Skip to main content

Process Modeling and Rendering of Biochemical Structures: Actin

  • Chapter
  • First Online:
Biomechanics of Cells and Tissues

Abstract

We propose stochastic process models as a means for studying and rendering unbounded biological structures, involving mechanisms that extend over geometric space. As an example, we discuss a case study of actin polymerization dynamics, which plays a key role in many cellular activities and enjoys a rich structure. We provide a comparative review of various approaches in the literature for modeling actin. We then illustrate on actin models how otherwise challenging structures can be modeled. In these models the complexity of the structures are incrementally increased with respect to the biological data. We present a geometric representation of these models that we use to generate movies reflecting their dynamics while preserving formal cleanliness as well as loyalty to the biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cytosim.org/cytosim/index.html

  2. 2.

    http://sites.google.com/site/ozankahramanogullari/software/graphical

References

  1. Alberts JB, Odell GM (2004) In silico reconstitution of listeria propulsion exhibits nano-saltation. PLOS Biol 2:2054–2066

    Google Scholar 

  2. Bompard G, Caron E (2004) Regulation of WASP/WAVE proteins: making a long story short. J Cell Biol 166(7):957–962

    Google Scholar 

  3. Cardelli L (2009) Artificial biochemistry. In: Algorithmic Bioprocesses. LNCS, Springer, Heidelberg

    Google Scholar 

  4. Cardelli L, Caron E, Gardner P, Kahramanoğulları O, Phillips A (2008) A process model of actin polymerisation. In: From biology to concurrency and back, sattelite workshop of ICALP’08, ENTCS vol 229, Elsevier, Reykjavik, Iceland, Amsterdam, The Netherlands, pp 127–144

    Google Scholar 

  5. Cardelli L, Caron E, Gardner P, Kahramanoğulları O, Phillips A (2009) A process model of Rho GTP-binding proteins. Theor Comput Sci 410/33-34:3166–3185

    Google Scholar 

  6. Cardelli L, Zavattaro G (2010) Turing universality of the biochemical ground form. Math Struct Comput Sci 20(1):45–73

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlier M-F (2010) Actin-based motility: cellular, molecular and physical aspects. Springer, New York

    Google Scholar 

  8. Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    Article  Google Scholar 

  9. Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. In: Caires L, Vasconcelos VT (eds) Concurrency theory, proceedings of the 18th international conference on CONCUR 2007, LNCS vol 4703. Springer, Heidelberg, pp 17–41

    Google Scholar 

  10. Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling networks. In: Shao Z (ed) Proceeding of 5th asian symposium on APLAS 2007, LNCS vol 4807. Springer, Heidelberg, pp 139–157

    Google Scholar 

  11. Danos V, Feret J, Fontana W, Krivine J (2008) Abstract interpretation of cellular signalling networks. In F. Logozzo, D. Peled, L. D. Zuck, (eds), Verification, model checking, and abstract interpretation, proceedings of the 9th international conference, VMCAI 2008, volume 4905 of LNCS, pp 83–97. Springer, 2008

    Google Scholar 

  12. Dominguez R, Holmes KC (2011) Actin structure and function. Ann Rev Biophys 40:169–186

    Article  Google Scholar 

  13. Edelstein-Keshet L, Ermentrout GB (1998) Models for the length distributions of actin filaments: I. simple polymerization and fragmentation. Bull Math Biol 60(3):449–475

    Article  MATH  Google Scholar 

  14. Edelstein-Keshet L, Ermentrout GB (2001) A model for actin-filament length distribution in a lamellipod. Math Biol 355:325–355

    MathSciNet  Google Scholar 

  15. Fass J, Pak C, Bamburg J, Mogilner A (2008) Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation. J Theor Biol 252(1):173–183

    Article  Google Scholar 

  16. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  17. Gupton SL, Gertler FB (2007) Filopodia: the fingers that do the walking. Science’s STKE Sig Transduct Knowl Environ 400(400):re5

    Google Scholar 

  18. Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  Google Scholar 

  19. Hu J, Matzavinos A, Othmer HG (2007) A theoretical approach to actin filament dynamics. J Stat Phys 128(1/2):111–138

    Article  MathSciNet  MATH  Google Scholar 

  20. Ideses Y, Brill-Karniely Y, Haviv L, Ben-Shaul A, Bernheim-Groswasser A (2008) Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro. PloS One 3(9):e3297

    Article  Google Scholar 

  21. Iwasa JH, Mullins RD (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17:395–406

    Google Scholar 

  22. Jaffe AB, Hall A (2005) Dynamic changes in the length distribution of actin filaments during polymerization can be modulated by barbed end capping proteins. Cell Motil Cytoskelet 61:1–8

    Article  Google Scholar 

  23. Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD (2006) Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124(2):423–435

    Article  Google Scholar 

  24. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454

    Article  Google Scholar 

  25. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118(3):363–373

    Google Scholar 

  26. Mogilner A (2006) On the edge: modeling protrusion. Curr Opin Cell Biol 18(1):32–39

    Google Scholar 

  27. Mogilner A, Oster G (2003) Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys J 84:1591–1605

    Article  Google Scholar 

  28. Mogilner A, Oster G (2008) Cell motility driven by actin polymerization. Biophys J 71:3030–3045

    Google Scholar 

  29. Mogilner A, Rubinstein B (2005) The physics of filopodial protrusion. Biophys J 89(2):782–795

    Google Scholar 

  30. Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Computational methods in systems biology, LNCS vol 4695. Springer, Heidelberg, LNBI vol 4695. Springer, Berlin, pp 184–199

    Google Scholar 

  31. Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103(6):2747–2754

    Article  Google Scholar 

  32. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Ann Rev Biophys Biomol Struct 36:451–477

    Article  Google Scholar 

  33. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Ann Rev Biophys Biomol Struct 29:545–576

    Article  Google Scholar 

  34. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  Google Scholar 

  35. Priami C (2009) Algorithmic systems biology. Commun ACM 52(5):80–88

    Article  Google Scholar 

  36. Priami C, Quaglia P, Zunino R (2012) An imperative language of self-modifying graphs for biological systems. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC’12 ACM New York, NY, USA, pp 1903–1909

    Google Scholar 

  37. Priami C, Regev A, Shapiro E, Silverman W (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform Process Lett 80:25–31

    Google Scholar 

  38. Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:169–179

    Article  Google Scholar 

  39. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421

    Article  Google Scholar 

  40. Vaggi F, Disanza A, Milanesi F, Di Fiore PP, Menna E, Matteoli M, Gov NS, Scita G, Ciliberto A (2011) The Eps8/IRSp53/VASP network differentially controls actin capping and bundling in filopodia formation. PLoS Comput Biol 7(7):e1002088

    Article  Google Scholar 

  41. Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide *1. J Mol Biol 126(4):783–802

    Article  Google Scholar 

  42. Wear MA, Cooper JA (2004) Capping protein: new insights into mechanism and regulation. Trends Biochem Sci 29(8):418–428

    Article  Google Scholar 

  43. Weeds A, Yeoh S (2001) Action at the Y-branch. Science 294:1660–1661

    Article  Google Scholar 

  44. Zhuravlev PI, Papoian GA (2009) Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics. PNAS 106(28):11570–11575

    Article  Google Scholar 

Download references

Acknowledgments

We thank Luca Cardelli for providing the initial filament model and his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Kahramanoğulları .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kahramanoğulları, O., Phillips, A., Vaggi, F. (2013). Process Modeling and Rendering of Biochemical Structures: Actin. In: Lecca, P. (eds) Biomechanics of Cells and Tissues. Lecture Notes in Computational Vision and Biomechanics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5890-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5890-2_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5889-6

  • Online ISBN: 978-94-007-5890-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics