Skip to main content

Variable Elasticity Effects in Rotating Machinery

  • Chapter
  • First Online:
Analytical Methods in Rotor Dynamics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 9))

  • 3461 Accesses

Abstract

The effects of variable elasticity in rotating machinery occur with a large variety of mechanical, electrical, etc., systems, in the present case, geometrical and/or mechanical problems. Parameters affecting elastic behavior do not remain constant, but vary as functions of time. Systems with variable elasticity are governed by differential equations with periodic coefficients of the Mathieu-Hill type and exhibit important stability problems. In this chapter, analytical tools for the treatment of this kind of equations are given, including the classical Floquet theory, a matrix method of solution, solution by transition into an equivalent integral equation and the BWK procedure. The present analysis is useful for the solution of actual rotor problems, as, for example, in case of a transversely cracked rotor subjected to reciprocating axial forces. Axial forces can be used to control large-amplitude flexural vibrations. Flexural vibration problems can be encountered under similar formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after three authors: L. Brillouin (J. Phys., 7, 1926, 353); G. Wentzel (Z. Phys., 38, 1926, 518); and E.C. Kemble (The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York, 1937).

References

  1. Elachi, C.: Waves in active and passive periodic structures: a review. Proc. IEEE 64, 1666–1698 (1976)

    Google Scholar 

  2. Brillouin, L.: Wave Propagation in Periodic Structures. Dover Publications, New York (1953)

    MATH  Google Scholar 

  3. Timoshenko, S.: Vibration Problems in Engineering. Van Nostrand Co., Inc., Princeton (1956)

    Google Scholar 

  4. Den hartog, J.P.: Mechanical Vibrations. McGraw-Hill Book Co., Inc., New York (1956)

    Google Scholar 

  5. Myklestad, N.O.: Fundamentals of Vibration Analysis. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  6. Meirovitch, L.: Analytical Methods in Vibrations. Macmillan, New York (1967)

    MATH  Google Scholar 

  7. Meirovitch, L.: Elements of Vibrations Analysis. McGraw-Hill, New York (1986)

    Google Scholar 

  8. Centa, G.: Vibration of Structures and Machines. Springer, New York (1993)

    Google Scholar 

  9. Kar, R., Vance, J.J.: Subsynchronous vibrations in rotating machinery—methodologies to identify potential instability. Proceedings of the ASME Turbo Expo, vol. 5, pp. 719–725 (2007)

    Google Scholar 

  10. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery—literature survey. Shock Vib. Dig. 21(3), 3–11 (1989)

    Article  Google Scholar 

  11. Chu, F., LU, W.: Determination of the rubbing location in a multi-disk rotor system by means of dynamic stiffness identification. J. Sound Vib. 248(2), 235–246 (2001)

    Article  MathSciNet  Google Scholar 

  12. Paolinelis, S., Paipetls, S.A., Theocaris, P.S.: Three-point bending at large deflections of beams with different moduli in tension and in compression. JTE 7(3), 177–1781 (1979)

    Google Scholar 

  13. Lee, H., Neville, K.: Epoxy Resins. McGraw-Hill Book Co., Inc., New York (1967)

    Google Scholar 

  14. Thomson, W.J.: Vibration of slender bars with discontinuities in stiffness. J. Appl. Mech. 17, 203–207 (1943)

    MathSciNet  Google Scholar 

  15. You, L.H., Tang, Y.Y., Zhang, J.J., Zheng, C.Y.: Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. Int. J. Solids. Structures 37(52), 7809–7820 (2000)

    Article  MATH  Google Scholar 

  16. Dimarogonas, A.D.: Vibration for Engineers, 2nd edn. Prentice Hall Upper Saddle River, New Jersey (1996)

    Google Scholar 

  17. Prentis, J.M.: Dynamics of Mechanical Systems. Ellis Horwood Ltd, Chichester (1980)

    Google Scholar 

  18. Eraslan, A.N., Argeso, H.: Limit angular velocities of variable thickness rotating disks. Int. J. Mech. Sci. 40(1), 97–109 (2002)

    Google Scholar 

  19. Bhowmick, S., Misra, D., Nath Saha, K.: Approximate solution of limit angular speed for externally loaded rotating solid disk. Int. J. Mech. Sci. 50(2), 163–174 (2008)

    Article  Google Scholar 

  20. Whittaker, E.T., Watson, G.N.: Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  21. Lee, T.C.: A simplified stability criterion for the Hill equation and its applications, trans. ASME, Ser. E. J. Appl. Mech. 44(3), 504–505 (1977)

    Article  MATH  Google Scholar 

  22. Lee, T.C.: A study of coupled Mathieu equations by use of infinite determinants, trans. ASME, Ser. E, 43. J. Appl. Mech. 43(2), 349–352 (1976)

    Article  MATH  Google Scholar 

  23. Brillouin, L.: A practical method for solving Hill ‘s equation. Q. Appl. Math. 6, 167–178 (1948)

    MathSciNet  MATH  Google Scholar 

  24. Hochstadt, H.: Differential Equations. Dover Publications, New York (1964)

    MATH  Google Scholar 

  25. Sanchez, D.A.: Ordinary Differential Equations and Stability Theory. Dover Publications, New York (1979)

    MATH  Google Scholar 

  26. Pipes, L.A.: Matrix solution of equations of the Mathieu-Hill type. J. Appl. Phys. 24(7), 902–910 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurosh, A.: Higher Algebra. Mir Publishers, Moscow (1975)

    Google Scholar 

  28. Chirkin, V.P.: On the solution of the differential equation \( \ddot{x} + p\left( x \right)x = 0 \). Prikladnaya Mekhanika. 2(9), 119–123 (1966)

    Google Scholar 

  29. Brillouin, L.: The BWK approximation and Hill’s equation. Q. Appl. Math. 7, 363–380 (1949)

    MathSciNet  Google Scholar 

  30. Parameswaran, K., Varadan, T.K., Prathrap, G.: Nonlinear vibration of beams in an axial force field. J. Acoust. Soc. Am. 69(3), 709–712 (1981)

    Article  Google Scholar 

  31. Sinha, S.K., Stability of an internally damped Timoshenko rotor under dynamic axial loads. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE 18-1, pp. 213–216 (1989)

    Google Scholar 

  32. Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden-Day Inc. San Francisco (1964)

    MATH  Google Scholar 

  33. Bykhovsky, I.I.: Fundamentals of Vibration Engineering. Mir Publishers, Moscow (1972)

    Google Scholar 

  34. Changhe, L., Bernasconi, O., Xenophontidis, N.: A generalized approach to the dynamics of cracked shafts. J. Vib. Acous. Str. Reliab. Des. 111, 257–263 (1989)

    Article  Google Scholar 

  35. Han, Q.K., Chu, F.L.: Parametric instability of two disk-rotor with two inertia assymetries. Int. J. Struct. Stab. Dyn. 12(2), 251–284 (2012)

    Article  MathSciNet  Google Scholar 

  36. Kanwal, R.P.: Linear Integral Equations. Academic Press, New York (1971)

    MATH  Google Scholar 

  37. Khachatryan, A.A.: Longitudinal vibrations of prismatic bars made of different-modulus materials. Mekhanika Tverdogo Tela 2(5), 140–145 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Chondros .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimarogonas, A.D., Paipetis, S.A., Chondros, T.G. (2013). Variable Elasticity Effects in Rotating Machinery. In: Analytical Methods in Rotor Dynamics. Mechanisms and Machine Science, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5905-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5905-3_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5904-6

  • Online ISBN: 978-94-007-5905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics