Skip to main content

Serum and Plasma Proteomics and Its Possible Use as Detector and Predictor of Radiation Diseases

  • Chapter
  • First Online:
Radiation Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 990))

Abstract

All tissues can be damaged by ionizing radiation. Early biomarkers of radiation injury are critical for triage, treatment and follow-up of large numbers of people exposed to ionizing radiation after terrorist attacks or radiological accident, and for prediction of normal tissue toxicity before, during and after a treatment by radiotherapy. The comparative proteomic approach is a promising and powerful tool for the discovery of new radiation biomarkers. In association with multivariate statistics, proteomics enables measurement of the level of hundreds or thousands of proteins at the same time and identifies set of proteins that can discriminate between different groups of individuals. Human serum and plasma are the preferred samples for the study of normal and disease-associated proteins. Extreme complexity, extensive dynamic range, genetic and physiological variations, protein modifications and incompleteness of sampling by two-dimensional electrophoresis and mass spectrometry represent key challenges to reproducible, high-resolution, and high-throughput analyses of serum and plasma proteomes. The future of radiation research will possibly lie in molecular networks that link genome, transcriptome, proteome and metabolome variations to radiation pathophysiology and serve as sensors of radiation disease. This chapter reviews recent advances in proteome analysis of serum and plasma as well as its applications to radiation biology and radiation biomarker discovery for both radiation exposure and radiation tissue toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D-SDS-PAGE:

One-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis

2D-DIGE:

Two-dimensional in-gel differential gel electrophoresis

2D-GE:

Two-dimensional gel electrophoresis

Ab:

Antibody

AEC:

Anion exchange chromatography

ApoA-1:

Apolipoprotein A-1

APP:

Acute phase protein

BALF:

Bronchoalveolar fluid

Da:

Dalton

ELISA:

Enzyme-linked immunosorbent assay

FFE:

Free flow electrophoresis

Flt3-L:

Flt3-ligand

G-CSF:

Granulocyte colony-stimulating factor

Gy:

Gray

HC:

Hierarchical clustering

HMW:

High molecular weight

HPLC:

High-performance liquid chromatography

HUPO:

Human proteome organization

IEF:

Isoelectric focusing

IFN-γ:

Interferon gamma

IL:

Interleukin

IL-1ra:

Interleukin 1 receptor antagonist

IMRT:

Intensity-modulated radiation therapy

IP10:

Interferon gamma-induced protein 10

IR:

Irradiation

iTRAQ:

Isobaric tags for relative and absolute quantitation

KEGG:

Kyoto encyclopedia of genes and genomes

KL-6:

Krebs von den Lungen-6

LC:

Liquid chromatography

LMW:

Low molecular weight

LTGF-β:

Latent transforming growth factor beta

MCP-1:

monocyte chemotactic protein-1

METREPOL:

Medical treatment protocols for radiation accident victims

MHC I H2-Q10:

Major histocompatibility

α chain:

complex I histocompatibility 2 Q region locus 10 alpha chain

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NSCLC:

Non-small cell lung cancer

PCA:

Principal component analysis

PF2D:

Chromatofocusing-reverse phase-liquid chromatography

pI :

Isoelectric point

PLS-DA:

Partial least square discriminant analysis

PPP:

Plasma proteome project

Pzp:

Pregnancy zone protein

Q-TOF:

Quadrupole time-of-flight

RP-LC:

Reverse phase liquid chromatography

RT:

Radiation therapy

SCX:

Strong cation exchange

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size-exclusion chromatography

SELDI-TOF:

Surface-enhanced laser desorption/ionization time-of-flight

SRM:

Selected reaction monitoring

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

TOF:

Time-of-flight

α2M:

α-2-macroglobulin

References

  1. Stone HB, McBride WH, Coleman CN (2002) Modifying normal tissue damage postirradiation. Report of a workshop sponsored by the Radiation Research Program, National Cancer Institute, Bethesda, 6–8 Sept 2000. Radiat Res 157:204–223

    Google Scholar 

  2. Stone HB, Coleman CN, Anscher MS et al (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4:529–536

    PubMed  CAS  Google Scholar 

  3. Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    PubMed  CAS  Google Scholar 

  4. Hong JH, Chiang CS, Tsao CY et al (1999) Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int J Radiat Biol 75:1421–1427

    PubMed  CAS  Google Scholar 

  5. Haston CK, Zhou X, Gumbiner-Russo L et al (2002) Universal and radiation-specific loci influence murine susceptibility to radiation-induced pulmonary fibrosis. Cancer Res 62:3782–3788

    PubMed  CAS  Google Scholar 

  6. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231

    PubMed  CAS  Google Scholar 

  7. Gorin NC, Fliedner TM, Gourmelon P et al (2006) Consensus conference on European preparedness for haematological and other medical management of mass radiation accidents. Ann Hematol 85:671–679

    PubMed  Google Scholar 

  8. Friesecke I, Beyrer K, Fliedner TM (2001) How to cope with radiation accidents: the medical management. Br J Radiol 74:121–122

    PubMed  CAS  Google Scholar 

  9. Fliedner TM, Friesecke I, Beyrer K (2001) Medical management of radiation accident: manual on the acute radiation syndrome. METREPOL (European Commission Concerted Action). The British Institute of Radiology, Oxford

    Google Scholar 

  10. Shrieve DC, Loeffler JS (2011) Human radiation injury. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Steel GG (2001) The case against apoptosis. Acta Oncol 40:968–975

    PubMed  CAS  Google Scholar 

  12. Valerie K, Yacoub A, Hagan MP et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6:789–801

    PubMed  CAS  Google Scholar 

  13. Fu XL, Huang H, Bentel G et al (2001) Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 50:899–908

    PubMed  CAS  Google Scholar 

  14. Chen Y, Rubin P, Williams J et al (2001) Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 49:641–648

    PubMed  Google Scholar 

  15. Chen Y, Williams J, Ding I et al (2002) Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 12:26–33

    PubMed  Google Scholar 

  16. Fajardo LF, Berthrong M (1988) Vascular lesions following radiation. Pathol Annu 23:297–330

    PubMed  Google Scholar 

  17. Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    PubMed  CAS  Google Scholar 

  18. Hauer-Jensen M, Kong FM, Fink LM et al (1999) Circulating thrombomodulin during radiation therapy of lung cancer. Radiat Oncol Investig 7:238–242

    PubMed  CAS  Google Scholar 

  19. Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150:S109–S120

    PubMed  CAS  Google Scholar 

  20. Brush J, Lipnick SL, Phillips T et al (2007) Molecular mechanisms of late normal tissue injury. Semin Radiat Oncol 17:121–130

    PubMed  Google Scholar 

  21. Fajardo LF (2005) The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol 44:13–22

    PubMed  Google Scholar 

  22. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    PubMed  CAS  Google Scholar 

  23. Corthals GL, Wasinger VC, Hochstrasser DF et al (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115

    PubMed  CAS  Google Scholar 

  24. Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353

    PubMed  CAS  Google Scholar 

  25. Sharma M, Halligan BD, Wakim BT et al (2008) The urine proteome as a biomarker of radiation injury. Proteomics Clin Appl 2:1065–1086

    PubMed  CAS  Google Scholar 

  26. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    PubMed  CAS  Google Scholar 

  27. Thadikkaran L, Siegenthaler MA, Crettaz D et al (2005) Recent advances in blood-related proteomics. Proteomics 5:3019–3034

    PubMed  CAS  Google Scholar 

  28. Lundblad RL (2005) Considerations for the use of blood plasma and serum for proteomic analysis. Internet J Genomics Proteomics 1:1–12

    Google Scholar 

  29. Misek DE, Kuick R, Wang H et al (2005) A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system. Proteomics 5:3343–3352

    PubMed  CAS  Google Scholar 

  30. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245

    PubMed  CAS  Google Scholar 

  31. Tammen H, Schulte I, Hess R et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414–3422

    PubMed  CAS  Google Scholar 

  32. Bjorhall K, Miliotis T, Davidsson P (2005) Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics 5:307–317

    PubMed  Google Scholar 

  33. Fountoulakis M, Juranville JF, Jiang L et al (2004) Depletion of the high-abundance plasma proteins. Amino Acids 27:249–259

    PubMed  CAS  Google Scholar 

  34. Fujii K, Nakano T, Kawamura T et al (2004) Multidimensional protein profiling technology and its application to human plasma proteome. J Proteome Res 3:712–718

    PubMed  CAS  Google Scholar 

  35. Wang YY, Cheng P, Chan DW (2003) A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 3:243–248

    PubMed  CAS  Google Scholar 

  36. Anderson NL, Polanski M, Pieper R et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326

    PubMed  CAS  Google Scholar 

  37. Rose K, Bougueleret L, Baussant T et al (2004) Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins. Proteomics 4:2125–2150

    PubMed  CAS  Google Scholar 

  38. Farrah T, Deutsch EW, Omenn GS et al (2011) A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics 10(M110):006353

    PubMed  Google Scholar 

  39. Deutsch EW, Eng JK, Zhang H et al (2005) Human plasma PeptideAtlas. Proteomics 5:3497–3500

    PubMed  CAS  Google Scholar 

  40. Tirumalai RS, Chan KC, Prieto DA et al (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103

    PubMed  CAS  Google Scholar 

  41. Hu L, Ye M, Zou H (2009) Recent advances in mass spectrometry-based peptidome analysis. Expert Rev Proteomics 6:433–447

    PubMed  CAS  Google Scholar 

  42. Geho DH, Liotta LA, Petricoin EF et al (2006) The amplified peptidome: the new treasure chest of candidate biomarkers. Curr Opin Chem Biol 10:50–55

    PubMed  CAS  Google Scholar 

  43. Mehta AI, Ross S, Lowenthal MS et al (2003) Biomarker amplification by serum carrier protein binding. Dis Markers 19:1–10

    PubMed  CAS  Google Scholar 

  44. Tian Y, Zhang H (2010) Glycoproteomics and clinical applications. Proteomics Clin Appl 4:124–132

    PubMed  CAS  Google Scholar 

  45. Arnold JN, Saldova R, Galligan MC et al (2011) Novel glycan biomarkers for the detection of lung cancer. J Proteome Res 10:1755–1764

    PubMed  CAS  Google Scholar 

  46. Arnold JN, Saldova R, Hamid UM et al (2008) Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8:3284–3293

    PubMed  CAS  Google Scholar 

  47. Bones J, Byrne JC, O’Donoghue N et al (2011) Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J Proteome Res 10:1246–1265

    PubMed  CAS  Google Scholar 

  48. Kyselova Z, Mechref Y, Al Bataineh MM et al (2007) Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 6:1822–1832

    PubMed  CAS  Google Scholar 

  49. Morelle W, Michalski JC (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2:1585–1602

    PubMed  CAS  Google Scholar 

  50. Pabst M, Altmann F (2011) Glycan analysis by modern instrumental methods. Proteomics 11:631–643

    PubMed  CAS  Google Scholar 

  51. Petricoin EF, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    PubMed  CAS  Google Scholar 

  52. Petricoin EF, Zoon KC, Kohn EC et al (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695

    PubMed  CAS  Google Scholar 

  53. Pieper R, Gatlin CL, Makusky AJ et al (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3:1345–1364

    PubMed  CAS  Google Scholar 

  54. Cho SY, Lee EY, Lee JS et al (2005) Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Proteomics 5:3386–3396

    PubMed  CAS  Google Scholar 

  55. Martosella J, Zolotarjova N, Liu H et al (2005) Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. J Proteome Res 4:1522–1537

    PubMed  CAS  Google Scholar 

  56. Qin S, Ferdinand AS, Richie JP et al (2005) Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins. Proteomics 5:3183–3192

    PubMed  CAS  Google Scholar 

  57. Tang HY, Ali-Khan N, Echan LA et al (2005) A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 5:3329–3342

    PubMed  CAS  Google Scholar 

  58. Wasinger VC, Locke VL, Raftery MJ et al (2005) Two-dimensional liquid chromatography/tandem mass spectrometry analysis of Gradiflow fractionated native human plasma. Proteomics 5:3397–3401

    PubMed  CAS  Google Scholar 

  59. Horn A, Kreusch S, Bublitz R et al (2006) Multidimensional proteomics of human serum using parallel chromatography of native constituents and microplate technology. Proteomics 6:559–570

    PubMed  CAS  Google Scholar 

  60. Sheng S, Chen D, Van Eyk JE (2006) Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome: optimization and protein database. Mol Cell Proteomics 5:26–34

    PubMed  CAS  Google Scholar 

  61. Nolan JP, Mandy FF (2001) Suspension array technology: new tools for gene and protein analysis. Cell Mol Biol (Noisy-le-Grand) 47:1241–1256

    CAS  Google Scholar 

  62. Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry A 69:318–325

    PubMed  Google Scholar 

  63. Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4:377–383

    PubMed  CAS  Google Scholar 

  64. Haab BB (2003) Methods and applications of antibody microarrays in cancer research. Proteomics 3:2116–2122

    PubMed  CAS  Google Scholar 

  65. Chen S, Haab BB (2009) Analysis of glycans on serum proteins using antibody microarrays. Methods Mol Biol 520:39–58

    PubMed  CAS  Google Scholar 

  66. Ray S, Reddy PJ, Jain R et al (2011) Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 11:2139–2161

    PubMed  CAS  Google Scholar 

  67. Gao WM, Kuick R, Orchekowski RP et al (2005) Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5:110

    PubMed  Google Scholar 

  68. Miller JC, Zhou H, Kwekel J et al (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63

    PubMed  CAS  Google Scholar 

  69. Orchekowski R, Hamelinck D, Li L et al (2005) Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 65:11193–11202

    PubMed  CAS  Google Scholar 

  70. Sun Z, Fu X, Zhang L et al (2004) A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection. Anticancer Res 24:1159–1165

    PubMed  CAS  Google Scholar 

  71. Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60

    PubMed  CAS  Google Scholar 

  72. LaBaer J (2005) So, you want to look for biomarkers (introduction to the special biomarkers issue). J Proteome Res 4:1053–1059

    PubMed  CAS  Google Scholar 

  73. Landers KA, Burger MJ, Tebay MA et al (2005) Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Int J Cancer 114:950–956

    PubMed  CAS  Google Scholar 

  74. Barrett A, Jacobs A, Kohn J et al (1982) Changes in serum amylase and its isoenzymes after whole body irradiation. Br Med J (Clin Res Ed) 285:170–171

    CAS  Google Scholar 

  75. Becciolini A, Giannardi G, Cionini L et al (1984) Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands. Acta Radiol Oncol 23:9–14

    PubMed  CAS  Google Scholar 

  76. Bertho JM, Demarquay C, Frick J et al (2001) Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 77:703–712

    PubMed  CAS  Google Scholar 

  77. Lutgens LC, Deutz NE, Gueulette J et al (2003) Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys 57:1067–1074

    PubMed  CAS  Google Scholar 

  78. Guipaud O, Benderitter M (2009) Protein biomarkers for radiation exposure: towards a proteomic approach as a new investigation tool. Ann Ist Super Sanita 45:278–286

    PubMed  CAS  Google Scholar 

  79. Hong JH, Chiang CS, Campbell IL et al (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33:619–626

    PubMed  CAS  Google Scholar 

  80. Magic Z, Matic-Ivanovic S, Savic J et al (1995) Ionizing radiation-induced expression of the genes associated with the acute response to injury in the rat. Radiat Res 143:187–193

    PubMed  CAS  Google Scholar 

  81. Trutic N, Magic Z, Urosevic N et al (2002) Acute-phase protein gene expression in rat liver following whole body X-irradiation or partial hepatectomy. Comp Biochem Physiol C Toxicol Pharmacol 133:461–470

    PubMed  Google Scholar 

  82. Chen C, Lorimore SA, Evans CA et al (2005) A proteomic analysis of murine bone marrow and its response to ionizing radiation. Proteomics 5:4254–4263

    PubMed  CAS  Google Scholar 

  83. Cengiz M, Akbulut S, Atahan IL et al (2001) Acute phase response during radiotherapy. Int J Radiat Oncol Biol Phys 49:1093–1096

    PubMed  CAS  Google Scholar 

  84. Guipaud O, Holler V, Buard V et al (2007) Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7:3992–4002

    PubMed  CAS  Google Scholar 

  85. Kong FM, Ten Haken RK, Schipper MJ et al (2005) High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 63:324–333

    PubMed  Google Scholar 

  86. Cai XW, Shedden K, Ao X et al (2010) Plasma proteomic analysis may identify new markers for radiation-induced lung toxicity in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:867–876

    PubMed  CAS  Google Scholar 

  87. Cai XW, Shedden KA, Yuan SH et al (2011) Baseline plasma proteomic analysis to identify biomarkers that predict radiation-induced lung toxicity in patients receiving radiation for non-small cell lung cancer. J Thorac Oncol 6:1073–1078

    PubMed  Google Scholar 

  88. Chung SI, Seong J, Park YN et al (2010) Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Radiat Res (Tokyo) 51:643–650

    CAS  Google Scholar 

  89. Menard C, Johann D, Lowenthal M et al (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res 66:1844–1850

    PubMed  CAS  Google Scholar 

  90. Oh JH, Craft JM, Townsend R et al (2011) A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J Proteome Res 10:1406–1415

    PubMed  CAS  Google Scholar 

  91. Pevsner PH (2009) Biomarkers of ionizing radiation. US Patent 20,090,289,182

    Google Scholar 

  92. Pietrowska M, Polanska J, Walaszczyk A et al (2011) Association between plasma proteome profiles analysed by mass spectrometry, a lymphocyte-based DNA-break repair assay and radiotherapy-induced acute mucosal reaction in head and neck cancer patients. Int J Radiat Biol 87:711–719

    PubMed  CAS  Google Scholar 

  93. Rithidech KN, Honikel L, Rieger R et al (2009) Protein-expression profiles in mouse blood-plasma following acute whole-body exposure to (137)Cs gamma rays. Int J Radiat Biol 85:432–447

    PubMed  CAS  Google Scholar 

  94. Spencer SJ, Bonnin DA, Deasy JO et al (2009) Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data. J Biomed Biotechnol 2009:Article ID 892863

    Google Scholar 

  95. Widlak P, Pietrowska M, Wojtkiewicz K et al (2011) Radiation-related changes in serum proteome profiles detected by mass spectrometry in blood of patients treated with radiotherapy due to larynx cancer. J Radiat Res (Tokyo) 52:575–581

    CAS  Google Scholar 

  96. Ao X, Zhao L, Davis MA et al (2009) Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J Hematol Oncol 2:6

    PubMed  Google Scholar 

  97. Christensen E, Pintilie M, Evans KR et al (2009) Longitudinal cytokine expression during IMRT for prostate cancer and acute treatment toxicity. Clin Cancer Res 15:5576–5583

    PubMed  CAS  Google Scholar 

  98. Hart JP, Broadwater G, Rabbani Z et al (2005) Cytokine profiling for prediction of symptomatic radiation-induced lung injury. Int J Radiat Oncol Biol Phys 63:1448–1454

    PubMed  CAS  Google Scholar 

  99. Kong FM, Ao X, Wang L et al (2008) The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control 15:140–150

    PubMed  Google Scholar 

  100. Partridge MA, Chai Y, Zhou H et al (2010) High-throughput antibody-based assays to identify and quantify radiation-responsive protein biomarkers. Int J Radiat Biol 86:321–328

    PubMed  CAS  Google Scholar 

  101. Rube CE, Palm J, Erren M et al (2008) Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One 3:e2898

    PubMed  Google Scholar 

  102. Marchetti F, Coleman MA, Jones IM et al (2006) Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 82:605–639

    PubMed  CAS  Google Scholar 

  103. Zhao L, Wang L, Ji W et al (2009) Elevation of plasma TGF-beta1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys 74:1385–1390

    PubMed  CAS  Google Scholar 

  104. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    PubMed  CAS  Google Scholar 

  105. Goltry KL, Epperly MW, Greenberger JS (1998) Induction of serum amyloid A inflammatory response genes in irradiated bone marrow cells. Radiat Res 149:570–578

    PubMed  CAS  Google Scholar 

  106. Muller K, Meineke V (2007) Radiation-induced alterations in cytokine production by skin cells. Exp Hematol 35:96–104

    PubMed  Google Scholar 

  107. Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288

    PubMed  CAS  Google Scholar 

  108. Lee WM, Galbraith RM (1992) The extracellular actin-scavenger system and actin toxicity. N Engl J Med 326:1335–1341

    PubMed  CAS  Google Scholar 

  109. Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    PubMed  CAS  Google Scholar 

  110. Andreyev HJ, Wotherspoon A, Denham JW et al (2010) Defining pelvic-radiation disease for the survivorship era. Lancet Oncol 11:310–312

    PubMed  Google Scholar 

  111. Andreyev HJ, Wotherspoon A, Denham JW et al (2011) “Pelvic radiation disease”: new understanding and new solutions for a new disease in the era of cancer survivorship. Scand J Gastroenterol 46:389–397

    PubMed  Google Scholar 

  112. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    PubMed  CAS  Google Scholar 

  113. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223

    PubMed  CAS  Google Scholar 

  114. Chaze T, Slomianny MC, Milliat F et al (2013). Alteration of the serum N-glycome of mice locally exposed to high doses of ionizing radiation. Mol Cell Proteomics. 2012 Nov 12. [Epub ahead of print].

    Google Scholar 

Download references

Acknowledgements

We are grateful to Electricité de France (Groupe Gestion Projet – Radioprotection) and the European Union (Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 241536) which financially supports our work on biomarker discovery for molecular prognosis of tissue radiation toxicity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Guipaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guipaud, O. (2013). Serum and Plasma Proteomics and Its Possible Use as Detector and Predictor of Radiation Diseases. In: Leszczynski, D. (eds) Radiation Proteomics. Advances in Experimental Medicine and Biology, vol 990. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5896-4_4

Download citation

Publish with us

Policies and ethics