Skip to main content

Ultraviolet Radiation Effects on the Proteome of Skin Cells

  • Chapter
  • First Online:
Radiation Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 990))

Abstract

Proteomic studies to date have had limited use as an investigative tool in the skin’s response to UV radiation. These studies used cell lines and reconstructed skin and have shown evidence of cell injury with oxidative damage and stress induced heat shock proteins. Others changes included altered cytokeratin and cytoskeletal proteins with enhanced expression of TRIM29 as the keratinocytes regenerate. The associated DNA repair requires polη, Rad18/Rad16 and Rev1. In the whole animal these events would be associated with inflammation, remodelling of the epidermis and modulation of the immune response. Longer term changes include ageing and skin cancers such as melanoma, squamous cell carcinoma and basal cell carcinoma. In the future proteomics will be used to explore these important aspects of photobiology. Better characterisation of the proteins involved should lead to a greater understanding of the skin’s response to UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods GM, Malley RC, Muller HK (2005) The skin immune system and the challenge of tumour immunosurveillance. Eur J Dermatol 15:63–69

    PubMed  CAS  Google Scholar 

  2. Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79:547–568

    Article  PubMed  CAS  Google Scholar 

  3. Beissert S, Schwarz A, Schwarz T (2006) Regulatory T cells. J Invest Dermatol 126:15–24

    Article  PubMed  CAS  Google Scholar 

  4. Ouhtit A, Muller HK, Davis DW et al (2000) Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. Am J Pathol 156:201–207

    Article  PubMed  CAS  Google Scholar 

  5. Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113:1–14

    Article  PubMed  CAS  Google Scholar 

  6. Xu W, Roos A, Schlagwein N et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107:4930–4937

    Article  PubMed  CAS  Google Scholar 

  7. Dominiak M, Kries RV, Ritt E et al (1989) Ultrastructural morphometric analysis of epidermal melanin distribution following irradiation with UVA or UVB. J Invest Dermatol 92:421

    Google Scholar 

  8. Hawk JLM (1982) The effects of sunlight on skin. Practitioner 226:1258

    PubMed  CAS  Google Scholar 

  9. Marks R, Rennie G, Selwood TS (1988) Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 1:795–797

    Article  PubMed  CAS  Google Scholar 

  10. Payling Wright G (1958) An introduction to pathology. Longmans, London

    Google Scholar 

  11. Corona R, Dogliotti E, D’Errico M et al (2001) Risk factors for basal cell carcinoma in a Mediterranean population: role of recreational sun exposure early in life. Arch Dermatol 137:1162–1168

    PubMed  CAS  Google Scholar 

  12. Tilli CM, Van Steensel MA, Krekels GA et al (2005) Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 152:1108–1124

    Article  PubMed  CAS  Google Scholar 

  13. Green A, Whiteman D, Frost C et al (1999) Sun exposure, skin cancers and related skin conditions. J Epidemiol 9:S7–S13

    Article  PubMed  CAS  Google Scholar 

  14. Whiteman DC, Watt P, Purdie DM et al (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 95:806–812

    Article  PubMed  Google Scholar 

  15. Whiteman DC, Pavan WJ, Bastian BC (2011) The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res 24(5):879–897

    Article  PubMed  CAS  Google Scholar 

  16. Noonan FP, Recio JA, Takayama H et al (2001) Neonatal sunburn and melanoma in mice. Nature 413:271–272

    Article  PubMed  CAS  Google Scholar 

  17. Noonan FP, Dudek J, Merlino G et al (2003) Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. Pigment Cell Res 16:16–25

    Article  PubMed  CAS  Google Scholar 

  18. Hacker E, Irwin N, Muller HK et al (2005) Neonatal ultraviolet radiation exposure is critical for malignant melanoma induction in pigmented Tpras transgenic mice. J Invest Dermatol 125:1074–1077

    Article  PubMed  CAS  Google Scholar 

  19. Hacker E, Muller HK, Irwin N et al (2006) Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. Cancer Res 66:2946–2952

    Article  PubMed  CAS  Google Scholar 

  20. Dewar AL, Doherty KV, Woods GM et al (2001) Acquisition of immune function during the development of the Langerhans cell network in neonatal mice. Immunology 103:61–69

    Article  PubMed  CAS  Google Scholar 

  21. Muller HK, Malley RC, McGee HM et al (2008) Effect of UV radiation on the neonatal skin immune system- implications for melanoma. Photochem Photobiol 84:47–54

    Article  PubMed  CAS  Google Scholar 

  22. Halliday GM, Muller HK (1987) Sensitization through carcinogen induced Langerhans cell deficient skin activates long lived suppressor cells for both cellular and humoral immunity. Cell Immunol 109: 206–221

    Article  PubMed  Google Scholar 

  23. Maeda A, Beissert S, Schwarz T et al (2008) Phenotypic and functional characterization of ultraviolet radiation-induced regulatory T cells. J Immunol 180:3065–3071

    PubMed  CAS  Google Scholar 

  24. Walterscheid JP, Nghiem DX, Kazimi N et al (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci USA 103:17420–17425

    Article  PubMed  CAS  Google Scholar 

  25. Ansel JC, Kaynard AH, Armstrong CA et al (1996) Skin-nervous system interactions. J Invest Dermatol 106:198–204

    Article  PubMed  CAS  Google Scholar 

  26. Foreman JC (1987) Substance P and calcitonin gene-related peptide: effects on mast cells and in human skin. Int Arch Allergy Appl Immunol 82:366–371

    Article  PubMed  CAS  Google Scholar 

  27. van der Heijden MW, van der Kleij HPM, Rocken M et al (2005) Mast cells. In: Bos J (ed) Skin immune system, 3rd edn. CRC Press, Boca Raton, pp 237–261

    Google Scholar 

  28. Grimbaldeston MA, Nakae S, Kalesnikoff J et al (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    Article  PubMed  CAS  Google Scholar 

  29. Chacon-Salinas R, Limon-Flores AY, Chavez-Blanco AD et al (2011) Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 186:25–31

    Article  PubMed  CAS  Google Scholar 

  30. Loser K, Mehling A, Loeser S et al (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379

    Article  PubMed  CAS  Google Scholar 

  31. Byrne SN, Halliday GM (2005) B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J Invest Dermatol 124:570–578

    Article  PubMed  CAS  Google Scholar 

  32. Byrne SN, Ahmed J, Halliday GM (2005) Ultraviolet B but not A radiation activates suppressor B cells in draining lymph nodes. Photochem Photobiol 81:1366–1370

    Article  PubMed  CAS  Google Scholar 

  33. Rana S, Byrne SN, MacDonald LJ et al (2008) Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol 172:993–1004

    Article  PubMed  Google Scholar 

  34. Kripke ML, Cox PA, Bucana C et al (1996) Role of DNA damage in local suppression of contact hypersensitivity in mice by UV radiation. Exp Dermatol 5:173–180

    Article  PubMed  CAS  Google Scholar 

  35. Nishigori C, Yarosh DB, Ullrich SE et al (1996) Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc Natl Acad Sci USA 93:10354–10359 35a. Fisher MS, Kripke ML (1977) Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci U S A 74:1688–1692

    Article  PubMed  CAS  Google Scholar 

  36. Fisher MS, Kripke ML. (1977) Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci U S A 74:1688–1692

    Article  PubMed  CAS  Google Scholar 

  37. Muller HK, Halliday GM, Woods GM (2004) The skin immune system and tumor immunosurveillance. In: Bos JD (ed) Skin immune system, 3rd edn. CRC Press, Boca Raton, pp 475–496

    Google Scholar 

  38. Huang CM, Xu H, Wang CC et al (2005) Proteomic characterization of skin and epidermis in response to environmental agents. Expert Rev Proteomics 2:809–820

    Article  PubMed  CAS  Google Scholar 

  39. Scott DK, Lord R, Muller HK et al (2007) Proteomics identifies enhanced expression of stefin A in neonatal murine skin compared with adults: functional implications. Br J Dermatol 156:1156–1162

    Article  PubMed  CAS  Google Scholar 

  40. Ouhtit A, Muller HK, Gorny A et al (2000) UVB-induced experimental carcinogenesis: dysregulation of apoptosis and p53 signalling pathway. Redox Rep 5:128–129

    Article  PubMed  CAS  Google Scholar 

  41. Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1: 705–720

    Article  PubMed  CAS  Google Scholar 

  42. Svobodova A, Walterova D, Vostalova J (2006) Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:25–38

    Article  PubMed  CAS  Google Scholar 

  43. Bertrand-Vallery V, Boilan E, Ninane N et al (2010) Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16(INK-4A). Biogerontology 11: 167–181

    Article  PubMed  CAS  Google Scholar 

  44. Dickson MA, Hahn WC, Ino Y et al (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447

    Article  PubMed  CAS  Google Scholar 

  45. Bertrand-Vallery V, Belot N, Dieu M et al (2010) Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor. PLoS One 5:e10462

    Article  PubMed  Google Scholar 

  46. Del Bino S, Vioux C, Rossio-Pasquier P et al (2004) Ultraviolet B induces hyperproliferation and modification of epidermal differentiation in normal human skin grafted on to nude mice. Br J Dermatol 150:658–667

    Article  PubMed  Google Scholar 

  47. Sano T, Kume T, Fujimura T et al (2009) Long-term alteration in the expression of keratins 6 and 16 in the epidermis of mice after chronic UVB exposure. Arch Dermatol Res 301:227–237

    Article  PubMed  CAS  Google Scholar 

  48. Li D, Turi TG, Schuck A et al (2001) Rays and arrays: the transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB J 15:2533–2535

    PubMed  CAS  Google Scholar 

  49. Toivola DM, Zhou Q, English LS et al (2002) Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol Biol Cell 13:1857–1870

    Article  PubMed  CAS  Google Scholar 

  50. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  51. Jinlian L, Yingbin Z, Chunbo W (2007) p38MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci 14:303–312

    Article  PubMed  Google Scholar 

  52. Sheehan JM, Young AR (2002) The sunburn cell revisited: an update on mechanistic aspects. Photochem Photobiol Sci 1:365–377

    Article  PubMed  CAS  Google Scholar 

  53. Hensbergen P, Alewijnse A, Kempenaar J et al (2005) Proteomic profiling identifies an UV-induced activation of cofilin-1 and destrin in human epidermis. J Invest Dermatol 124:818–824

    Article  PubMed  CAS  Google Scholar 

  54. Lamore SD, Qiao S, Horn D et al (2010) Proteomic identification of cathepsin B and nucleophosmin as novel UVA-targets in human skin fibroblasts. Photochem Photobiol 86:1307–1317

    Article  PubMed  CAS  Google Scholar 

  55. Yuasa MS, Masutani C, Hirano A et al (2006) A human DNA polymerase eta complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest. Genes Cells 11:731–744

    Article  PubMed  CAS  Google Scholar 

  56. Shi Y, Elmets CA, Smith JW et al (2007) Quantitative proteomes and in vivo secretomes of progressive and regressive UV-induced fibrosarcoma tumor cells: mimicking tumor microenvironment using a dermis-based cell-trapped system linked to tissue chamber. Proteomics 7:4589–4600

    Article  PubMed  CAS  Google Scholar 

  57. Cianfarani F, Bernardini S, De Luca N et al (2011) Impaired keratinocyte proliferative and clonogenic potential in transgenic mice overexpressing 14-3-3sigma in the epidermis. J Invest Dermatol 131:1821–1829

    Article  PubMed  CAS  Google Scholar 

  58. Roy P, Jacobson K (2004) Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 57:84–95

    Article  PubMed  CAS  Google Scholar 

  59. Hostetler LW, Romerdahl CA, Kripke ML (1989) Specificity of antigens on UV radiation-induced antigenic tumor cell variants measured in vitro and in vivo. Cancer Res 49:1207–1213

    PubMed  CAS  Google Scholar 

  60. Halliday GM, Le S (2001) Transforming growth factor-beta produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int Immunol 13:1147–1154

    Article  PubMed  CAS  Google Scholar 

  61. Lucas AD, Halliday GM (1999) Progressor but not regressor skin tumours inhibit Langerhans’ cell migration from epidermis to local lymph nodes. Immunology 97:130–137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Konrad Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muller, H.K., Woods, G.M. (2013). Ultraviolet Radiation Effects on the Proteome of Skin Cells. In: Leszczynski, D. (eds) Radiation Proteomics. Advances in Experimental Medicine and Biology, vol 990. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5896-4_8

Download citation

Publish with us

Policies and ethics