Skip to main content

Abstract

Although some of the enzymes involved in carbohydrate metabolism in thermophilic archaea have been identified from genomic data, much less is known about the metabolic pathways in thermophilic archaea than in bacteria such as Escherichia coli. This is because many gaps still remain in most of the metabolic pathways constructed using data predicted from the genomic sequences of thermophilic archaea. In order to understand carbohydrate metabolism in thermophilic archaea, the proteins predicted to be carbohydrate metabolic enzymes from their genomic data have been expressed in E. coli, and the expressed proteins have been functionally analyzed. These analyses have suggested that the activities of novel and not seen in mesophiles could be detected in the thermostable enzymes from archaea. These observations enable novel pathways to be constructed based on the actual activities or functions of the enzymes obtained from thermophilic archaea. Furthermore, these investigations have confirmed that functional genomics is a powerful tool for studying the detailed features of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed H, Ettema TJ, Tjaden B, Geerling AC, van der Oost J, Siebers B (2005) Biochem J 390:529–540

    PubMed  CAS  Google Scholar 

  • Akutsu J, Zhang Z, Tsujimura M, Sasaki M, Yohda M, Kawarabayasi Y (2005) J Biochem 138:159–166

    PubMed  CAS  Google Scholar 

  • Ammendola S, Raia CA, Caruso C, Camardella L, D’Auria S, De Rosa M, Rossi M (1992) Biochemistry 31:12514–12523

    PubMed  CAS  Google Scholar 

  • Antoine E, Rolland JL, Raffin JP, Dietrich J (1999) Eur J Biochem 264:880–889

    PubMed  CAS  Google Scholar 

  • Badet-Denisot MA, Fernandez-Herrero LA, Berenguer J, Ooi T, Badet B (1997) Arch Biochem Biophys 337:129–136

    PubMed  CAS  Google Scholar 

  • Bowen D, Littlechild JA, Forthergill JE, Watson HC, Hall L (1988) Biochem J 254:509–517

    PubMed  CAS  Google Scholar 

  • Brunner NA, Brinkmann H, Siebers B, Hensel R (1998) J Biol Chem 273:6149–6156

    PubMed  CAS  Google Scholar 

  • Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) Biochem J 343:563–570

    PubMed  CAS  Google Scholar 

  • Cardona S, Remonsellez F, Guiliani N, Jerez CA (2001) Appl Environ Microbiol 67:4773–4780

    PubMed  CAS  Google Scholar 

  • Christendat D, Saridakis V, Dharamsi A, Bochkarev A, Pai EF, Arrowsmith CH, Edwards AM (2000) J Biol Chem 275:24608–24612

    PubMed  CAS  Google Scholar 

  • Chua TK, Bujnicki JM, Tan TC, Huynh F, Patel BK, Sivaraman J (2008) Plant Cell 20:1059–1072

    PubMed  CAS  Google Scholar 

  • Conway T (1992) FEMS Microbiol Rev 9:1–27

    PubMed  CAS  Google Scholar 

  • Currie MA, Merino F, Skarina T, Wong AH, Singer A, Brown G, Savchenko A, Caniuguir A, Guixé V, Yakunin AF, Jia Z (2009) J Biol Chem 284:22664–22671

    PubMed  CAS  Google Scholar 

  • D’Auria S, DiCesare N, Staiano M, Gryczynski Z, Rossi M, Lakowicz JR (2002) Anal Biochem 303:138–144

    PubMed  Google Scholar 

  • Davies GJ, Gamblin SJ, Littechild JA, Watson HC (1993) Proteins 15:283–289

    PubMed  CAS  Google Scholar 

  • De Montigny C, Sygusch J (1996) Eur J Biochem 241:243–248

    PubMed  Google Scholar 

  • Dekker K, Yamagata H, Sakaguchi K, Udaka S (1991a) Agric Biol Chem 55:221–227

    PubMed  CAS  Google Scholar 

  • Dekker K, Yamagata H, Sakaguchi K, Udaka S (1991b) J Bacteriol 173:3078–3083

    PubMed  CAS  Google Scholar 

  • Ding YR, Ronimus RS, Morgan HW (2001) J Bacteriol 183:791–794

    PubMed  CAS  Google Scholar 

  • Dörr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B (2003) J Biol Chem 278:18744–18753

    PubMed  Google Scholar 

  • Empadinhas N, Albuquerque L, Henne A, Santos H, da Costa MS (2003) Appl Environ Microbiol 69:3272–3279

    PubMed  CAS  Google Scholar 

  • Fabry S, Heppner P, Dietmaier W, Hensel R (1990) Gene 91:19–25

    PubMed  CAS  Google Scholar 

  • Gayathri P, Banerjee M, Vijayalakshmi A, Azeez S, Balaram H, Balaram P, Murthy MR (2007) Acta Crystallogr D Biol Crystallogr 63:206–220

    PubMed  CAS  Google Scholar 

  • Goward CR, Hartwell R, Atkinson T, Scawen MD (1986) Biochem J 237:415–420

    PubMed  CAS  Google Scholar 

  • Graham DE, Xu H, White RH (2002) FEBS Lett 517:190–194

    PubMed  CAS  Google Scholar 

  • Graninger M, Kneidinger B, Bruno K, Scheberi A, Messner P (2002) Appl Environ Microbiol 68:3708–3715

    PubMed  CAS  Google Scholar 

  • Griffiths JS, Wymer NJ, Njolito E, Niranjanakumari S, Fierke CA, Toone EJ (2002) Bioorg Med Chem 10:545–550

    PubMed  CAS  Google Scholar 

  • Hansen T, Schönheit P (2000) Arch Microbiol 173:103–109

    PubMed  CAS  Google Scholar 

  • Hansen T, Schönheit P (2001) Arch Microbiol 177:62–69

    PubMed  CAS  Google Scholar 

  • Hansen T, Schönheit P (2004) Extremophiles 8:29–35

    PubMed  CAS  Google Scholar 

  • Hansen T, Oehlmann M, Schönheit P (2001) J Bacteriol 183:3428–3435

    PubMed  CAS  Google Scholar 

  • Hansen T, Musfeldt M, Schönheit P (2002a) Arch Microbiol 177:401–409

    PubMed  CAS  Google Scholar 

  • Hansen T, Reichstein B, Schmid R, Schönheit P (2002b) J Bacteriol 184:5955–5965

    PubMed  CAS  Google Scholar 

  • Hansen T, Schlichting B, Schönheit P (2002c) FEMS Microbiol Lett 216:249–253

    PubMed  CAS  Google Scholar 

  • Hansen T, Wendorff D, Schönheit P (2004) J Biol Chem 279:2262–2272

    PubMed  CAS  Google Scholar 

  • Hirakawa H, Kamiya N, Kawarabayasi Y, Nagamine T (2005) Biochim Biophys Acta 1748:94–99

    PubMed  CAS  Google Scholar 

  • Holt PJ, Williams RE, Jordan KN, Lowe CR, Bruce CE (2000) FEMS Microbiol Lett 190:57–62

    CAS  Google Scholar 

  • Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) J Biol Chem 281:2923–2931

    PubMed  CAS  Google Scholar 

  • Inagaki E, Sakamoto K, Obayashi N, Terada T, Shirouzu M, Bessho Y, Kuroishi C, Kuramitsu S, Shinkai A, Yokoyama S (2006) Acta Crystallogr F Struct Biol Crystallogr Commun 62:169–171

    Google Scholar 

  • Ishida M, Yoshida M, Oshima T (1997) Extremophiles 1:157–162

    PubMed  CAS  Google Scholar 

  • Iyer RB, Wang J, Bachas LG (2002) Extremophiles 6:283–289

    PubMed  CAS  Google Scholar 

  • Jeong JJ, Fushinobu S, Ito S, Jeon BS, Shoun H, Wakagi T (2003a) FEBS Lett 535:200–204

    PubMed  CAS  Google Scholar 

  • Jeong JJ, Fushinobu S, Ito S, Shoun H, Wakagi T (2003b) Acta Crystallogr D Biol Crystallogr 59:1327–1329

    PubMed  Google Scholar 

  • Johnsen U, Schönheit P (2007) Extremophiles 11:647–657

    PubMed  CAS  Google Scholar 

  • Johnsen U, Hansen T, Schönheit P (2003) J Biol Chem 278:25417–25427

    PubMed  CAS  Google Scholar 

  • Jung JH, Lee SB (2006) Biochem J 397:131–138

    PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140

    PubMed  CAS  Google Scholar 

  • Kehrer D, Ahmed H, Brinkmann H, Siebers B (2007) BMC Genomics 8:301

    PubMed  Google Scholar 

  • Kengen SW, Tuininga JE, de Bok FA, Stams AJ, de Vos WM (1995) J Biol Chem 270:30453–30457

    PubMed  CAS  Google Scholar 

  • Kim S, Lee SB (2005) Biochem J 387:271–280

    PubMed  CAS  Google Scholar 

  • Kim S, Lee SB (2006) Biosci Biotechnol Biochem 70:1308–1316

    PubMed  CAS  Google Scholar 

  • Kim MK, Cho MK, Song HE, Kim D, Park BH, Lee JH, Kang GB, Kim SH, Im YJ, Lee DS, Eom SH (2007) Proteins 66:751–754

    PubMed  CAS  Google Scholar 

  • Kim BC, Yu SN, Kim KY, Lee JS, Pyun YR, Ahn SC (2010) Biotechnol Lett 32:929–933

    PubMed  CAS  Google Scholar 

  • Ko JH, Kim CH, Lee DS, Kim YS (1996) Biochem J 319:977–983

    PubMed  CAS  Google Scholar 

  • Koga S, Yoshioka I, Sakuraba H, Takahashi M, Sakasegawa S, Shimizu S, Ohshima T (2000) J Biochem 128:1079–1085

    CAS  Google Scholar 

  • Kohlhoff M, Dahm A, Hensei R (1996) FEBS Lett 383:245–250

    PubMed  CAS  Google Scholar 

  • Kube J, Brokamp C, Machielsen R, van der Oost J, Märkl H (2006) Extremophiles 10:221–227

    PubMed  CAS  Google Scholar 

  • Labes A, Schönheit P (2003) Arch Microbiol 180:69–75

    PubMed  CAS  Google Scholar 

  • Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ (2003) J Biol Chem 278:34066–34072

    PubMed  CAS  Google Scholar 

  • Lee BI, Chang C, Cho SJ, Eom SH, Kim KK, Yu YG, Suh SW (2001) J Mol Biol 307:1351–1362

    PubMed  CAS  Google Scholar 

  • Lee JH, Bae J, Kim D, Choi Y, Im YJ, Koh S, Kim JS, Kim MK, Kang GB, Hong SI, Lee DS, Eom SH (2006) Biochem Biophys Res Commun 347:616–625

    PubMed  CAS  Google Scholar 

  • Liu B, Hong Y, Wu L, Li Z, Ni J, Sheng D, Shen Y (2007) Extremophiles 11:733–739

    PubMed  CAS  Google Scholar 

  • Liu B, Wu L, Liu T, Hong Y, Shen Y, Ni J (2009) Biotechnol Lett 31:1937–1941

    PubMed  CAS  Google Scholar 

  • Lokanath NK, Kunishima N (2006) Acta Crystallogr Sect F Struct Biol Cryst Commun 62:788–790

    PubMed  Google Scholar 

  • Machida M, Matsuzawa H, Ohta T (1985) J Biochem 97:899–909

    PubMed  CAS  Google Scholar 

  • Machielsen R, Uria AR, Kengen SW, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily Appl Environ Microbiol 72:233–238

    PubMed  CAS  Google Scholar 

  • Malay AD, Bessho Y, Ellis MJ, Antonyuk SV, Strange RW, Hasnain SS, Shinkai A, Padmanabhan B, Yokoyama S (2009) Acta Crystallogr Sect F Struct Biol Cryst Commun 165:1227–1233

    Google Scholar 

  • Mathews II, McMullan D, Miller MD, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, McPhillips TM, Morse AT, Quijano K, Rife CL, Schwarzenbacher R, Spraggon G, Stevens RC, van den Bedem H, Weekes D, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2008) Proteins 70:603–608

    PubMed  CAS  Google Scholar 

  • Merino F, Guixé V (2008) FEBS J 275:4033–4044

    PubMed  CAS  Google Scholar 

  • Messner P, Allmaier G, Schäffer C, Wugeditsch T, Lortal S, König H, Niemetz R, Dorner M (1997) FEMS Microbiol Rev 20:25–46

    PubMed  CAS  Google Scholar 

  • Mizanur RM, Pohl NL (2009) Org Biomol Chem 7:2135–2139

    PubMed  CAS  Google Scholar 

  • Mukund S, Adams MW (1995) J Biol Chem 270:8389–8392

    PubMed  CAS  Google Scholar 

  • Nakka M, Lyer RB, Bachas LG (2006) Protein 25:17–21

    CAS  Google Scholar 

  • Namboori SC, Graham DE (2008) J Bacteriol 190:2987–2996

    PubMed  CAS  Google Scholar 

  • Neves C, da Costa MS, Santos H (2005) Appl Environ Microbiol 71:8091–8098

    PubMed  CAS  Google Scholar 

  • Ng SY, Chaban B, Jarrell KF (2006) J Mol Microbiol Biotechnol 11:167–191

    PubMed  CAS  Google Scholar 

  • Niou YK, Wu WL, Lin LC, Yu MS, Shu HY, Yang HH, Lin GH (2009) Biochem Biophys Res Commun 390:313–318

    PubMed  CAS  Google Scholar 

  • Nishimasu H, Fushinobu S, Shoun H, Wakagi T (2004) Structure 12:949–959

    PubMed  CAS  Google Scholar 

  • Nishimasu H, Fushinobu S, Shoun H, Wakagi T (2006) J Bacteriol 188:2014–2019

    PubMed  CAS  Google Scholar 

  • Ohshima T, Ito Y, Sakuraba H, Goda S, Kawarabayasi Y (2003) J Mol Catal B 23:281–289

    CAS  Google Scholar 

  • Ohshima N, Inagaki E, Yasuike K, Takio K, Tahirov TH (2004) J Mol Biol 340:477–489

    PubMed  CAS  Google Scholar 

  • Ohshima T, Kawakami R, Kanai Y, Goda S, Sakuraba H (2007) Protein Expr Purif 54:73–78

    PubMed  CAS  Google Scholar 

  • Ostendorp R, Liebl W, Schurig H, Jaenicke R (1993) Eur J Biochem 216:709–715

    PubMed  CAS  Google Scholar 

  • Otero-Espinar FJ, Luzardo-Alvarez A, Blanco-Méndez J (2010) Mini Rev Med Chem 10:715–725

    PubMed  CAS  Google Scholar 

  • Parajuli N, Lee DS, Lee HC, Liou K, Sohng JK (2004) Biotechnol Lett 26:437–442

    PubMed  CAS  Google Scholar 

  • Pauluhn A, Ahmed H, Lorentzen E, Buchinger S, Schomburg D, Siebers B, Pohl E (2008) Proteins 72:35–43

    PubMed  CAS  Google Scholar 

  • Peak MJ, Peak JG, Stevens FJ, Blamey J, Mai X, Zhou ZH, Adams MW (1994) Arch Biochem Biophys 313:280–286

    PubMed  CAS  Google Scholar 

  • Pfoestl A, Hofinger A, Kosma P, Messner P (2003) J Biol Chem 278:26410–26417

    PubMed  CAS  Google Scholar 

  • Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R, Kennely PJ (2003) J Bacteriol 185:2112–2121

    PubMed  CAS  Google Scholar 

  • Prüss B, Meyer HE, Holldorf AW (1993) Arch Microbiol 160:5–11

    PubMed  Google Scholar 

  • Qu Q, Lee SJ, Boos W (2004) Extremophiles 8:301–308

    PubMed  CAS  Google Scholar 

  • Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (2002) J Biol Chem 277:30649–30655

    PubMed  CAS  Google Scholar 

  • Rashid N, Kanai T, Atomi H, Imanaka T (2004) J Bacteriol 186:6070–6076

    PubMed  CAS  Google Scholar 

  • Reher M, Bott M, Schönheit P (2006) FEMS Microbiol Lett 259:113–119

    PubMed  CAS  Google Scholar 

  • Reher M, Schönheit P (2006) Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 580:1198–1204

    PubMed  CAS  Google Scholar 

  • Rentier-Delrue F, Moyens S, Lion M, Martial JA (1993) Gene 134:137–138

    PubMed  CAS  Google Scholar 

  • Ronimus RS, Kawarabayasi Y, Kikuchi H, Morgan HW (2001a) FEMS Microbiol Lett 202:85–90

    PubMed  CAS  Google Scholar 

  • Ronimus RS, de Heus E, Morgan HW (2001b) Biochim Biophys Acta 1517:384–391

    PubMed  CAS  Google Scholar 

  • Rudolph B, Hansen T, Schönheit P (2004) Arch Microbiol 181:82–87

    PubMed  CAS  Google Scholar 

  • Sacchetti S, Bartolucci S, Rossi M, Cannio R (2004) Gene 332:149–157

    PubMed  CAS  Google Scholar 

  • Sakuraba H, Yoshioka I, Koga S, Takahashi M, Kitahama Y, Satomura T, Kawakami R, Ohshima T (2002) J Biol Chem 277:12495–12498

    PubMed  CAS  Google Scholar 

  • Samland AK, Wang M, Sprenger GA (2008) FEMS Microbiol Lett 281:36–41

    PubMed  CAS  Google Scholar 

  • Sato T, Atomi H, Imanaka T (2007) Science 315:1003–1006

    PubMed  CAS  Google Scholar 

  • Schramm A, Siebers B, Tjaden B, Brinkmann H, Hensei R (2000) J Bacteriol 182:2001–2009

    PubMed  CAS  Google Scholar 

  • Siebers B, Brinkmann H, Dörr C, Tjaden B, Lilie H, van der Oost J, Verhees CH (2001) J Biol Chem 276:28710–28718

    PubMed  CAS  Google Scholar 

  • Silva Z, Alarico S, Costa MS (2005) Extremophiles 9:29–36

    PubMed  CAS  Google Scholar 

  • Skropeta D (2009) Bioorg Med Chem 17:2645–2653

    PubMed  CAS  Google Scholar 

  • Soulimane T (2010) Protein Expr Purif 74:175–180

    PubMed  CAS  Google Scholar 

  • Stec B, Yang H, Johnson KA, Chen L, Roberts MF (2000) Nat Struct Biol 7:1046–1050

    PubMed  CAS  Google Scholar 

  • Stieglitz KA, Johnson KA, Yang H, Roberts MF, Seaton BA, Head JF, Stec B (2002) J Biol Chem 277:22863–22874

    PubMed  CAS  Google Scholar 

  • Swan MK, Solomons JT, Beeson CC, Hansen T, Schönheit P, Davies C (2003) J Biol Chem 278:47261–47268

    PubMed  CAS  Google Scholar 

  • Swan MK, Hansen T, Schönheit P, Davies C (2004) J Biol Chem 279:39838–39845

    PubMed  CAS  Google Scholar 

  • Taguchi H, Matsuzawa H, Ohta T (1984) Eur J Biochem 145:283–290

    PubMed  CAS  Google Scholar 

  • Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1997) J Bacteriol 179:4689–4698

    PubMed  CAS  Google Scholar 

  • Tsuge H, Sakuraba H, Kobe T, Kujime A, Katunuma N, Ohshima T (2002) Protein Sci 11:2456–2463

    PubMed  CAS  Google Scholar 

  • Tuininga JE, Verhees CH, van der Oost J, Kengen SW, Stams AJ, de Vos WM (1999) J Biol Chem 274:21023–21028

    PubMed  CAS  Google Scholar 

  • van der Oost J, Voorhorst WG, Kengen SW, Geerling AC, Wittenhorst V, Gueguen Y, de Vos WM (2001) Eur J Biochem 268:3062–3068

    PubMed  Google Scholar 

  • van der Oost J, Huynen MA, Verhees CH (2002) FEMS Microbiol Lett 212:111–120

    PubMed  Google Scholar 

  • Vanfossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann N Y Acad Sci 1125:322–337

    PubMed  CAS  Google Scholar 

  • Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, Vuyst L (2004) Appl Environ Microbiol 70:900–912

    PubMed  CAS  Google Scholar 

  • Verhees CH, Akerboom J, Schiltz E, de Vos WM, van der Oost J (2002) J Bacteriol 184:3401–3405

    PubMed  CAS  Google Scholar 

  • Walden H, Taylor GL, Lorentzen E, Pohl E, Lilie H, Schramm A, Knura T, Stubbe K, Tjaden B, Hensei R (2004) J Mol Biol 342:861–875

    PubMed  CAS  Google Scholar 

  • Wolterink-van Loo S, van Eerde A, Siemerink MA, Akerboom J, Dijkstra BW van der Oost J (2007) Biochem. J

    Google Scholar 

  • Yamamoto H, Kunishima N (2008) Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1087–1090

    PubMed  Google Scholar 

  • Yanai H, Doi K, Ohshima T (2009) Appl Environ Microbiol 75:1758–1763

    PubMed  CAS  Google Scholar 

  • Yang C, Rodionov DA, Rodionova IA, Li X, Osterman AL (2008) J Bacteriol 190:1773–1782

    PubMed  CAS  Google Scholar 

  • Yoshida M, Oshima T, Imahori K (1971) Biochem Biophys Res Commun 43:36–39

    PubMed  CAS  Google Scholar 

  • Zayni S, Steiner K, Pfostl A, Hofinger A, Kosma P, Schaffer C, Messner P (2007) Glycobiology 17:433–443

    PubMed  CAS  Google Scholar 

  • Zea CJ, MacDonell SW, Pohl NL (2003) J Am Chem Soc 125:13666–13667

    PubMed  CAS  Google Scholar 

  • Zhang Z, Djebll A, Shoham M, Frolow F, Peretz M, Burstein Y (1993) J Mol Biol 230:353–355

    PubMed  CAS  Google Scholar 

  • Zhang Z, Tsujimura M, Akutsu J, Sasaki M, Tajima H, Kawarabayasi Y (2005) J Biol Chem 280:9698–9705

    PubMed  CAS  Google Scholar 

  • Zhang Z, Akutsu J, Tsujimura M, Kawarabayasi Y (2007) J Biochem 141:553–562

    PubMed  CAS  Google Scholar 

  • Zhang Z, Akutsu J, Kawarabayasi Y (2010) J Bacteriol 192:3287–3293

    PubMed  CAS  Google Scholar 

  • Zülli F, Weber H, Zuber H (1987) Biol Chem Hoppe Seyler 368:1167–1177

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshimune, K., Kawarabayasi, Y. (2013). Sugar Metabolic Enzymes. In: Satyanarayana, T., Littlechild, J., Kawarabayasi, Y. (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5899-5_22

Download citation

Publish with us

Policies and ethics