Skip to main content

Models of Ion Transport and Regulation in Plant Cells and Unicellular Organisms

  • Chapter
  • First Online:
Book cover Developing Synthetic Transport Systems

Abstract

Models of ion transport in microorganisms, plants and their compartments have been considered. A model of the regulation of ion transport in changing extracellular concentrations has also been constructed. In contrast to animal cells, microorganisms can survive when a large concentration gradient exists between the inside and the outside of the cell and when significant ion concentration changes occur in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarran-Zavala E, Angulo-Brown F (2007) A simple thermodynamic analysis of photosynthesis. Entropy 9:152–168

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Bakker EP, Rottenberg H, Caplan SR (1976) An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium. Biochim Biophys Acta 440(3):557–572

    Article  PubMed  CAS  Google Scholar 

  • Bara M, Guiet-Bara A, Durlach J (1993) Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes Res 6(2):167–177

    PubMed  CAS  Google Scholar 

  • Bhattacharyya P, Volcani BE (1980) Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proc Natl Acad Sci 77(11):6386–6390

    Article  PubMed  CAS  Google Scholar 

  • Boalch GT (1987) Changes in the phytoplankton of the western English Channel in recent years. Br Phycol J 22:225–235

    Article  Google Scholar 

  • Bogomolni RA (1977) Light energy conservation processes in Halobacterium halobium cells. Fed Proc 36(6):1833–1839

    PubMed  CAS  Google Scholar 

  • Borrelly G, Boyer JC, Touraine B, Szponarski W, Rambier M, Gibrat R (2001) The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity. Proc Natl Acad Sci 98(17):9660–9665

    Article  PubMed  CAS  Google Scholar 

  • Boyd CM, Gradmann D (1999a) Electrophysiology of the marine diatom Coscinodiscus wailesii I. Endogenous changes of membrane voltage and resistance. J Exp Bot 50:445–452

    CAS  Google Scholar 

  • Boyd CM, Gradmann D (1999b) Electrophysiology of the marine diatom Coscinodiscus wailesii II. Potassium currents. J Exp Bot 50:453–459

    Google Scholar 

  • Boyd CM, Gradmann D (1999c) Electrophysiology of the marine diatom Coscinodiscus wailesii III. Uptake of nitrate and ammonium. J Exp Bot 50:461–467

    CAS  Google Scholar 

  • Briskin DP (1990) The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function. Biochem Biophys Acta 1019(2):95–109

    Article  CAS  Google Scholar 

  • Brownlee C, Wood JW, Briton D (1987) Cytoplasmic free calcium in single cells of centric diatoms. Protoplasma 140(2–3):118–122

    Article  CAS  Google Scholar 

  • Cornelius F (1990) Variable stoichiometry in reconstituted shark Na, K-ATPase engaged in uncoupled efflux. Biochim Biophys Acta 1026:147–152

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1999) Encyclopedia of molecular biology. Wiley, New York

    Google Scholar 

  • De DN (2000) Plant cell vacuoles: an introduction. Csiro Publishing, Collingwood

    Google Scholar 

  • Detkova EN, Pusheva MA (2006) Energy metabolism in halophilic and alkaliphilic bacteria. Microbiology 75(1):5–17

    Article  PubMed  CAS  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6(5):206–211

    Article  PubMed  CAS  Google Scholar 

  • Eisenbach M (1982) Changes in membrane potential of Escherichia coli in response to temporal gradients of chemicals. Biochemistry 21(26):6818–6825

    Article  PubMed  CAS  Google Scholar 

  • Ferreira T, Mason AB, Slayman CW (2001) The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J Biol Chem 276:29613–29616

    Article  PubMed  CAS  Google Scholar 

  • Garrett RH, Grisham CM (2002) Biochemistry, 2nd edn. Brooks/Cole, Pacific Groove

    Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Google Scholar 

  • Goldshleger R, Shahak Y, Karlish SJD (1990) Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes. J Membr Biol 113:139–154

    Article  PubMed  CAS  Google Scholar 

  • Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electro coupling of ion transporters in plants. J Membr Biol 136(3):327–332

    PubMed  CAS  Google Scholar 

  • Gradmann D, Boyd CM (2000) Three types of membrane excitations in the marine diatom Coscinodiscus wailesii. J Membr Biol 175(2):149–160

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (2001) Physiology of procaryotic cells. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic, San Diego

    Google Scholar 

  • Hall DO, Rao KK (1981) Photosynthesis. Edward Arnold and Co, London

    Google Scholar 

  • Ingraham JL, Maaloe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Association, Sunderland

    Google Scholar 

  • Kinclova O, Potier S, Sychrova H (2002) Difference in substrate specificity divides the yeast alkali-metal-cation/HM antiporters into two subfamilies. Microbiology 148:1225–1232

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1978) Light energy conversion in Halobacterium halobium. Microbiol Rev 42(4):682–706

    PubMed  CAS  Google Scholar 

  • Martirosov SM, Trchounian AA (1986) 838: An electrochemical study of energy-dependent potassium accumulation in E. coli: Part XI. The Trk system in anaerobically and aerobically grown cells. Bioelectroch Bioener 15(3): 417–426

    Google Scholar 

  • Melkikh AV, Bessarab DS (2010) Model of active transport of ions through diatom cell biomembrane. Bull Math Biol 72(7):1912–1924

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Seleznev VD (2007) Nonequilibrium statistical model of active transport of ions and ATP production in mitochondria. J Biol Phys 33(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Seleznev VD (2009) Model of active transport of ions in archaea cells. Bull Math Biol 71(2):383–398

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Seleznev VD (2012) Mechanisms and models of the active transport of ions and the transformation of energy in intracellular compartments. Prog Biophys Mol Bio 109(1–2):33–57

    Article  CAS  Google Scholar 

  • Melkikh AV, Sutormina MI (2011) Algorithms for optimization of the transport system in living and artificial cells. Syst Synth Biol 5(1–2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Seleznev VD, Chesnokova OI (2010) Analytical model of ion transport and conversion of light energy in chloroplasts. J Theor Biol 264:702–710

    Article  PubMed  CAS  Google Scholar 

  • Michel H, Oesterhelt D (1976) Light-induced changes of the pH gradient and the membrane potential in H. halobium. FEBS Lett 65(2):175–178

    Article  PubMed  CAS  Google Scholar 

  • Nanninga N (1985) Molecular cytology of Escherichia coli. Academic, London

    Google Scholar 

  • Nass R, Cunningham KW (1997) Intracellular sequestration of Sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. J Biol Chem 272:26145–26152

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC (1987) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington

    Google Scholar 

  • Nicholls DG (1982) Bioenergetics: an introduction to the chemiosmotic theory. Academic, London

    Google Scholar 

  • Ono A, Tada K, Ichimi K (2006) Chemical composition of Coscinodiscus wailesii and the implication for nutrient ratios in a coastal water, Seto Inland Sea, Japan. Mar pollut bull 57(1–5):94–102

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    PubMed  CAS  Google Scholar 

  • Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiol 155:268–278

    Article  CAS  Google Scholar 

  • Orij R, Brul S, Smits GJ (2011) Intracellular pH is a tightly controlled signal in yeast. Biochim Biophis Acta 1810:933–944

    Article  CAS  Google Scholar 

  • Padan E, Zilberstein D, Rottenberg H (1976) The proton electrochemical gradient in Escherichia coli cells. Eur J Biochem 63(2):533–541

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophis Acta 1717:67–88

    Article  CAS  Google Scholar 

  • Riznichenko G, Lebedeva G, Demin O, Rubin A (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms. J Biol Phys 25:177–192

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Navarro A, Quintero FJ, Garciadeblás B (1994) Na-ATPases and Na+/H+ antiporters in fungi. Biochim Biophis Acta 1187(2):203–205

    Article  Google Scholar 

  • Rubin AB (1987) Biophysics. Visshaja shkola, Moscow (in Russian)

    Google Scholar 

  • Schafer G, Engelhard M, Muller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63(3):570–620

    PubMed  CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13(4):399–404

    Article  PubMed  CAS  Google Scholar 

  • Silva-Graca M, Neves L, Lucas C (2003) Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? FEMS Yeast Res 3(4):347–362

    Article  PubMed  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Smirnov AV, Suzina NE, Kulakovskaia TV, Kulaev IS (2002) Magnesium orthophosphate, a new form of reserve phosphate in the halophilic archaeon Halobacterium salinarium. Microbiologiia 71(6):786–793

    CAS  Google Scholar 

  • Sperelakis N (2001) Cell physiology sourcebook, 3rd edn. Academic, San Diego

    Google Scholar 

  • Stout RG, Griffing LR (2001) Plant cell physiology. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic, San Diego

    Google Scholar 

  • Sumbilla C, Lewis D, Hammerschmidt T, Inesi G (2002) The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. J Biol Chem 277(16):13900–13906

    Article  PubMed  CAS  Google Scholar 

  • Syrchova H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53(1):91–98

    Google Scholar 

  • Sze H, Li X, Palmgen MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    PubMed  CAS  Google Scholar 

  • Volkenstein MV (1983) General biophysics. Academic, New York

    Google Scholar 

  • Wagner CA, Finberg KE, Brenton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84(4):1263–1314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Melkikh .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melkikh, A., Sutormina, M. (2013). Models of Ion Transport and Regulation in Plant Cells and Unicellular Organisms. In: Developing Synthetic Transport Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5893-3_3

Download citation

Publish with us

Policies and ethics