Skip to main content

Abstract

The potential application of thermophiles and their enzymes for industry is enormous where the development of host-vector systems in thermophiles is essential. Compared to mesophilic organisms, the host-vector systems in thermophiles are lagging behind. However, in recent years a number of host-vector systems were developed for thermophilic bacteria and also for some archaea. Host-vector systems in thermophiles are more advanced than is commonly believed.

In this chapter, firstly, we introduce basic genetic methodology for host-vector systems in thermophiles including transformation, selectable markers, vectors, and hosts (recipient cells). We show transformation methods used for thermophiles, selectable markers that are effective for thermophiles, some Escherichia coli-host shuttle vectors, and important property of the host.

Secondly, we show the actual application systems for the host-vector systems in thermophiles, expression vectors, reporter gene systems, and targeted gene disruption (replacement) method.

Finally, we introduce some commercial and potential application of thermophile host-vector systems. Homologous and heterologous expression of the thermophilic proteins which were difficult to produce in full active form from mesophilic hosts was successfully developed in thermophiles, especially in T. thermophilus, and several hyperthermophilic archaea using their host-vector systems, “genetic and metabolic engineering,” were developed for biofuel production in thermophiles, especially in thermophilic ethanologens. And, directed evolution methods were developed for thermo-adaptation of mesophilic proteins in thermophiles such as T. thermophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard C, Phan H, Trevisanato S, Garrett RA (1994) J Bacteriol 176:7744–7747

    PubMed  CAS  Google Scholar 

  • Aagaard C, Leviev I, Aravalli RN, Forterre P, Prieur D, Garrette RA (1996) FEMS Microbiol Rev 18:93–104

    PubMed  CAS  Google Scholar 

  • Albers SV, Driessen AJM (2007) Archaea 2:145–149

    Google Scholar 

  • Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampé R, Driessen AJM, Schleper C (2006) Appl Environ Microbiol 72:102–111

    PubMed  CAS  Google Scholar 

  • Allers T, Mevarech M (2005) Nat Rev Genet 6:58–73

    PubMed  CAS  Google Scholar 

  • Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Appl Environ Microbiol 76:1759–1769

    PubMed  CAS  Google Scholar 

  • Angelov A, Mientus M, Liebl S, Liebl W (2009) Syst Appl Microbiol 32:177–185

    PubMed  CAS  Google Scholar 

  • Aravalli RN, Garret RA (1997) Extremophiles 1:183–191

    PubMed  CAS  Google Scholar 

  • Atomi H, Sato T, Kanai T (2012) Curr Opin Biotechnol 22:618–626

    PubMed  CAS  Google Scholar 

  • Averhoff B (2004) J Bioenerg Biomembr 36:25–33

    PubMed  CAS  Google Scholar 

  • Averhoff B (2006) Genetic Systems for Thermus, Gene Transfer Systems for Obligately Anaerobic Thermophilic Bacteria. In: Rainey FA, Oren A (eds) Methods in biotechnology, vol 35. Elsevier Ltd, New York, pp 279–308

    Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Environ Technol 31:871–888

    PubMed  CAS  Google Scholar 

  • Basen M, Sun J, Adams MWW (2012) MBio 3:1–8

    Google Scholar 

  • Berkner S, Lipps G (2008) Arch Microbiol 190:217–230

    PubMed  CAS  Google Scholar 

  • Berkner S, Wlodkowski A, Albers SV, Lipps G (2010) Extremophiles 14:249–259

    PubMed  CAS  Google Scholar 

  • Bini E (2010) FEMS Microbiol Ecol 73:1–16

    PubMed  CAS  Google Scholar 

  • Bjornsdottir SH, Thorbjarnardottir SH, Eggertsson G (2005) Appl Microbiol Biotechnol 66:675–682

    PubMed  CAS  Google Scholar 

  • Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottrir SH, Kristjansson JK (2006) Extremophiles 10:1–6

    PubMed  CAS  Google Scholar 

  • Bjornsdottir SH, Fridjjonsson OH, Kristjansson JK, Eggertsson G (2007) Extremophiles 11:283–293

    PubMed  CAS  Google Scholar 

  • Blas-Galindo E, Cava F, Lopez-Vinas E, Mendieta J, Berenguer J (2007) Appl Environ Microbiol 73:5138–5145

    PubMed  CAS  Google Scholar 

  • Blondal T, Hjorleifsdottir S, Aevarsson A, Fridjonsson OH, Skirnisdottir S, Weat JO, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK (2005) J Biol Chem 280:5188–5194

    PubMed  CAS  Google Scholar 

  • Brouns SJWH, Akerboom J, Turnbull AP, de Vos WM, van der Oost J (2005) J Biol Chem 280:11422–11431

    PubMed  CAS  Google Scholar 

  • Brügger K, Torarinsson E, Redder P, Chen L, Garrette RA (2004) Biochem Soc Trans 32:179–183

    PubMed  Google Scholar 

  • Burdette DS, Secundo F, Phillips RS, Dong J, Scott RA, Zeikus JG (1997) Biochem J 326:717–724

    PubMed  CAS  Google Scholar 

  • Burdette DS, Jung SH, Shen GJ, Hollingsworth RI, Zeikus JG (2002) Appl Environ Microbiol 68:1914–1918

    PubMed  CAS  Google Scholar 

  • Cannio R, Contursi P, Rossi M, Bartolucci S (2001) Extremophiles 5:153–159

    PubMed  CAS  Google Scholar 

  • Cava F, Laptenko O, Borukhov S, Chahlafi Z, Bias-Galindo E, Gomez-Puertas P, Barenguer J (2007) Mol Microbiol 64:630–646

    PubMed  CAS  Google Scholar 

  • Cava F, de Pedero MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J (2008) Environ Microbiol 10:605–613

    PubMed  CAS  Google Scholar 

  • Cava F, Hidalgo A, Berenguer J (2009) Extremophiles 13:213–231

    PubMed  CAS  Google Scholar 

  • Chandrayan SK, McTernan PM, Hopkins RC, Sun J, Jenney FE Jr, Adams MWW (2012) J Biol Chem 287:3257–3264

    PubMed  CAS  Google Scholar 

  • Charbonnier F, Forterre P (1994) J Bacteriol 176:1251–1259

    PubMed  CAS  Google Scholar 

  • Chautard H, Blas-Galindo E, Menguy T, Grand’Moursel L, Cava F, Berenguer J, Delcourt M (2007) Nat Methods 4:919–921

    PubMed  CAS  Google Scholar 

  • Chen CK, Boucle CM, Blaschek HP (1996) FEMS Microbiol Lett 140:185–191

    PubMed  CAS  Google Scholar 

  • Contursi P, Cannio R, Prato S, Fiorentino G, Rossi M, Bartolucci S (2003) FEMS Microbiol Lett 218:115–120

    PubMed  CAS  Google Scholar 

  • Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M (2004) Extremophiles 8:385–391

    PubMed  CAS  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor MP, Boakes S, Martin S, Atkinson T (2009) Metab Eng 11:398–408

    PubMed  CAS  Google Scholar 

  • de Grade M, Lasa I, Berenguer J (1998) FEMS Microbiol Lett 165:51–57

    Google Scholar 

  • Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Extremophiles 13:735–746

    PubMed  CAS  Google Scholar 

  • Desai SG, Guerinot ML, Lynd LR (2004) Appl Microbiol Biotechnol 65:600–605

    PubMed  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258–266

    PubMed  CAS  Google Scholar 

  • Erauso G, Prieur D, Godfroy A, Raguénes G (1995) Plate Cultivation Technique for Strictly Anaerobic, Thermophilic, Sulfur-metabolizing Archaea. In: Fleiscmann EM, Place AR, Robb FT, Schreier JJ (eds) Archaea: a laboratory manual, vol 3. Cold Spring Harbpr Laboratory Press, Cold Spring Harbor, pp 25–29

    Google Scholar 

  • Farkas J, Chung D, DeBarry M, Adams MWW, Westpheling J (2011) Appl Environ Microbiol 77:6343–6349

    PubMed  CAS  Google Scholar 

  • Fridjonsson O, Watzlawick H, Mattes R (2002) J Bacteriol 184:3385–3391

    PubMed  CAS  Google Scholar 

  • Garrett RA, Prangishvili D, Shah SA, Reuter M, Stetter KO, Peng X (2010) Environ Microbiol 12:2918–2930

    PubMed  CAS  Google Scholar 

  • Georgieva T, Mikkelsen MJ, Ahring BK (2007) Cent Eur J Biol 2:364–377

    CAS  Google Scholar 

  • Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) Environ Microbiol 14:503–516

    PubMed  CAS  Google Scholar 

  • Grogan DW (1996) J Bacteriol 178:3207–3211

    PubMed  CAS  Google Scholar 

  • Grogan DW, Stengel KR (2008) Mol Microbiol 69:1255–1265

    PubMed  CAS  Google Scholar 

  • HasenÖhrl D, Lombo T, Kaberdin V, Londel P, Bläsi U (2008) Proc Natl Acad Sci 105:2146–2150

    PubMed  Google Scholar 

  • Henche AL, Koerdt A, Ghosh A, Albers SV (2012) Environ Microbiol 14:779–793

    PubMed  CAS  Google Scholar 

  • Hidaka Y, Hasegawa M, Nakahara T, Hoshino T (1994) Bisosci Biotechnol Biochem 58:1338–1339

    CAS  Google Scholar 

  • Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernandez-Lafuente R, Guisan JM, Berenguer J (2004) Appl Environ Microbiol 70:3839–3844

    PubMed  CAS  Google Scholar 

  • Ishida M, Oshima T, Yutani K (2002) FEMS Microbiol Lett 216:179–183

    PubMed  CAS  Google Scholar 

  • Jennert KCB, Tardif C, Young DI, Young M (2000) Microbiology 146:3071–3080

    PubMed  CAS  Google Scholar 

  • Jenney FE Jr, Adams MW (2008) Extremophiles 12:39–50

    PubMed  CAS  Google Scholar 

  • Jiang Y, Zhou Q, Wu K, Li XQ, Shao WL (2006) FEMS Microbiol Lett 259:254–259

    PubMed  CAS  Google Scholar 

  • Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C (2003) Mol Microbiol 48:1241–1252

    PubMed  CAS  Google Scholar 

  • Kayser KJ, Kwak JH, Park HS, Kilbane JJ 2nd (2001) Lett Appl Microbiol 32:412–418

    PubMed  CAS  Google Scholar 

  • Kiss C, Temirov J, Chasteen L, Waldo GS, Bradbury RM (2009) Protein Eng Des Sel 22:313–323

    PubMed  CAS  Google Scholar 

  • Klapatch TR, Guerinot ML, Lynd LR (1996) J Ind Microbiol 16:342–347

    PubMed  CAS  Google Scholar 

  • Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) J Bacteriol 166:338–340

    PubMed  CAS  Google Scholar 

  • Koyama Y, Okamoto S, Furukawa K (1990) Appl Environ Microbiol 56:2251–2254

    PubMed  CAS  Google Scholar 

  • Kurosawa N, Grogan DW (2005) FEMS Microbiol Lett 253:141–149

    PubMed  CAS  Google Scholar 

  • Laptenko O, Kim SS, Lee J, Starodubtseva M, Cava F, Berenguer X, Kong P, Borukhov S (2007) EMBO J 25:2131–2141

    Google Scholar 

  • Lasa I, de Grado M, de Pedro MA, Berenguer J (1992) J Bacteriol 174:6424–6431

    PubMed  CAS  Google Scholar 

  • Liao H, Mckenzie T, Hageman R (1986) Proc Natl Acad Sci 83:576–580

    PubMed  CAS  Google Scholar 

  • Lipps G (2006) Extremophiles 10:17–28

    PubMed  Google Scholar 

  • Lipps G (2007) In: Garrett R, Klenl HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell Publishing Ltd, Malden pp 105–112

    Google Scholar 

  • Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA, Adams MWW, Westpheling J (2011) Appl Environ Microbiol 77:2232–2238

    PubMed  CAS  Google Scholar 

  • Liu B, Zhang X (2008) Appl Microbiol Biotechnol 80:697–707

    PubMed  CAS  Google Scholar 

  • Lucas S, Toffin L, Zivanovic Y, Charlier D, Moussard H, Forterre P, Prieur D, Erauso G (2002) Appl Environ Microbiol 68:5528–5536

    PubMed  CAS  Google Scholar 

  • Mai V, Wiegel J (2000) Appl Environ Microbiol 66:4817–4821

    PubMed  CAS  Google Scholar 

  • Mai V, Lorenz WW, Wiegel J (1997) FEMS Microbiol Lett 148:163–167

    CAS  Google Scholar 

  • Martusewitsch E, Sensen CW, Schleper C (2000) J Bacteriol 182:2574–2581

    PubMed  CAS  Google Scholar 

  • Maseda H, Hoshino T (1995) FEMS Microbiol Lett 128:127–134

    PubMed  CAS  Google Scholar 

  • Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) J Bacteriol 189:2683–2691

    PubMed  CAS  Google Scholar 

  • Matsumura M, Aiba S (1985) J Biol Chem 260:15298–15303

    PubMed  CAS  Google Scholar 

  • Meile L, Abendschein P, Leisinger T (1990) J Bacteriol 172:3507–3508

    PubMed  CAS  Google Scholar 

  • Mevarech M, Allers T (2007) In: Garrett R, Klenl HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell Publishing Ltd, Malden pp 125–136

    Google Scholar 

  • Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann HW, Washburn M, Mushegian A, Severinov K (2008) J Mol Biol 378:468–480

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Yoshida T, Tanaka R, Forterre P, Sako Y, Prangishvili D (2010) Virology 402:347–352

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Sako Y, Prangishvili D (2011) J Bacetriol 193:5412–5419

    CAS  Google Scholar 

  • Moreno R, Zafra O, Cava F, Berenguer J (2003) Plasmid 49:2–8

    PubMed  CAS  Google Scholar 

  • Moreno R, Haro A, Castellanos A, Berenguer J (2005) Appl Environ Microbiol 71:591–593

    PubMed  CAS  Google Scholar 

  • Mueller M, Takemasa R, Schwarz A, Atomi H, Imanaka T, Reeve JN (2009) Biochim Biophys Acta 1794:1709–1714

    PubMed  CAS  Google Scholar 

  • Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) J Biosci Bioeng 100:158–163

    PubMed  CAS  Google Scholar 

  • Narumi I, Sawakami K, Nakamoto S, Nakayama N, Yanagisawa T, Takahashi N, Kihara H (1992) Biotechnol Tech 6:83–86

    Google Scholar 

  • Park HS, Kayser KJ, Kwak JH, Kilbane JJ 2nd (2004) J Ind Microbiol Biotechnol 31:189–197

    PubMed  CAS  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwillinger TC, Waldo GS (2006) Nat Biotechnol 24:79–88

    PubMed  CAS  Google Scholar 

  • Peng H, Fu B, Mao Z, Shao W (2006) Biotechnol Lett 28:1913–1917

    PubMed  CAS  Google Scholar 

  • Pina M, Bize A, Forterre P, Prangishvili D (2011) FEMS Microbiol Rev 35:1035–1054

    PubMed  CAS  Google Scholar 

  • Prangishvili D, Forterre P, Garret RA (2006) Nat Rev Microbiol 4:837–848

    PubMed  CAS  Google Scholar 

  • Ramírez-Acros S, Moreno R, Zafra O, Castan P, Valles C, Berenguer J (1998) J Bacteriol 180:3137–3143

    Google Scholar 

  • Redder P, Garrett RA (2006) J Bacteriol 188:4198–4206

    PubMed  CAS  Google Scholar 

  • Redder P, Peng X, Brügger K, Shah SA, Roesch F, Greve B, She Q, Schleper C, Forterre P, Garrett RA, Prangishvili D (2009) Environ Microbiol 11:2849–2862

    PubMed  CAS  Google Scholar 

  • Rhee MS, Kim JW, Qian Y, Ingram LO, Shanmugam KT (2007) Plasmid 58:13–22

    PubMed  CAS  Google Scholar 

  • Santangelo TJ, Čuboňoava L, Reeve JN (2008) Appl Environ Microbiol 74:3099–3104

    PubMed  CAS  Google Scholar 

  • Santangelo TJ, Cuboňoava L, Skinner KM, Reeve JN (2009) J Bacteriol 191:7102–7108

    PubMed  CAS  Google Scholar 

  • Santangelo TJ, Čuboňoava L, Reeve JN (2010) Appl Environ Microbiol 76:1044–1052

    PubMed  CAS  Google Scholar 

  • Santangelo TJ, Čuboňoava L, Reeve JN (2011) Mol Microbiol 81:897–911

    PubMed  CAS  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) J Bacteriol 185:210–220

    PubMed  CAS  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Appl Environ Microbiol 71:3889–3899

    PubMed  CAS  Google Scholar 

  • Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) J Bacteriol 186:427–437

    PubMed  CAS  Google Scholar 

  • Schleper C, Roder R, Singer T, Zilling W (1994) Mol Gen Genet 243:91–96

    PubMed  CAS  Google Scholar 

  • Schleper C, Holz I, Janekovic D, Murphy J, Zilling W (1995) J Bacteriol 177:4417–4426

    PubMed  CAS  Google Scholar 

  • Schreier HJ, Robinson-Bidle KA, Romashko AM, Patel GV (1999) Extremophiles 3:11–19

    PubMed  CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Proc Natl Acad Sci USA 105:13769–13774

    PubMed  CAS  Google Scholar 

  • Shaw AJ, Hosgett DA, Lynd LR (2010) Appl Environ Microbiol 76:4713–4719

    PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garret RA, Sensen CW, Van der Oost J (2001) Proc Natl Acad Sci 98:7835–7840

    PubMed  CAS  Google Scholar 

  • She Q, Zhang C, Deng L, Peng N, Chen Z, Liang YX (2009) Biochem Soc Trans 37:92–96

    PubMed  CAS  Google Scholar 

  • Soler N, Marguet E, Cortez D, Desnoues N, Keller J, Tilbeurgh HV, Sezonov G, Forterre P (2010) Nucleic Acids Res 28:1–17

    Google Scholar 

  • Soutscheck-Bauer E, Hartl L, Staudenbauer WL (1986) Biotecnol Lett 7:705–710

    Google Scholar 

  • Tailliez P, Girard H, Millet J, Beguin P (1989a) Appl Environ Microbiol 55:207–211

    PubMed  CAS  Google Scholar 

  • Tailliez P, Girard H, Longin R, Beguin P, Millet J (1989b) Appl Environ Microbiol 55:203–206

    PubMed  CAS  Google Scholar 

  • Takemasa R, Yokooji Y, Yamatsu A, Atomi H, Imanaka T (2011) Appl Environ Microbiol 77:2392–2398

    PubMed  CAS  Google Scholar 

  • Tamakoshi M, Yamagishi A, Oshima T (1995) Mol Microbiol 16:1031–1036

    PubMed  CAS  Google Scholar 

  • Tamakoshi M, Yaoi T, Oshima T, Yamagishi A (1999) FEMS Microbiol Lett 173:431–437

    PubMed  CAS  Google Scholar 

  • Tamakoshi M, Nakano Y, Kakizawa S, Yamagishi A, Oshima T (2001) Extremophiles 5:17–22

    PubMed  CAS  Google Scholar 

  • Taylor MP, Esteban CD, Leak DJ (2008) Plasmid 60:45–52

    PubMed  CAS  Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Trends Biotechnol 27:398–405

    PubMed  CAS  Google Scholar 

  • Thompson AH, Studholme DJ, Green EM, Leak DJ (2008) Biotechnol Lett 30:1359–1365

    PubMed  CAS  Google Scholar 

  • Tuffin M, Anderson D, Heath C, Cowan D (2009) Biotechnol J 4:1671–1683

    PubMed  CAS  Google Scholar 

  • Tyurin MV, Deseai SG, Lynd LR (2004) Appl Environ Microbiol 70:883–890

    PubMed  CAS  Google Scholar 

  • Tyurin MV, Sullivan CR, Lynd LR (2005) Appl Environ Microbiol 71:8069–8076

    PubMed  CAS  Google Scholar 

  • Tyurin MV, Lynd LR, Wiegel J (2006) Genetic Systems for Thermus, Gene Transfer Systems for Obligately Anaerobic Thermophilic Bacteria. In: Rainey FA, Oren A (eds) Methods in biotechnology, vol 35. Elsevier Ltd, New York, pp 309–330

    Google Scholar 

  • van der Oost J, Jore MM, Weatra ER, Lundgren M, Brouns SJ (2009) Trends Biochem Sci 34:401–407

    PubMed  Google Scholar 

  • van Kovács AT, Hartskamp M, Kuipers OP, van Kranenburg R (2010) Appl Environ Microbiol 76:4085–4088

    PubMed  Google Scholar 

  • van Lynd LR, Zyl WH, McBride JE, Laser M (2005) Curr Opin Biotechnol 16:577–583

    PubMed  CAS  Google Scholar 

  • Vee Aune TE, Aachmann FL (2010) Appl Microbiol Biotechnol 85:1301–1313

    PubMed  CAS  Google Scholar 

  • Waege I, Schmid G, Thumann S, Thomm M, Hausner W (2010) Appl Environ Microbiol 76:3308–3313

    PubMed  CAS  Google Scholar 

  • Wartrin L, Martin-Jezequel V, Prieur D (1995) Appl Environ Microbiol 61:1138–1140

    Google Scholar 

  • Wei D, Zhang X (2010) J Virol 84:2365–2373

    PubMed  CAS  Google Scholar 

  • Worrell VE, Nagle DP Jr, McCarthy D, Eisenbraun A (1988) J Bacteriol 170:653–656

    PubMed  CAS  Google Scholar 

  • Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) J Bacteriol 185:482–488

    PubMed  CAS  Google Scholar 

  • Wu L, Welker NE (1989) J Gen Microbiol 135:1315–1324

    PubMed  CAS  Google Scholar 

  • Yao S, Mikkelsen MJ (2010) Appl Microbiol Biotechnol 88:199–208

    PubMed  CAS  Google Scholar 

  • Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Biochim Biophys Acta 284:28137–28145

    CAS  Google Scholar 

  • Yu JS, Vargas M, Mityas C, Noll KM (2001) Extremophiles 5:53–60

    PubMed  CAS  Google Scholar 

  • Yu MX, Slater MR, Ackermann HW (2006) Arch Environ 151:663–679

    CAS  Google Scholar 

  • Zaldivar J, Nielson J, Olsson L (2001) Appl Microbiol Biotechnol 56:17–34

    PubMed  CAS  Google Scholar 

  • Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, Teichmann D, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJM, Klenk HP, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B (2010) Extremophiles 14:119–142

    PubMed  CAS  Google Scholar 

  • Zhang C, Whitaker RJ (2012) Microbiology 158:1513–1522

    Google Scholar 

  • Zheng T, Huang Q, Zhang C, Ni J, She Q, Shen Y (2012) Appl Environ Microbiol 78:568–574

    PubMed  CAS  Google Scholar 

  • Zyprian E, Matzura H (1986) DNA 5:219–225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Sako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inoue, T., Sako, Y. (2013). Host-Vector Systems in Thermophiles. In: Satyanarayana, T., Littlechild, J., Kawarabayasi, Y. (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5899-5_13

Download citation

Publish with us

Policies and ethics