle and diet reconsidered: Paleo-environmental and comparative data. Human Evolution, 15, 175–186.

    Article  Google Scholar 

  • Vignaud, P., Duringer, P., Mackaye, H. T., Likius, A., Blondel, C., Boisserie, J.-R., et al. (2002). Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418, 152–155.

    Article  Google Scholar 

  • Vrba, E. (1985). Ecological and adaptive changes associated with early hominid evolution. In E. Delson (Ed.), Ancestors: The hard evidence (pp. 63–71). New York: Alan R. Liss.

    Google Scholar 

  • Walker, A. (1981). Diet and teeth: Dietary hypotheses and human evolution. Philosophical Transactions of the Royal Society B, 292, 57–64.

    Article  Google Scholar 

  • Ward, C. V., Leakey, M. G., & Walker, A. C. (1999). The new hominid species, Australopithecus anamensis. Evolutionary Anthropology, 7, 197–205.

    Article  Google Scholar 

  • White, T. D., Suwa, G., & Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 371, 306–312.

    Article  Google Scholar 

  • White, T. D., WoldeGabriel, G., Asfaw, B., Ambrose, S., Beyene, Y., Bernor, R. L., et al. (2006). Asa Issie, Aramis and the origin of Australopithecus. Nature, 440, 883–889.

    Article  Google Scholar 

  • White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., et al. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 67–93.

    Article  Google Scholar 

  • WoldeGabriel, G., White, T. D., Suwa, G., Renne, P., de Heinzelln, J., Hart, W. K., et al. (1994). Ecological and temporal placement of early Pliocene hominids at Aramis, Ethiopia. Nature, 371, 330–333.

    Article  Google Scholar 

  • WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., et al. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65e1–65e5.

    Google Scholar 

  • Wood, B., & Strait, D. (2004). Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution, 46, 119–162.

    Article  Google Scholar 

  • Wrangham, R. W. (2005). The delta hypothesis. In D. E. Lieberman, R. J. Smith, & J. Kelley (Eds.), Interpreting the past: Essays on human, primate, and mammal evolution (pp. 231–243). Boston: Brill Academic Publishers.

    Google Scholar 

  • Yamashita, N. (1998). Functional dental correlates of food properties in five Malagasy lemur species. American Journal of Physical Anthropology, 106, 169–188.

    Article  Google Scholar 

  • Young, T. P. (1994). Natural die-offs of large mammals: Implications for conservation. Conservation Biology, 8, 410–418.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the organizers of the symposium (including the inimitable Leakey family), and its various participants, for several fun and intellectually stimulating days. I would specifically like to acknowledge Charlie Lockwood and Elizabeth Harmon, fellow participants, who I got to know all too briefly. My thanks also go to my family, Carmel Schrire, and Julia Lee-Thorp who have made the work described herein possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Sponheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sponheimer, M. (2013). Some Ruminations on Australopith Diets. In: Reed, K., Fleagle, J., Leakey, R. (eds) The Paleobiology of Australopithecus. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5919-0_15

Download citation

Publish with us

Policies and ethics