Skip to main content

Dynamic Visualizations: Tools for Understanding the Particulate Nature of Matter

  • Chapter
  • First Online:
Concepts of Matter in Science Education

Part of the book series: Innovations in Science Education and Technology ((ISET,volume 19))

Abstract

Various methods and tools have been used by chemistry instructors to help students visualize the particulate nature of matter. One such method is the use of dynamic computer visualizations to depict molecular structures and processes that occur at the particulate level. The impacts of various kinds of visualizations on students’ understanding of chemical phenomena have been studied by a number of investigators, and the implications of their findings can provide insight to chemical educators. This article reviews research on the effects of dynamic computer visualizations used in chemistry instruction, especially visualizations of the particulate level, and summarizes their implications for educators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, S., & Shariff, A. (2008). The effects of inquiry-based computer simulation with cooperative learning on scientific thinking and conceptual understanding of gas laws. Eurasia Journal of Mathematics, Science, and Technology Education, 4(4), 387–398.

    Google Scholar 

  • Abraham, M. R., Gelder, J. L., & Haines, K. (2001). A web-based molecular-level inquiry laboratory activity. The Chemical Educator, 6, 307–308.

    Article  Google Scholar 

  • Akaygun, S. (2009). The effect of computer visualizations on students’ mental models of dynamic nature of physical equilibrium. Doctoral dissertation, University of Northern Colorado, Greeley.

    Google Scholar 

  • Akaygun, S., & Jones, L. L. (2013a). How does level of guidance affect understanding when students use a dynamic simulation of liquid–vapor equilibrium? In I. Devetak, S. A. Glazar, & L. Plut-Pregelj (Eds.), Active learning and understanding in the chemistry classroom. Dordrecht/London: Springer.

    Google Scholar 

  • Akaygun, S., & Jones, L. L. (2013b). Research-based design and development of a simulation of liquid–vapor equilibrium. Chemistry Education Research and Practice. doi:10.1039/C3RP00002H.

    Google Scholar 

  • Alesandrini, K. L., & Rigney, J. W. (1981). Pictorial presentation and review strategies in science learning. Journal of Research in Science Teaching, 18(3), 465–474.

    Article  Google Scholar 

  • Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students’ understanding of chemical change. Journal of Research in Science Teaching, 40(4), 317–337.

    Article  Google Scholar 

  • Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269–1298.

    Article  Google Scholar 

  • Barker, F., & Fredericks, R. (1977). Development of computer simulations for use in a high school chemistry course (HSF). Journal of Chemical Education, 54, 113.

    Article  Google Scholar 

  • Burke, K., Greenbowe, T., & Windschitl, M. (1998). Developing and using conceptual computer animations for chemistry instruction. Journal of Chemical Education, 75(12), 1658–1661.

    Article  Google Scholar 

  • Butler, W. M., & Griffin, H. C. (1979). Simulations in the general chemistry laboratory with microcomputers. Journal of Chemical Education, 56, 543.

    Article  Google Scholar 

  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation of a teacher intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2), 237–248.

    Article  Google Scholar 

  • Dori, Y. J., & Barak, M. (2001). Virtual and physical molecular modeling: Fostering model perception and spatial understanding. Educational Technology & Society, 4(1), 61–74.

    Google Scholar 

  • Dwight, T. C. (1981). Laboratory simulations that include experimental error (CS). Journal of Chemical Education, 1981(58), 407.

    Google Scholar 

  • Ebenezer, J. (2001). A hypermedia environment to explore and negotiate students’ conceptions: Animation of the solution process of table salt. Journal of Science Education and Technology, 10, 73–91.

    Article  Google Scholar 

  • Falvo, D. A., & Suits, J. P. (2009). Gender and spatial ability and the use of specific labels and diagrammatic arrows in a micro-level chemistry animation. Journal of Educational Computing Research, 41(1), 83–102.

    Article  Google Scholar 

  • Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227–1245.

    Article  Google Scholar 

  • Gil, V. M. S., & Paiva, J. C. M. (2006). Using computer simulations to teach salt solubility. The role of entropy in solubility equilibrium. Journal of Chemical Education, 83, 170.

    Article  Google Scholar 

  • Gregorius, R. M., Santos, R., Dano, J. B., & Gutierrez, J. J. (2010a). Can animations effectively substitute for traditional teaching methods? Part I: Preparation and testing of materials. Chemistry Education Research and Practice, 11, 253–261.

    Article  Google Scholar 

  • Gregorius, R. M., Santos, R., Dano, J. B., & Gutierrez, J. J. (2010b). Can animations effectively substitute for traditional teaching methods? Part II: Potential for differentiated learning. Chemistry Education Research and Practice, 11, 262–266.

    Article  Google Scholar 

  • Holliday, W. G., & McGuire, B. (1992). How can comprehension adjunct questions focus students’ attention and enhance concept learning of a computer-animated science lesson? Journal of Research in Science Teaching, 29(1), 3–16.

    Article  Google Scholar 

  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–704.

    Article  Google Scholar 

  • Jones, L. L. (1988). Enhancing Instruction in the practice of chemistry with the computer-assisted interactive videodisc. Trends in Analytical Chemistry, 7, 273–276.

    Article  Google Scholar 

  • Jones, L., & Tasker, R. (2002). Bridging to the lab: Media connecting chemistry concepts with practice. New York: W.H. Freeman and Company.

    Google Scholar 

  • Jones, L. L., Stillings, N. A., & Jordan, K. D. (2005). Molecular visualization in chemistry education: The role of multidisciplinary collaboration. Chemistry Education Research and Practice, 6(3), 136–149.

    Article  Google Scholar 

  • Jones, L., Honts, J., Tasker, R., Tversky, B., Suits, J., Falvo, D., & Kelly, R. (2008). Designing effective visualizations of molecular structure and dynamics. Available at: http://artsci.drake.edu/honts/molviz/assets/ConfChem08-MolAni.pdf. Accessed 5 May 2011.

  • Jong, D. T., & Joolingen, V. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–201.

    Article  Google Scholar 

  • Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolving affect students’ explanations. Journal of Science Education and Technology, 16(5), 413–429.

    Article  Google Scholar 

  • Kelly, R. M., & Jones, L. L. (2008). Investigating students’ ability to transfer ideas learned from molecular animations of the dissolution process. Journal of Chemical Education, 85(2), 303–309.

    Article  Google Scholar 

  • Kelly, R. M., Phelps, A. J., & Sanger, M. J. (2004). The effects of a computer animation on students’ conceptual understanding of a can-crushing demonstration at the macroscopic, microscopic, and symbolic levels. The Chemical Educator, 9(3), 184–189.

    Google Scholar 

  • Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179–212.

    Article  Google Scholar 

  • Kozma, R. B. (2000). The use of multiple representations and the social construction of understanding in chemistry. In M. J. Jacopson & R. B. Kozma (Eds.), Innovations in science and mathematics education (pp. 11–45). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.

    Article  Google Scholar 

  • Kuo, M.-T., Jones, L. L., Pulos, S. M., & Hyslop, R. M. (2004). The role of molecular representations, complexity, and orientation in stereochemistry problem solving. The Chemical Educator, 9, 1–7.

    Google Scholar 

  • Lekhavat, P., & Jones, L. (2009). The effect of adjunct questions emphasizing the particulate nature of matter on students’ understanding of chemical concepts in multimedia lessons. Educacion Quimica, 20(3), 351–359.

    Google Scholar 

  • Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189.

    Article  Google Scholar 

  • Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.

    Article  Google Scholar 

  • Martin, J. S. (2002). SIRs: Simulations and interactive resources for Windows. Journal of Chemical Education, 79, 639.

    Article  Google Scholar 

  • Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32, 1–19.

    Article  Google Scholar 

  • Mayer, R. E., & Moreno, R. (1998). A split-attention attention effect in multimedia learning: Evidence for dual information processing systems in working memory. Journal of Educational Psychology, 90, 312–320.

    Article  Google Scholar 

  • Moore, C., Smith, S. G., & Avner, R. A. (1980). Facilitation of laboratory performance through CAI. Journal of Chemical Education, 57, 196–198.

    Article  Google Scholar 

  • Nakhleh, M. (1993). Are our students conceptual thinkers or algorithmic problem solvers? Journal of Chemical Education, 70(1), 52–55.

    Article  Google Scholar 

  • Nicoll, G. (2003). A qualitative investigation of undergraduate chemistry students’ macroscopic interpretations of the submicroscopic structure of molecules. Journal of Chemical Education, 80(2), 205–213.

    Article  Google Scholar 

  • Nurrenbern, S. C., & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education, 64(6), 508–509.

    Article  Google Scholar 

  • Oakes, K., & Rengarajan, R. (2002). Practice makes perfect – E-Learning – Simulation in training. http://findarticles.com/p/articles/mi_m0MNT/is_11_56/ai_94174474. Accessed 8 Oct 2008.

  • Papageorgiou, G., Johnson, P., & Fotiades, F. (2008). Explaining melting and evaporation below boiling point. Can software help with particle ideas? Research in Science & Technological Education, 26(2), 165–183.

    Article  Google Scholar 

  • Rieber, L. P. (1990). Using computer animated graphics in science instruction with children. Journal of Educational Psychology, 82(1), 135–140.

    Article  Google Scholar 

  • Rieber, L. P. (1991). Animation, incidental learning and continuing motivation. Journal of Educational Psychology, 83(3), 318–328.

    Article  Google Scholar 

  • Robinson, W. R. (2000). A view of the science education research literature: Scientific discovery learning with computer simulations. Journal of Chemical Education, 77, 17.

    Article  Google Scholar 

  • Sanger, M. (2000). Using particulate drawings to determine and improve students’ conceptions of pure substances and mixtures. Journal of Chemical Education, 77(6), 762–766.

    Article  Google Scholar 

  • Sanger, M., & Greenbowe, T. (1997a). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377–398.

    Article  Google Scholar 

  • Sanger, M., & Greenbowe, T. (1997b). Students’ misconceptions in electrochemistry: Current flow in electrolyte solutions and the salt bridge. Journal of Chemical Education, 74(7), 819–823.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521–537.

    Article  Google Scholar 

  • Sanger, M., Phelps, A., & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77(11), 1517–1520.

    Article  Google Scholar 

  • Sawrey, B. (1990). Concept learning versus problem solving: Revisited. Journal of Chemical Education, 67(3), 253–254.

    Article  Google Scholar 

  • Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Smith, S. G., Jones, L. L., & Waugh, M. L. (1986). Production and evaluation of interactive ­videodisc lessons in laboratory instruction. Journal of Computer-Based Instruction, 13, 117–124.

    Google Scholar 

  • Steffen, L. K., & Holt, P. L. (1993). Computer simulations of chemical kinetics (CS). Journal of Chemical Education, 70, 991.

    Article  Google Scholar 

  • Stieff, M., & Wilensky, U. (2003). Connected chemistry – Incorporating interactive simulations into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285–302.

    Article  Google Scholar 

  • Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying representational competence with multi-representational displays. Cognition and Instruction, 29(1), 123–145.

    Article  Google Scholar 

  • Suits, J. P., & Diack, M. (2002). Instructional design of scientific simulations and modeling software to support student construction of perceptual to conceptual bridges. Educational Multimedia, Hypermedia & Telecommunications, Proceedings, 3, 1904–1909.

    Google Scholar 

  • Sumfleth, E., & Telgenbüscher, L. (2001). Improving the use of instructional illustrations in learning chemistry. In H. Behrendt (Ed.), Research in science education – Past, present, and future (pp. 289–294). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Supasorn, S., Suits, J. P., Jones, L. L., & Vibuljun, S. (2008). Impact of a pre-laboratory computer simulation of organic extraction on comprehension and attitudes of undergraduates. Chemical Education Research and Practice, 9, 169–181.

    Article  Google Scholar 

  • Tasker, R. (1998). The VisChem project: molecular level animations in chemistry – potential and gain. UniServe Science News, 9. Available online at: http://science.uniserve.edu.au/newsletter/vol9/tasker.html. Accessed 10 May 2007.

  • Tasker, R., & Dalton, R. (2006). Research into practice: Visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7(2), 141–159.

    Article  Google Scholar 

  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • Velázquez-Marcano, A., Williamson, V., Ashkenazi, G., Tasker, R., & Williamson, K. (2004). The use of video demonstrations and particulate animation in general chemistry. Journal of Science Education and Technology, 13, 315–323.

    Article  Google Scholar 

  • Venkataraman, B. (2009). Visualization and interactivity in the teaching of chemistry to science and non-science students. Chemistry Education Research and Practice, 10, 62–69.

    Article  Google Scholar 

  • Vermaat, J. H., Kramer-Pals, H., & Schank, P. (2003, October). The use of animations in chemical education. Paper presented at the International Convention of the Association for Educational Communications and Technology, Anaheim.

    Google Scholar 

  • Whisnant, D. M. (1984). Scientific exploration with a microcomputer: Simulations for nonscientists (CS). Journal of Chemical Education, 61, 627.

    Article  Google Scholar 

  • Williams, M. D. (1996). Learner-control and instructional technologies. In D. Jonassen (Ed.), Handbook of research for educational communications and technology (2nd ed.). Mahwah: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Williamson, V. M. (2008). The particulate nature of matter: How theory-based research can impact the field. In D. Bunce & R. Cole (Eds.), Nuts and bolts of chemical education research. Washington, DC: American Chemical Society.

    Google Scholar 

  • Williamson, V. M. (2011). Teaching chemistry with visualizations: What’s the research evidence? In D. Bunce (Ed.), Investigating classroom myths through research on teaching and learning. Washington, DC: American Chemical Society.

    Google Scholar 

  • Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521–534.

    Article  Google Scholar 

  • Winberg, M. T., & Berg, C. A. R. (2007). Students’ cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108–1133.

    Article  Google Scholar 

  • Wu, H., Krajcik, J., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–842.

    Article  Google Scholar 

  • Xie, Q., & Tinker, R. (2006). Molecular dynamics simulations of chemical reactions for use in education. Journal of Chemical Education, 83, 77.

    Article  Google Scholar 

  • Yang, E.-M., Andre, T., & Greenbowe, T. J. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329–349.

    Google Scholar 

  • Yeung, A., Schmid, S., & Tasker, R. (2008). Can one version of online learning materials benefit all students? In A. Hugman & K. Placing (Eds.), Symposium proceedings: Visualisation and concept development (pp. 152–158). Sydney: UniServe Science, The University of Sydney.

    Google Scholar 

  • Yezierski, E. J., & Birk, J. P. (2006). Misconceptions about the particulate nature of matter: Using animations to close the gender gap. Journal of Chemical Education, 83(6), 954–960.

    Article  Google Scholar 

  • Zare, R. (2002). Visualizing chemistry. Journal of Chemical Education, 79, 1290–1291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Akaygun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Akaygun, S., Jones, L.L. (2013). Dynamic Visualizations: Tools for Understanding the Particulate Nature of Matter. In: Tsaparlis, G., Sevian, H. (eds) Concepts of Matter in Science Education. Innovations in Science Education and Technology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5914-5_13

Download citation

Publish with us

Policies and ethics