Skip to main content

Identification of Cracks in Rotors and Other Structures by Vibration Analysis

  • Chapter
  • First Online:
Analytical Methods in Rotor Dynamics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 9))

  • 3412 Accesses

Abstract

The question of crack detection from dynamic measurements is further extended and discussed in Chap. 7. A general stiffness matrix for cracked structural members is introduced, to model the respective dynamic system. This stiffness matrix can be further utilized for static, dynamic or stability analysis of a structure with cracked members of rectangular or circular cross-section. Off-diagonal terms indicate vibration coupling. The change in dynamic response is analytically evaluated for simple systems and by means of approximate methods for more complicated ones. The outlined procedure can be used for engineering analysis in two ways: (a) as a design tool, to assist in structural optimization with the objective of achieving certain specific dynamic characteristics; and (b) as a maintenance and inspection tool, to identify structural flaws, such as cracks, by linking the variations in service of the structure's natural frequencies to structural changes due to the cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irwin, G.R.: Fracture mechanics. In: Goodier, J.N., Hoff, N.J. (eds.) Structural Mechanics, p. 557. Pergamon Press, Oxford (1960)

    Google Scholar 

  2. Liebowitz, H., Vanderveldt, H., Harris, D.W.: Carrying capacity of notched column. Int. J. Solids Struct. 3, 489–500 (1967)

    Article  Google Scholar 

  3. Liebowitz, H., Claus, W.D.: Failure of notched columns. Eng. Fract. Mech. 1, 379–83 (1968)

    Google Scholar 

  4. Okamura, H., et al.: A cracked column under compression. Eng. Fract. Mech. l, 547 (1969)

    Google Scholar 

  5. Rice, J.R., Levy, N.: The part-through surface crack in an elastic plate. J. Appl. Mech. 39, 185–194 (1972)

    Google Scholar 

  6. Dimarogonas, A.D.: Vibration for Engineers, 2nd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  7. Chondros, T.G., Dimarogonas, A.D.: Identification of cracks in welded joints of complex structures. J. Sound Vibr. 69(4), 531–538 (1980)

    Article  Google Scholar 

  8. Chondros, T.G., Dimarogonas, A.D.: Identification of cracks in circular plates welded at the contour. ASME paper 79-DET-I06, Design engineering and technology conference, St. Louis (1979)

    Google Scholar 

  9. Dimarogonas, A.D., Massouros, G.: Torsional vibration of a shaft with a circumferential crack. Eng. Fract. Mech. 15(3–4), 439–444 (1981)

    Article  Google Scholar 

  10. Wauer, J.: On the dynamics of cracked rotors: A literature survey. Appl. Mech. Rev. 43(1), 13–17 (1990)

    Google Scholar 

  11. Dimarogonas, A.D.: Vibration of cracked structures: A state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)

    Article  Google Scholar 

  12. Pafelias, T.: Dynamic behaviour of a cracked rotor. General Electric Co., technical information series, no. DF-74-LS-79 (1974)

    Google Scholar 

  13. Wauer, J.: Modelling and formulation of equation of motion for cracked rotating shafts. Int. J. Sol. Str. 26(4), 901–914 (1990)

    Article  MATH  Google Scholar 

  14. Gasch, R.: A survey of the dynamic behavior of a simple rotating shaft with a transverse crack. J. Sound Vibr. 160, 313–332 (1993)

    Article  MATH  Google Scholar 

  15. Bicego, V., Lucon, E., Rinaldi, C., Crudeli, R.: Failure analysis of a generator rotor with a deep crack detected during operation: Fractographic and fracture mechanics approach. Nucl. Eng. Des. 188, 173–183 (1999)

    Article  Google Scholar 

  16. Barr, A.D.S.: An extension of the Hu-Washizu variational principle in linear elasticity for dynamic problems. Trans. ASME J. Appl. Mech. 33(2), 465 (1966)

    Article  MathSciNet  Google Scholar 

  17. Christides, S., Barr, A.D.S.: Torsional vibration of cracked beams of non-circular cross-section. Int. J. Mech. Sci. 28(7), 473–490 (1986)

    Article  MATH  Google Scholar 

  18. Chondros, T.G.: Variational formulation of a rod under torsional vibration for crack identification. Fatigue Fract. Eng. Mater. Struct. 44, 95–104 (2005)

    Google Scholar 

  19. Chondros, T.G., Labeas, G.: Torsional vibration of a cracked rod by variational formulation and numerical analysis. J. Sound Vib. 301(3–5), 994–1006 (2007)

    Article  Google Scholar 

  20. Chondros, T.G.: The continuous crack flexibility method for crack identification. Fatigue Fract. Eng. Mater. Struct. 24, 643–650 (2001)

    Article  Google Scholar 

  21. Tada, H.: The stress analysis of cracks handbook. Del Research Corp, Hellertown (1973)

    Google Scholar 

  22. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of cracked shafts in bending. J. Sound Vibr. 91, 583–593 (1983)

    Google Scholar 

  23. Dimarogonas, A.D., Papadopoulos, C.A.: Crack detection in turbine rotors. Proceedings of the 2nd international symposium on transport phenomena, dynamics and design of rotating machinery, vol. 2, pp. 286–298. Honolulu (1988)

    Google Scholar 

  24. Dimarogonas, A.D., Papadopoulos, C.A.: Identification of cracks in rotors. 3rd EPRI lncip. Fail conference, Philadelphia (1990)

    Google Scholar 

  25. Dimarogonas, A.D.: Modeling damaged structural members for vibration analysis. J. Sound Vibr. 112(3), 541–543 (1987)

    Google Scholar 

  26. Dimarogonas, A.D.: Bilinear analysis of closing cracks in rotating shafts. ISROMAC-4, Honolulu (1992)

    Google Scholar 

  27. Chondros, T.G.: Fatigue fracture of the Bjork-Shiley heart valve strut and failure diagnosis from acoustic signatures. Theor. and Appl. Fract. Mech. J. 54, 71–81 (2010)

    Google Scholar 

  28. Papadopoulos, C.A.: The strain energy release approach for modelling cracks in rotors: A state of the art review, published in the special issue of Mechanical Systems and Signal Processing for Crack Effects in Rotordynamics, 22(4), 763–789, (2008)

    Google Scholar 

  29. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vibr. 117(1), 81–93, (1987)

    Google Scholar 

  30. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a cracked shaft. J. Vib. Acoust. Stress Reliab. Des. 110(1), 1–8, (1988)

    Google Scholar 

  31. Papadopoulos, C.A., Dimarogonas, A.D.: Stability of cracked rotors in the coupled vibration mode. J. Vib. Acoust. Stress Reliab. Des. 110(3), 356–359, (1988)

    Google Scholar 

  32. Papadopoulos, C.A.: Torsional vibrations of rotors with transverse surface cracks. Comput. Struct. 51(6), 713–718, (1994)

    Google Scholar 

  33. Papaeconomou, N., Dimarogonas, A.D.: Vibration of cracked beams. Comput. Mech. 5, 88–94 (1989)

    Google Scholar 

  34. Sih, G.C., Loeber, J.E.: Torsional vibration of an elastic solid containing a penny-shaped crack. J. Acoust. Soc. Am. 44(5), 1237–1245 (1968)

    Article  MATH  Google Scholar 

  35. Loeber, J.E., Sih, G.C.: Torsional wave scattering about a penny-shaped crack on a biomaterial interface. In: Sih, G.C. (ed.) Dynamic Crack Propagation, pp. 513–528. Noordhoff, Leyden (1973)

    Google Scholar 

  36. Irwin, G.R., Kies, J.A.: Fracturing and fracture dynamics. Weld J. Res. Suppl. 34, 570 (1955)

    Google Scholar 

  37. Irwin, G.R.: Analysis of stresses and strain near the end of a crack traversing a plate. J. Appl. Mech. 24, 361 (1957)

    Google Scholar 

  38. Bueckner, H.F.: Field singularities and related integral representations. In: Sih, G.C. (ed.) Methods of Analysis and Solutions of Crack Problems, p. 239. Noordhoff, Leyden (1973)

    Google Scholar 

  39. Benthem, J.P., Koiter, W.T.: Asymptotic approximations to crack problems. In: Sih, G.C. (ed.) Methods of Analysis and Solutions of Crack Problems. Noordhoff, Leyden (1973)

    Google Scholar 

  40. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, Inc., New York (1953)

    Google Scholar 

  41. Szabo, I.: Höhere Technische Mechanik. Springer, Berlin (1964)

    Book  MATH  Google Scholar 

  42. Weissenburger, J.T.: Effect of local modifications on the vibration characteristics of linear systems. J. Appl. Mech. 35, 327–332 (1968)

    Article  MATH  Google Scholar 

  43. Zarghmee, M.S.: Optimum frequency of structures. AJAA J. 6(4), 749–750 (1968)

    Google Scholar 

  44. Fox, R.L., Kapoor, M.P.: Rates of change of eigenvalues and eigenvectors. AJAA J. 6(12), 2426–2429 (1968)

    MATH  Google Scholar 

  45. Morgan, B.S.: Sensitivity analysis and synthesis of multivariable systems. IEEE Trans. Autom. Control AC-11(3), 36–52 (1966)

    Google Scholar 

  46. Paraskevopoulos, P.N., Tsonis, C.A., Tzafestas, S.G.: Eigenvalue sensitivity of linear time-invariant control systems with repeated eigenvalues. IEEE Trans. Autom. Control AC-19(5), 610–612 (1974)

    Google Scholar 

  47. Fadeev, D.K., Fadeeva, V.N.: Computational Methods of Linear Algebra. Freeman and Co., San Francisco (1963)

    Google Scholar 

  48. Chondros, T.G.: Influence of cracks on the dynamic behaviour of machines. Dissertation (in Greek), University of Patras, Greece (1982)

    Google Scholar 

  49. Kardestuncer, H.: Elementary Matrix Analysis of Structures. McGraw-Hill, New York (1974)

    Google Scholar 

  50. Gounaris, G., Dimarogonas, A.D.: A finite element of a cracked prismatic beam for structural analysis. Comput. Struct. 28(3), 309-313 (1988)

    Google Scholar 

  51. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: A state of the art review. Mech. Syst. Sig. Process. 22(4), 763–789 (2008)

    Article  Google Scholar 

  52. Naik, S.S., Maiti, S.K.: Triply coupled bending–torsion vibration of Timoshenko and Euler–Bernoulli shaft beams with arbitrarily oriented open crack. J. Sound Vib. 324, 1067–1085 (2009)

    Article  Google Scholar 

  53. Krawczuk, M., Ostachowicz, W.: Damage indicators for diagnostic of fatigue cracks in structures by vibration measurements—a survey. Mech. Teor Stosow 34(2), 307–326 (1996)

    Google Scholar 

  54. Chondros, T.G., Dimarogonas, A.D.: Dynamic sensitivity of structures to cracks. J. Vibr., Acoust., Stress Reliab. Des. 111, 251–256 (1989)

    Google Scholar 

  55. Chondros, T.G., Dimarogonas, A.D.: Vibration of a beam with a breathing crack. J. Sound Vib. 239, 57–67 (2001)

    Article  Google Scholar 

  56. Chondros, T.G., Dimarogonas, A.D., Yao, J.: Longitudinal vibration of a bar with a breathing crack. Eng. Fract. Mech. J. 61, 503–518 (1998)

    Google Scholar 

  57. Bovsunovsky, A.P.: Experimental and analytical study of the damping capacity of multilayer steels. Strength Mater. 27(9), 516–524 (1995)

    Article  Google Scholar 

  58. Bovsunovsky, A.P.: The mechanisms of energy dissipation in the non-propagating fatigue cracks in metallic materials. Eng. Fract. Mech. 71(16–17), 2271–2281 (2004)

    Google Scholar 

  59. Ezanno, A., Doudard, C., Calloch, S., Millot, T., Heuze, J-L.: Fast characterization of high-cycle fatigue properties of a cast copper–aluminum alloy by self-heating measurements under cyclic loadings. Proc. Eng. 2, 967–976 (2010)

    Google Scholar 

  60. Ismail, A.E., Ariffin, A.K., Abdullah, S., Ghazali, M.J., Daud, R.: Mode III stress intensity factors of surface crack in round bars. Adv. Mater. Res. 214, 92–96 (2011)

    Google Scholar 

  61. Xue, S., Cao, J., Chen,Y.: Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damage, Trans. ASME, DETC 2011-47415, 1–6 (2011)

    Google Scholar 

  62. Yan, G., De Stefano, A., Matta, E., Feng, R.: A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics. J. Sound Vib. 332(2), 407–422 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Chondros .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimarogonas, A.D., Paipetis, S.A., Chondros, T.G. (2013). Identification of Cracks in Rotors and Other Structures by Vibration Analysis . In: Analytical Methods in Rotor Dynamics. Mechanisms and Machine Science, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5905-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5905-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5904-6

  • Online ISBN: 978-94-007-5905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics