Skip to main content

Hazards, Risk, and Vulnerability

  • Chapter
  • First Online:

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Natural hazard terminologies with existing models of vulnerability, hazard, and risk are presented in this chapter. A conceptual framework has been developed based on hazard literature. The basic premise of the framework is based on Cutter’s place of hazard theory with inputs from recent literature. In the framework, hazard is viewed as a threat that has the potential to overwhelm people, property, and the environment. It is a pre-existing condition that can turn into a catastrophe depending on the influence of exogenous and endogenous factors. Exposure to hazard is treated as given and is an implicit element. The vulnerability element is perceived as the interactive effects of the social and physical aspects of a system (e.g., urban) regarding the causal process of hazards. Contrary to some conceptualizations, the framework views that the total vulnerability of a community depends on physical, social, and existing coping capacity attributes, and therefore, the calculation of the total vulnerability should consider these elements simultaneously. Risk is conceptualized as the product of hazard and vulnerability. To minimize the effects of disasters, it is imperative to take appropriate measures to reduce vulnerability rather than risk.

The utilization of geospatial techniques in flood risk management is separated into three categories: flood mapping, damage assessment, and evaluation of flood risk and vulnerability. Biophysical and socioeconomic data that are sourced from remote sensing, census geography, and other spatial databases are employed to evaluate flood-related risk in diverse environments. A variety of methods—comprising inductive, deductive, and multi-criteria evaluation—are used to determine flood vulnerability and risk as evidenced by the literature survey. It reveals that geospatial techniques can be utilized effectively in the entire spectrum of the disaster cycle, which can save lives and property from natural hazards such as flood, as well as support informed decision making during emergencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Geospatial techniques refer to the suite of geographical information systems, remote sensing, global positioning systems (GPS), and spatial analysis.

References

  • Ackleson SG, Klemas V, McKim HL, Merry CJ (1985) A comparison of SPOT simulator data with Landsat MSS imagery for delineating water masses in Delaware Bay, Broadkill River and adjacent wetlands. Photogramm Eng Remote Sens 51(8):1123–1129

    Google Scholar 

  • Adam S, Wiebe J, Collins M, Pietroniro A (1998) Radarsat flood mapping in the Peace-Athabasca delta, Canada. Can J Remote Sens 24(1):69–79

    Google Scholar 

  • Adger W (2006) Vulnerability. Glob Environ Chang 16(3):268–281

    Article  Google Scholar 

  • Akter T, Simonovic SP (2005) Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision making. J Environ Manage 77(2):133–143

    Article  Google Scholar 

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47(2–4):107–124

    Article  Google Scholar 

  • Alexander D (1993) Natural disasters. UCL Press Limited, London

    Google Scholar 

  • Alexander D (2000) Confronting catastrophe: new perspectives on natural disasters. Oxford University Press, New York

    Google Scholar 

  • Ali A, Quadir DA, Huh OK (1989) Study of river flooding hydrology in Bangladesh with AVHRR data. Int J Remote Sens 10(12):1873–1891

    Article  Google Scholar 

  • Anderson MB (1992) Metropolitan areas and disaster vulnerability: a consideration for developing countries. In: Kreimer A, Munasinghe M (eds) Environmental management and urban vulnerability. The World Bank, Washington, DC, pp 77–92

    Google Scholar 

  • Apel H, Thieken A, Merz B, Blöschl G (2006) A probabilistic modelling system for assessing flood risks. Nat Hazard 38(1–2):79–100

    Article  Google Scholar 

  • Asian Disaster Reduction Centre (ADRC) (2005) Total disaster risk management – good practice. ADRC, Kobe, Japan. Available at http://www.adrc.or.jp/

  • Azar D, Rain D (2007) Identifying population vulnerable to hydrological hazards in San Juan, Puerto Rico. GeoJournal 69(1–2):23–43

    Article  Google Scholar 

  • Bankoff G (2001) Rendering the world unsafe: ‘vulnerability’ as Western discourse. Disasters 25(1):19–35

    Article  Google Scholar 

  • Bankoff G, Frerks G, Hilhorst D (2004) Mapping vulnerability: disasters, development & people. Earthscan, London

    Google Scholar 

  • Barrett EC, Curtis LF (1992) Introduction to environmental remote sensing, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Barroca B, Bernardara P, Mouchel JM, Hubert G (2006) Indicators for identification of urban flood vulnerability. Nat Hazard Earth Syst Sci 6(4):553–561

    Article  Google Scholar 

  • Barton IJ, Bathols JM (1989) Monitoring floods with AVHRR. Remote Sens Environ 30(1):89–94

    Article  Google Scholar 

  • Baumann PR (1996) Flood analysis: 1993 Mississippi flood. Volume 4 of remote sensing core curriculum. URL http://umbc7.umbc.edu/~tbenja1/baumann/baumann.html

  • Baumann PR (1999) http://www.research.umbc.edu/tbenja1/baumann/mode2.html. Accessed 10 Feb, 1999

  • Bhattarai K, Conway D (2010) Urban vulnerabilities in the Kathmandu valley, Nepal: visualizations of human/hazard interactions. J Geogr Inf Syst 2(2):63–84

    Google Scholar 

  • Birkmann J (ed) (2006) Measuring vulnerability to natural hazards: towards disaster resilient society. United Nations University Press, Tokyo

    Google Scholar 

  • Birkmann J (2007) Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. Environ Hazard 7(1):20–31

    Article  Google Scholar 

  • Bizimana JP, Schilling M (2010) Geo-information technology for infrastructural flood risk analysis in unplanned settlement: a case study of informal settlement flood risk in the Nyabugogo flood plain, Kigali city, Rwanda. In: Showalter PS, Lu Y (eds) Geospatial techniques in urban hazard and disaster analysis. Springer, Dordrecht, pp 99–124

    Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural hazards, people’s vulnerability and disasters. Routledge, London

    Google Scholar 

  • Blasco F, Bellan MF, Chaudhury MU (1992) Estimating the extent of floods in Bangladesh using SPOT data. Remote Sens Environ 39:167–178

    Article  Google Scholar 

  • Bocco G, Sanchez R, Riemann H (1995) GIS affects flood planning efforts. GIS World 7(3):32–35

    Google Scholar 

  • Bollin C, Hidajat R (2006) Community-based risk index: pilot implementation in Indonesia. In: Birkmann J (ed) Measuring vulnerability to natural hazards: towards disaster resilient society. United Nations University Press, Tokyo, pp 271–289

    Google Scholar 

  • Boruff BJ, Cutter SL (2007) The environmental vulnerability of Caribbean island nations. Geogr Rev 97(1):932–942

    Google Scholar 

  • Boruff BJ, Emrich C, Cutter SL (2005) Erosion hazard vulnerability of US coastal counties. J Clim Res 21(5):932–942

    Google Scholar 

  • Boyle SJ, Tsanis IK, Kanaroglou PS (1998) Developing geographic information system for land use impact assessment in flooding condition. J Water Resour Plan Manage 124(2):89–98

    Article  Google Scholar 

  • Brimicombe AJ, Bartlett JM (1996) Linking geographic information systems with hydraulic simulation modelling for flood risk assessment: the Hong Kong approach. In: Goodchild MF, Steyaert L, Parks BO, Josnston CO, Maidment DR, Crane MP, Glendinning S (eds) GIS and environmental modelling: progress and research issues. Wiley, New York, pp 165–168

    Google Scholar 

  • Brisco B, Brown RJ, Manore MJ (1989) Early season crop discrimination with combined SAR and TM data. Can J Remote Sens 15(1):44–54

    Google Scholar 

  • Brivio PA, Colmbo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 33(3):429–441

    Article  Google Scholar 

  • Bruce JP (1994) The fifth session of the IDNDR Scientific and Technical Committee. Nat Hazard Obs 18(4):6–7

    Google Scholar 

  • Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contribution towards an enhanced assessment of extreme events and associated risks. Nat Hazard Earth Syst Sci 6(4):485–503

    Article  Google Scholar 

  • Burton C, Cutter SL (2008) Levee failures and social vulnerability in the Sacramento-San Joaquin Delta area. Nat Hazard Rev 9(3):136–149

    Article  Google Scholar 

  • Burton I, Kates R, White GF (1993) The environment as hazard, 2nd edn. Guilford Press, New York

    Google Scholar 

  • Cannon T (2000) Vulnerability analysis and disasters. In: Parker DJ (ed) Floods, vol 1. Routledge, London, pp 45–55

    Google Scholar 

  • Carrara A, Guzzetti D (eds) (1995) Geographical information systems in assessing natural hazards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Carter V (1982) Applications of remote sensing to wetlands. In: Johannsen CJ, Sanders JL (eds) Remote sensing for resource management. Soil Conservation Society of America, Ankeny, pp 284–300

    Google Scholar 

  • Chakraborty J, Tobin GA, Montz BE (2005) Population evacuation: assessing spatial variability in geophysical and social vulnerability to natural hazards. Nat Hazard Rev 6(1):23–33

    Article  Google Scholar 

  • Chen Y-R, Yeh C-H, Yu B (2011) Integrated application of the analytical hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat Hazard 59(3):1261–1276

    Article  Google Scholar 

  • Chilar J, Pultz TJ, Gray AL (1992) Change detection with synthetic aperture radar. Int J Remote Sens 13(3):401–414

    Article  Google Scholar 

  • Chubey MS, Hathout S (2004) Integration of RADARSAT and GIS modelling for estimating future Red River flood risk. GeoJournal 59(3):237–246

    Article  Google Scholar 

  • Clark GE, Moser SC, Ratick SJ, Dow K, Meyer WB, Emani S, Jin W, Kasperson JX, Kasperson RE, Schwartz HE (1998) Assessing the vulnerability of coastal communities to extreme storms: the case of Revere, MA, USA. Mitig Adapt Strat Glob Chang 3(1):59–82

    Article  Google Scholar 

  • Colwell JE, Hicks DR (1985) NOAA satellite data: a useful tool for macro inventory. Environ Manage 9(6):463–470

    Article  Google Scholar 

  • Coppock JT (1995) GIS and natural hazards: an overview from a GIS perspective. In: Carrara A, Ad Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publishers, Dordrecht, pp 21–34

    Google Scholar 

  • Corbley KP (1993) Remote sensing and GIS provide rapid response for flood relief. Earth Obs Mag 2:28–30

    Google Scholar 

  • Cova TJ (1999) GIS in emergency management. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DV (eds) Geographical information systems, management and application. Wiley, Chichester, pp 845–858

    Google Scholar 

  • Cova TJ, Church L (1997) Modeling community vulnerability evacuation using GIS. Int J Geogr Inf Sci 11(8):763–784

    Article  Google Scholar 

  • Crevier Y, Pultz TJ (1996) Analysis of C-band SIR-C radar backscatter over a flooded environment, Red River, Manitoba. In: Applications of remote sensing in hydrology, proceedings of the third international workshop, NHRI symposium no. 17, Greenbelt, MA, pp 47–60

    Google Scholar 

  • Crichton D (2002) UK and global insurance response to flood hazard. Water Int 27(1):119–131

    Article  Google Scholar 

  • Crichton D (2007) What can cities do to increase resilience? Philos Trans R Soc 365(1860):2731–2739

    Article  Google Scholar 

  • Cutter SL (1996) Vulnerability to environmental hazards. Prog Hum Geogr 20(4):529–539

    Article  Google Scholar 

  • Cutter SL (2003a) The vulnerability of science and the science of vulnerability. Ann Assoc Am Geogr 93(1):242–261

    Article  Google Scholar 

  • Cutter SL (2003b) GI science, disasters, and emergency management. Trans GIS 7(4):439–445

    Article  Google Scholar 

  • Cutter SL, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. Proc Natl Acad Sci 105(7):2301–2306

    Article  Google Scholar 

  • Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: a case study of Georgetown county, South Carolina. Ann Assoc Am Geogr 90(4):713–737

    Article  Google Scholar 

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261

    Article  Google Scholar 

  • Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Chang 18(4):598–606

    Article  Google Scholar 

  • Cutter SL, Emrich CT, Webb JJ, Morath D (2009) Social vulnerability to climate variability hazards: a review of literature. Final report to Oxfam America. Available at http://adapt.oxfamamerica.org/resources/Literature_Review.pdf. Accessed 2 Apr, 2011

  • Dang NM, Babel MS, Luong HT (2011) Evaluation of flood risk parameters in the Day river flood diversion area, Red River delta, Vietnam. Nat Hazard 56(1):169–194

    Article  Google Scholar 

  • Davidson R (1997) An urban earthquake disaster risk index. Report no. 121. Department of Civil Engineering, Stanford University, Stanford

    Google Scholar 

  • de Brouder JAM (1994) Flood study in the Meghna-Dhonagoda Polder, Bangladesh. http://www.gisdevelopment.net/aars/acrs/1994/ts3/ts3007pf.htm. Accessed 10 May, 2003

  • Demirkesen AC, Evrendilek F, Berberoglu S, Kilic S (2007) Coastal flood risk analysis using Landsat-7 ETM  +  imagery and SRTM DEM: a case study of Izmir, Turkey. Environ Monit Assess 131(1–3):293–300

    Article  Google Scholar 

  • Dewan AM, Yamaguchi Y (2008) Effects of land cover changes on flooding: example from Greater Dhaka of Bangladesh. Int J Geoinf 4(1):11–20

    Google Scholar 

  • Dewan AM, Yeboah KK, Nishigaki M (2005) Flood mapping and damage evaluation in Greater Dhaka, Bangladesh with remote sensing. Asian Profile 33(5):495–512

    Google Scholar 

  • Dewan AM, Yeboah KK, Nishigaki M (2006) Using synthetic aperture radar (SAR) data for mapping river water flooding in an urban landscape: a case study of Greater Dhaka, Bangladesh. J Hydrol Water Resour 19(1):44–54

    Google Scholar 

  • Dewan AM, Islam MM, Kumamoto T, Nishigaki M (2007) Evaluating flood hazard for land-use planning in Greater Dhaka of Bangladesh using remote sensing and GIS techniques. Water Resour Manage 21(9):2101–2116

    Article  Google Scholar 

  • Dhakal AS, Amada T, Aniya M, Sharma RR (2002) Detection of areas associated with flood and erosion caused by a heavy rainfall using multitemporal Landsat TM data. Photogramm Eng Remote Sens 68(3):233–239

    Google Scholar 

  • Difani C, Dolton L (1992) Battling the Oakland fire with GIS. GIS World 5(1):43–45

    Google Scholar 

  • Dong Y, Forster B, Ticehurst C (1997) Radar backscatter analysis for urban environments. Int J Remote Sens 18(6):1351–1364

    Article  Google Scholar 

  • Dow K (1992) Exploring differences in our common future(s): the meaning of vulnerability to global environmental change. Geoforum 23(3):417–436

    Article  Google Scholar 

  • Dow K, Downing TE (1995) Vulnerability research: where things stand. Hum Dimens Q 1:3–5

    Google Scholar 

  • Drabek TE, Hoetmer GJ (eds) (1991) Emergency management: principles and practice for local government. International City Management Association, Washington, DC

    Google Scholar 

  • Dunn CE, Newton D (1992) Optimal routes in GIS and emergency planning applications. Area 24(3):259–267

    Google Scholar 

  • Dutta D, Herath S, Musiake K (2003) A mathematical model for flood loss estimation. J Hydrol 277(1–2):24–49

    Article  Google Scholar 

  • Dutta D, Khatun F, Herath S (2005) Analysis of flood vulnerability of urban buildings and population in Hanoi, Vietnam. Seisan Kenkyo 57(4):150–154

    Google Scholar 

  • Dymon UJ (1990) The role of emergency mapping in disaster response. Quick response report no. 42. Natural Hazards Research and Applications Information Center, University of Colorado, Boulder

    Google Scholar 

  • Eakin H, Luers A (2006) Assessing the vulnerability of social-environmental systems. Ann Rev Environ Resour 31:365–394

    Article  Google Scholar 

  • Ebert A, Kerle N, Stein A (2009) Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Nat Hazard 48(2):275–294

    Article  Google Scholar 

  • Emmi PC, Horton CA (1993) A GIS-based assessment of earthquake property damage and causality risk: Salt Lake County, Utah. Earth Spectra 9(1):11–33

    Article  Google Scholar 

  • Engman ET, Gurney RJ (1991) Water resources management and monitoring. In: Engman ET, Gurney RJ (eds) Remote sensing in hydrology. Chapman Hall, London, pp 193–210

    Google Scholar 

  • Fedeski M, Gwilliam J (2007) Urban sustainability in the presence of flood and geological hazards: the development of a GIS-based vulnerability and risk assessment methodology. Landscape Urban Plan 83(1):50–61

    Article  Google Scholar 

  • Fekete A, Damm M, Birkmann J (2010) Scales as a challenge for vulnerability assessment. Nat Hazard 55(3):729–747

    Article  Google Scholar 

  • Few R (2003) Flooding, vulnerability and coping strategies: local responses to a global threat. Prog Dev 3(1):43–58

    Article  Google Scholar 

  • Finch C, Emrich CT, Cutter SL (2010) Disaster disparities and differential recovery in New Orleans. Popul Environ 31(4):179–202

    Article  Google Scholar 

  • Foody GM (1988) Crop classification from airborne synthetic aperture radar data. Int J Remote Sens 9(4):655–668

    Article  Google Scholar 

  • Fung T, LeDrew E (1988) The determination of optimal threshold levels for change detection using various accuracy indices. Photogramm Eng Remote Sens 54:1449–1454

    Google Scholar 

  • Gaillard JC, Liamzon CC, Villanueva JD (2007) Natural disasters? A retrospect into the causes of the late-2004 typhoon disaster in Eastern Luzon, Philippines. Environ Hazard 7(4):257–270

    Article  Google Scholar 

  • Gain AK, Hoque MM (2012) Flood risk assessment and its application in the eastern part of Dhaka city, Bangladesh. J Flood Risk Manage. doi: 10.1111/jfr3.12003

    Article  Google Scholar 

  • Gao J, Nickum JE, Pan Y (2007) An assessment of flood hazard vulnerability in the Dongting lake region of China. Lakes Reserv Res Manage 12(1):27–34

    Article  Google Scholar 

  • Gianinetto M, Villa P (2011) Mapping hurricane Katrina’s widespread destruction in New Orleans using multisensor data and the normalized difference change detection (NCCD) technique. Int J Remote Sens 32(7):1961–1982

    Article  Google Scholar 

  • Gianinetto M, Villa P, Lechi G (2006) Postflood damage evaluation using Landsat TM and ETM  +  data integrated with DEM. IEEE Trans Geosci Remote Sens 44(1):236–243

    Article  Google Scholar 

  • Gillespie TW, Chu J, Elizabeth F, Thomas D (2007) Assessment and prediction of natural hazards from satellite imagery. Prog Phys Geogr 31(5):459–470

    Article  Google Scholar 

  • Godschalk DR (1991) Disaster mitigation and hazard management. In: Drabek TE, Hoetmer GJ (eds) Emergency management: principles and practice for local government. International City Management Association, Washington, DC, pp 131–160

    Google Scholar 

  • Gokon H, Koshimura S (2012) Mapping of building damage of the 2011 Tohoku earthquake tsunami in Miyagi prefecture. Coast Eng J 54(1):1–12

    Article  Google Scholar 

  • Green C (2000) Handbook of water economics: principles and practice. Wiley, Chichester

    Google Scholar 

  • Green C (2004) The evaluation of vulnerability to flooding. Disast Prev Manage 13(4):323–329

    Article  Google Scholar 

  • Greene R, Devillers R, Luther JE, Eddy BG (2011) GIS-based multiple-criteria decision analysis, Geogr Compass 5(6):412–432

    Article  Google Scholar 

  • Greiving S, Fleischhauer M, Luckenkotter J (2006) A methodology for an integrated risk assessment of spatially relevant hazards. J Environ Plan Manage 49(1):1–19

    Article  Google Scholar 

  • Gunes AE, Koval JP (2000) Using GIS in emergency management operations. J Urban Plan Dev 126(3):136–149

    Article  Google Scholar 

  • Haque CE (1997) Hazards in fickle environment: Bangladesh. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Haque AN, Grafakos S, Huijsman M (2012) Participatory integrated assessment of flood protection measures for climate adaptation in Dhaka. Environ Urban 24(1):197–213

    Article  Google Scholar 

  • Henry J-B, Chastanet P, Fellah K, Desnos Y-L (2006) Envisat multi-polarized ASAR data for flood mapping. Int J Remote Sens 27(10):1921–1929

    Article  Google Scholar 

  • Hess LL, Melack JM (1994) Mapping wetland hydrology and vegetation with synthetic aperture radar. Int J Ecol Environ Sci 20:197–205

    Google Scholar 

  • Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33(4):896–903

    Article  Google Scholar 

  • Hewitt K (1997) Regions of risk: a geographical introduction to disasters. Longman, Essex

    Google Scholar 

  • Hill AA, Cutter SL (2001) Methods for determining disaster proneness. In: Cutter SL (ed) American hazardscapes: the regionalization of hazards and disasters. The Joseph Henry Press, Washington, DC, pp 37–60

    Google Scholar 

  • Hogan DJ, Marandola E Jr (2005) Towards in interdisciplinary conceptualization of vulnerability. Popul Space Place 11(6):455–471

    Article  Google Scholar 

  • Hoque R, Nakayama D, Matsuyama H, Matsumoto J (2011) Flood monitoring, mapping and assessing capabilities using RADARSAT remote sensing. GIS Ground Data Bangladesh 57(2):525–548

    Google Scholar 

  • Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sens 22(13):2489–2507

    Google Scholar 

  • Imhoff ML, Gesch DB (1990) The derivation of a sub-canopy digital terrain model of a flooded forest using synthetic aperture radar. Photogramm Eng Remote Sens 56(8):1155–1162

    Google Scholar 

  • Imhoff ML, Vermillion C, Story MH, Choudhury AM, Gafoor A, Polcyn F (1987) Monsoon flood boundary delineation and damage assessment using spaceborne imaging radar and Landsat data. Photogramm Eng Remote Sens 53(4):405–413

    Google Scholar 

  • Intarawichian N, Dasananda S (2010) Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Suranaree J Sci Technol 17(3):277–292

    Google Scholar 

  • Islam T (2008) Cyclone wind analysis and disaster planning: an integrated approach for the Bangladesh coast. VDM Verlag, Saarbrücken

    Google Scholar 

  • Islam MM, Sado K (2000a) Development of flood hazard maps of Bangladesh using NOAA AVHRR with GIS. Hydrol Sci J 45(3):337–355

    Article  Google Scholar 

  • Islam MM, Sado K (2000b) Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrol Process 14(3):605–620

    Article  Google Scholar 

  • Islam MM, Sado K (2000c) Satellite remote sensing data analysis for flood damage zoning with GIS for flood management. Ann J Hydraul Eng (JSCE) 44:301–306

    Article  Google Scholar 

  • Islam MM, Sado K (2002) Development of priority map flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 7(5):346–355

    Article  Google Scholar 

  • Islam AS, Bala SK, Haque MA (2010) Flood inundation map of Bangladesh using MODIS time-series data. J Flood Risk Assess 3(3):210–222

    Article  Google Scholar 

  • Jain V, Sinha R (2003) A geomorphological manifestations of the flood hazards: a remote sensing based approach. Geocarto Int 18(4):51–60

    Article  Google Scholar 

  • Jain SK, Singh RD, Jain MK, Lohani AK (2005) Delineation of flood-prone areas using remote sensing techniques. Water Resour Manage 19(4):333–347

    Article  Google Scholar 

  • Jha AK, Bloch R, Lamond J (2012) Cities and flooding: a guide to integrated urban flood risk management for the 21st century. The World Bank, Washington, DC

    Google Scholar 

  • Johnson GO (1992) GIS applications in emergency management. URISA J 4(1):66–72

    Google Scholar 

  • Kasischke ES, Bourgeau-Chavez LL (1997) Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogramm Eng Remote Sens 63(3):281–291

    Google Scholar 

  • Kazmierczak A, Cavan G (2011) Surface water flooding risk in urban communities: analysis of vulnerability, hazard and exposure. Landscape Urban Plan 103(2):185–197

    Article  Google Scholar 

  • Kiage LM, Walker ND, Balasubramanian S, Babin A, Barras J (2005) Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. Int J Remote Sens 26(24):5359–5380

    Article  Google Scholar 

  • Kienberger S (2012) Spatial modelling of social and economic vulnerability to floods at the district level of Buzi, Mozambique. Nat Hazard. doi:10.1007/s11069-012-0174-9

    Google Scholar 

  • Kiunsi RB, Mechack V, Uhinga G, Mayunga J, Mulenge F, Kabali C, Sigalla N, Bilia M (2006) Disaster vulnerability assessment: the Tanzania experience. In: Birkmann J (ed) Measuring vulnerability to natural hazards: towards disaster resilient society. United Nations University Press, Tokyo, pp 227–245

    Google Scholar 

  • Kohler A, Jülich S, Bloemertz L (2005) Guidelines risk analysis – a basis for disaster risk management, GTZ

    Google Scholar 

  • Kron F (2005) Flood risk  =  hazard*values*vulnerability. Water Int 30(1):58–68

    Article  Google Scholar 

  • Kubal C, Haase D, Meyer V, Scheuer S (2009) Integrated urban flood risk assessment – adapting a multi-criteria approach to a city. Nat Hazard Earth Syst Sci 9(6):1881–1895

    Article  Google Scholar 

  • Lankao PR, Qin H (2011) Conceptualizing urban vulnerability to global change and environmental change. Curr Option Environ Sustain 3(3):142–149

    Article  Google Scholar 

  • Lawal DU, Matori A-N, Hashim AM, Chandio IA, Sabri S, Balogun A-L, Abba HA (2011) Geographic information system and remote sensing applications in flood hazards management: a review. Res J Appl Sci Eng Technol 3(9):933–947

    Google Scholar 

  • Leconte R, Pultz TJ (1991) Evaluation of Radarsat for flood mapping using simulated satellite SAR imagery. Can J Remote Sens 17(3):241–249

    Google Scholar 

  • Levy JK, Hartmann J, Li KW, An Y, Asgary A (2007) Multi-criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds. J Am Water Resour Assoc 43(2):346–358

    Article  Google Scholar 

  • Lewis J (1999) Development in disaster-prone places: studies of vulnerability. Intermediate Technology Publications, London

    Google Scholar 

  • Liu Z, Huang F, Liu L, Wan E (2002) Dynamic monitoring and damage evaluation of flood in north-west Jilin with remote sensing. Int J Remote Sens 23(18):3669–3679

    Article  Google Scholar 

  • Liverman DM (1990a) Vulnerability to global environmental change. In: Kasperson RE, Dow K, Golding D, Kasperson JX (eds) Understanding global environmental change: the contributions of risk analysis and management. Clark University, Worcester, pp 27–44

    Google Scholar 

  • Liverman DM (1990b) Drought in Mexico: climate, agriculture, technology and land tenure in Sonora and Puebla. Ann Assoc Am Geogr 80(1):49–72

    Article  Google Scholar 

  • Long NT, Trong BD (2001) Flood monitoring of Mekong River delta, Vietnam using ERS SAR data. A paper presented at the 22nd Asian conference of remote sensing, Singapore, 5–9 November

    Google Scholar 

  • Longhurst R (1995) The assessment of community vulnerability in hazard prone areas. Disasters 19(3):269–270

    Article  Google Scholar 

  • Lorenz N, Van Dijk M, Kwadijk J (2001) Use of remotely sensed images by SPOT in hydrologic modeling. In: Van Dijk M, Bos MG (eds) GIS and remote sensing techniques in land and water management. Kluwer Academic Publishers, Dordrecht, pp 39–53

    Chapter  Google Scholar 

  • Maantay J, Maroko A, Culp G (2010) Using geographic information science to estimate vulnerable urban populations for flood hazard and risk assessment in New York City. In: Showalter PS, Lu Y (eds) Geospatial techniques in urban hazard and disaster analysis. Springer, Dordrecht, pp 71–97

    Google Scholar 

  • Malczewski J (1996) A GIS-based approach to multiple criteria group decision making. Int J Geogr Inf Syst 10(8):955–971

    Google Scholar 

  • Malczewski J (1999) GIS and multiple-criteria decision analysis. Wiley, New York

    Google Scholar 

  • Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Prog Plan 62(1):3–65

    Article  Google Scholar 

  • Malczewski J (2006) GIS-based multi-criteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726

    Article  Google Scholar 

  • Mallinis G, Gitas IZ, Giannakopoulos V, Maris F, Tsakiri-Strati M (2011) An object-based approach for flood area delineation in a transboundary area using ENVISAT ASAR and Landsat TM data. Int J Digit Earth. doi:10.1080/17538947.2011.641601

  • Malnes E, Guneriussen T, Høgda KA (2002) Mapping flood-area by Radarsat in Vanjø, Norway. In: Proceedings of 29th international symposium on remote sensing of the environment, Buenos Aires, Argentina, 4–8 April

    Google Scholar 

  • Mansor S, Shariah MA, Billa L, Setiawan I, Jabar F (2004) Spatial technology for natural risk management. Disast Prev Manage 13(5):364–373

    Article  Google Scholar 

  • Mark O, Weesakul S, Apirumanekul C, Aroonnet SB, Djordjevic S (2004) Potential and limitations of 1D modelling of urban flooding. J Hydrol 299(3–4):284–299

    Google Scholar 

  • Marwade V, Cook A, Coonrod J (2008) GIS techniques for creating river terrain models for hydrodynamic modelling and flood inundation mapping. Environ Model Software 23(10–11):1300–1311

    Article  Google Scholar 

  • Mason DC, Horritt MS, Dall’ Amico JT, Scott TR, Bates PD (2007) Improving river flood extent delineation from Synthetic Aperture Radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45(12):3932–3943

    Article  Google Scholar 

  • Mason DC, Speck R, Devereus B, Schumann GJ-P, Neal JC, Bates PD (2010) Flood detection in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48(2):882–894

    Article  Google Scholar 

  • Masood M, Takeuchi K (2012) Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat Hazard. doi:10.1007/s11069-011-0060-x

    Google Scholar 

  • McMillan A, Morley JG, Adams BJ, Chesworth S (2006) Identifying optimal SAR imagery specifications for urban flood monitoring: a hurricane Katrina case study. Paper presented at 4th international workshop on remote sensing for post-disaster response, Magdalene College, University of Cambridge, Cambridge, UK, 25–26 September

    Google Scholar 

  • Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazard 48(1):17–39

    Article  Google Scholar 

  • Michener WK, Houhoulis PF (1997) Detection of vegetation changes associated with extensive flooding in a forested ecosystem. Photogramm Eng Remote Sens 63(12):1363–1374

    Google Scholar 

  • Mitchell JK (1999a) Natural disasters in the context of mega-cities. In: Mitchell JK (ed) Crucibles of Hazard: mega-cities and disasters in transition. United Nations University, Tokyo, pp 15–55

    Google Scholar 

  • Mitchell JK (1999b) Megacities and natural disasters: a comparative analysis. GeoJournal 49(2):137–142

    Article  Google Scholar 

  • Mitchell JK, Devine N, Jagger K (1989) A contextual model of natural hazards. Geogr Rev 79(4):391–409

    Article  Google Scholar 

  • Mongkolsawat C, Thanajaturon T (2006) Predicting the recurrent flood extent and damage assessment in Chi watershed, northeast Thailand using multi-temporal Radarsat and Landsat data. In: Proceedings of the first international conference on science and technology for sustainable development of the Greater Mekong Sub-region, Khon Khen, Thailand, 15–16 August. Available at http://202.28.94.77/research/i_proceed/2549/7_Predicting.pdf

  • Montz BE, Tobin GA (2003) Hazardousness of the Tampa region: evaluating physical risk and socio-economic vulnerability. In: Proceedings of the applied geography conferences, 31, pp 380–388

    Google Scholar 

  • Moore GK, North GW (1974) Flood inundation in the southeastern United States from aircraft and satellite imagery. Water Resour Bull 10(5):1082–1096

    Article  Google Scholar 

  • Morelli S, Segoni S, Manzo G, Ermini L, Catani F (2012) Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy. Appl Geogr 34(1):205–218

    Article  Google Scholar 

  • Morita M (2011) Quantification of increased flood risk due to global climate change for urban river management planning. Water Sci Technol 63(12):2967–2974

    Article  Google Scholar 

  • Müller A (2012) Areas at risk – concept and methods for urban flood risk assessment: a case study of Santiago de Chile. Franz Steiner Verlag, Stuttgart

    Google Scholar 

  • Mustafa D (1998) Structural causes of vulnerability to flood hazard in Pakistan. Econ Geogr 74(3):289–305

    Article  Google Scholar 

  • Mustafa D (2005) The production of an urban hazardscape in Pakistan: modernity, vulnerability, and the range of choice. Ann Assoc Am Geogr 95(3):566–586

    Article  Google Scholar 

  • Nagarajan R, Marathe GT, Collins WG (1993) Identification of flood prone regions of Rapti river using temporal remotely-sensed data. Int J Remote Sens 14(7):1297–1303

    Article  Google Scholar 

  • NASA (1998) SAR references. http://southport.jpl.nasa.gov/science/SAR_REFS.html. Accessed 30 July, 2003

  • Nico G, Pappalepore M, Pasquarieloo G, Refice A, Samarelli S (2000) Comparison of SAR amplitude and coherence flood detection methods-a GIS application. Int J Remote Sens 21(8):1619–1631

    Article  Google Scholar 

  • Nyarko BF (2002) Application of a rational model in GIS for flood risk assessment in Accra, Ghana. J Spat Hydrol 2(1):1–14

    Google Scholar 

  • O’Brien K, Leichenko R, Kelkar V, Venema H, Aandahl G, Tompkins H, Javed A, Bhadwal S, Barg S, Nygaard L, West J (2004) Mapping vulnerability to multiple stressors: climate change and globalization in India. Glob Environ Chang 14(4):303–313

    Article  Google Scholar 

  • O’Brien K, Eriksen S, Nygaard LP, Schojolden A (2007) Why different interpretations of vulnerability matter in climate change discourses. Clim Policy 7(1):73–88

    Article  Google Scholar 

  • Oberstadler R, Honsch H, Huth D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 11:1415–1425

    Article  Google Scholar 

  • Odeh DJ (2002) Natural hazards vulnerability assessment for statewide mitigation planning in Rhode island. Nat Hazard Rev 3(4):177–187

    Article  Google Scholar 

  • Oliver-Smith A (2004) Theorising vulnerability in a globalised world: a political ecological perspective. In: Bankoff G, Frerks G, Hilhort D (eds) Mapping vulnerability: disasters, development & people. Earthscan, London, pp 10–24

    Google Scholar 

  • Ormsby JP, Mulligan PJ (1985) The effects of merging TM and A/C Radar on wetland classification. In: Proceedings of the NASA/JPL Aircraft SAR workshop, USA, pp 37–38

    Google Scholar 

  • Ormsby JP, Blanchard BJ, Blanchard AJ (1985) Detection of lowland flooding using active microwave systems. Photogramm Eng Remote Sens 51(3):317–328

    Google Scholar 

  • Palmann C, Mavromatis S, Hernandez M, Sequeira M, Brisco B (2008) Earth observation using radar data: an overview of applications and challenges. Int J Digit Earth 1(2):171–195

    Article  Google Scholar 

  • Pandey AC, Singh SK, Nathawat MS (2010) Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat Hazard 55(2):273–289

    Article  Google Scholar 

  • Pantaleoni E, Engel BA, Johannsen CJ (2007) Identifying agricultural flood damage using Landsat imagery. Precis Agric 8(1–2):27–36

    Article  Google Scholar 

  • Parker DJ (2000) Floods, vol I and II. Routledge, London

    Google Scholar 

  • Pavri F (2010) Urban expansion and sea-level rise related flood vulnerability for Mumbai (Bombay), India using remote sensed data. In: Showalter PS, Lu Y (eds) Geospatial techniques in urban hazard and disaster analysis. Springer, Dordrecht, pp 31–49

    Google Scholar 

  • Pelling M (1997) What determines vulnerability to floods: a case study in Georgetown, Guyana. Environ Urban 9(1):203–226

    Article  Google Scholar 

  • Pelling M (2002) Assessing urban vulnerability and social adaptation to risk. Int Dev Plan Rev 24(1):59–76

    Article  Google Scholar 

  • Pelling M (2003) The vulnerability of cities. Earthscan, London

    Google Scholar 

  • Pietroniro A, Prowse TD (1996) Environmental monitoring of the Peace-Athabasca Delta using multiple satellite data sources. In: Applications of remote sensing in Hydrology, proceedings of the third international workshop, NHRI symposium no. 17, Greenbelt, MD, pp 237–251

    Google Scholar 

  • Polsky C, Neff R, Yarnal B (2007) Building comparable global change vulnerability assessments: the vulnerability of scoping diagrams. Glob Environ Chang 17(3–4):472–485

    Google Scholar 

  • Pradhan B (2009) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9(2):1–18

    Google Scholar 

  • Profeti G, Macintosh H (1997) Flood management through Landsat TM and ERS SAR data: a case study. Hydrol Process 11:1397–1408

    Article  Google Scholar 

  • Rahman MR, Saha SK (2007) Flood hazard zonation – a GIS aided multi-criteria evaluation (MCE) approach with remotely sensed data. Int J Geoinf 3(3):25–35

    Google Scholar 

  • Ramsey EW III, Hodgson ME, Sapkota SK, Nelson GA (2001) Forest impact estimated with NOAA AVHRR and Landsat TM data related to a predicted hurricane wind-field distribution. Remote Sens Environ 77(3):279–292

    Article  Google Scholar 

  • Rango A, Anderson AT (1974) Flood hazard studies in the Mississippi River Basin using remote sensing. Water Resour Bull 10(5):1060–1081

    Article  Google Scholar 

  • Rango A, Solomon VV (1974) The utility of short wavelength remote sensing techniques for the monitoring and assessment of hydrological parameters. In: Proceedings of 11th international symposium on remote sensing of environment, Ann Arbor, MI, pp 55–64

    Google Scholar 

  • Rashed T, Weeks J (2003a) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geogr Inf Sci 17(6):547–576

    Article  Google Scholar 

  • Rashed T, Weeks J (2003b) Exploring the spatial association between measures from satellite imagery and patterns of urban vulnerability to earthquake hazards. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIV-7(W9):144–152

    Google Scholar 

  • Rashed R, Weeks J, Couclelis H, Herold M (2007) An integrative GIS and remote sensing model for place-based urban vulnerability analysis. In: Mesev V (ed) Integration of GIS and remote sensing. Wiley, Chichester, pp 199–224

    Google Scholar 

  • Rasid H, Pramanik MAH (1990) Visual interpretation of satellite imagery for monitoring floods in Bangladesh. Environ Manage 14(6):815–821

    Article  Google Scholar 

  • Rejeski D (1993) GIS and risk: a three-culture problem. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental modelling with GIS. Oxford University Press, New York, pp 318–331

    Google Scholar 

  • Richards JA, Woddgate PW, Skidmore AK (1987) An explanation of enhanced radar backscatter from flooded forests. Int J Remote Sens 8(7):1093–1100

    Article  Google Scholar 

  • Sadars R, Tabuchi S (2000) Decision support system for flood risk analysis for the river Thames, United Kingdom. Photogramm Eng Remote Sens 66(10):1185–1193

    Google Scholar 

  • Sakamoto T, Nguyen NV, Kotera A, Ohno H, Ishitsuka N, Yokozawa M (2007) Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong delta from MODIS time-series imagery. Remote Sens Environ 109(3):295–313

    Article  Google Scholar 

  • Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to Monsoon Asia: a review. Nat Hazard 33(2):283–301

    Article  Google Scholar 

  • Sanyal J, Lu XX (2005) Remote sensing and GIS-based flood vulnerability assessment of human settlements: a case study of Gangetic West Bengal, India. Hydrol Process 19(18):3699–3716

    Article  Google Scholar 

  • Sanyal J, Lu XX (2006) GIS based flood hazard mapping in Gangetic West Bengal. Singap J Trop Geogr 27(2):207–220

    Article  Google Scholar 

  • Sanyal J, Lu XX (2009) Ideal location for flood shelter: a geographic information system approach. J Flood Risk Assess 2(4):262–271

    Article  Google Scholar 

  • Scheuer S, Haase D, Meyer V (2011) Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazard 58(2):731–751

    Article  Google Scholar 

  • Schneiderbauer S, Ehrlich D (2004) Risk, hazard and people’s vulnerability to natural hazards: a review of definitions, concepts and data. European Commission – Joint Research Centre (ERC-JRC), Brussels

    Google Scholar 

  • Schumann G, Baldassarre GD (2010) The direct use of radar satellites for event-specific flood risk mapping. Remote Sens Lett 1(1):75–84

    Article  Google Scholar 

  • Sebastian S, Haase D, Meyer V (2011) Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazard 58(2):731–751

    Article  Google Scholar 

  • Sheng Y, Su Y, Xiao Q (1998) Challenging the cloud-contamination problem in flood monitoring with NOAA/AVHRR imagery. Photogramm Eng Remote Sens 64(3):191–198

    Google Scholar 

  • Showalter PS (2001) Remote sensing’s use in disaster research: a review. Disast Prev Manage 10(1):21–29

    Article  Google Scholar 

  • Showalter PS, Lu Y (eds) (2010) Geospatial techniques in urban hazards and disaster analysis. Geotechnologies and the environment, vol 2. Springer, Dordrecht

    Google Scholar 

  • Simonovic SP (1993). Flood control management by integrating GIS with expert systems: Winnipeg city case study. In: HydroGIS’93: applications of geographic information systems in hydrology and water resources. IAHS Pub no. 211. International Association of Hydrological Sciences, Oxford

    Google Scholar 

  • Sinha R, Bapalu GV, Singh LK, Rath B (2008) Flood risk analysis in the Kosi river basin, North Bihar using multi-parametric approach of analytical hierarchy process (AHP). J Indian Soc Remote Sens 36(4):293–307

    Article  Google Scholar 

  • Sirikulchayanon P, Sun W, Oyana TJ (2008) Assessing the impact of the 2004 tsunami on mangroves using remote sensing and GIS. Int J Remote Sens 29(12):3553–3576

    Article  Google Scholar 

  • Skidmore AK, Woodgate PW, Richards JA (1986) Classification of the Riviera forest of south eastern Australia using co-registered Landsat MSS and SIR-B radar data. In: Proceedings of the symposium on remote sensing for resources development and environmental management. A.A. Balkema, Rotterdam, pp 517–519

    Article  Google Scholar 

  • Smith DI (1981) Actual and potential flood damage: a case study for urban Lismore, NSW, Australia. Appl Geogr 1(1):31–39

    Article  Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundated area, stage and discharge: a review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • Smith K, Ward R (1998) Floods: physical processes and human impacts. Wiley, Chichester

    Google Scholar 

  • Solberg SAH, Jin AK, Taxt T (1994) Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Trans Geosci Remote Sens 32(4):768–778

    Article  Google Scholar 

  • Solbø S, Solheim I (2004) Towards operational flood mapping with satellite SAR. In: Envisat/ERS symposium, Salzburg

    Google Scholar 

  • Solbø S, Pettinato S, Paloscia S, Santi E, Brusotti P, Solheim I (2004) Mapping of flooding in the Alessandria area with ERS. In: Proceedings of IGARSS 2004, Anchorage, Alaska, pp 4689–4692

    Google Scholar 

  • Srivastava YK, Pal DK, Das RK, Sudhakar S, Adiga S, Venkatachary KV, Srivastava SK (2000) High resolution remote sensing data and GIS techniques in updating of infrastructures details for flood damage assessment – a case study. http://www.gisdevelopment.net/aars/acrs/2000/ts8/hamipf.htm. Accessed 2 Aug, 2004

  • Su M-D, Kang J-L, Chang L-F, Chen AS (2005) A grid-based GIS approach to regional flood damage assessment. J Marine Sci Technol 13(3):184–192

    Google Scholar 

  • Suriya S, Mudgal BV (2012) Impact of urbanization on flooding: the Thirusoolam sub watershed – a case study. J Hydrol 412–413:210–219

    Article  Google Scholar 

  • Taft OW, Haig SM, Killsgaard C (2003) Use of radar remote sensor (RADARSAT) to map wetland habitat for shorebirds in an agricultural landscape. Environ Manage 32(2):268–281

    Article  Google Scholar 

  • Tanavud C, Yongchalermchai C, Bennui A, Densreeserekul O (2004) Assessment of flood risk in Hat Yai Municipality, Southern Thailand, using GIS. J Nat Disast Sci 26(1):1–14

    Article  Google Scholar 

  • Tate E, Burton CG, Berry M, Emrich CT, Cutter SL (2011) Integrated hazard mapping tool. Trans GIS 15(5):689–706

    Article  Google Scholar 

  • Taubenböck H, Post J, Roth A, Zosseder K, Strunz G, Dech S (2008) A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Nat Hazard Earth Syst Sci 8(3):409–420

    Article  Google Scholar 

  • Taubenböck H, Roth A, Dech S (2009) Megacities: hints for risk assessment using EO data. In: Gamba P, Herold M (eds) Global mapping of human settlement: experiences, datasets and prospects. CRC Press, Boca Raton, pp 205–230

    Google Scholar 

  • Thomas DSK, Mitchell JT (2001) Which are the most hazardous states? In: Cutter SL (ed) American hazardscapes: the regionalization of hazards and disasters. Joseph Henry Press, Washington, DC, pp 115–156

    Google Scholar 

  • Timmerman P (1981) Vulnerability, resilience and the collapse of society. Environmental monograph. Institute for Environmental Studies, University of Toronto, Toronto

    Google Scholar 

  • Tingsanchali T, Karim MF (2005) Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol Process 19(10):2055–2069

    Article  Google Scholar 

  • Townsend PA (2001) Mapping seasonal flooding in forested wetlands using multi-temporal RADARSAT SAR. Photogramm Eng Remote Sens 67(7):857–864

    Google Scholar 

  • Townsend PA, Walsh SJ (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21(3–4):295–312

    Article  Google Scholar 

  • Töyora J, Pietroniro A, Martz LW (2002) A multi-sensor approach to wetland flood monitoring. Hydrol Process 16:1569–1581

    Article  Google Scholar 

  • Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm Remote Sens 59(4):18198

    Article  Google Scholar 

  • Tran P, Shaw R, Chantry G, Norton J (2009) GIS and local knowledge in disaster management: a case study of flood risk mapping in Vietnam. Disasters 33(1):152–169

    Article  Google Scholar 

  • Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci 1000(14):8074–8079

    Article  Google Scholar 

  • Uitto JI (1998) The geography of disaster vulnerability in megacities. Appl Geogr 18(1):7–16

    Article  Google Scholar 

  • Ulaby F, Moore R, Fung A (1981) Microwave remote sensing: active and passive, vol 2 microwave remote sensing fundamentals and radiometry. Artech House, Norwood

    Google Scholar 

  • United Nations (UN) (2003) Guidelines for reducing flood losses. Available at http://www.un.org/esa/sustdev/publications/flood_guidelines.pdf. Accessed 12 Jan, 2009

  • United Nations (UN) (2005). Hyogo framework for action 2005–2015 – building the resilience of nations and communities to disasters. In: World conference on disaster reduction, Kobe, Japan, 18–22 January

    Google Scholar 

  • United Nations Development Programme (UNDP) (1992) An overview of disaster management, 2nd edn. UNDP, Washington, DC

    Google Scholar 

  • United Nations Environmental Program (UNEP) (2003) Assessing human vulnerability to environmental change: concepts, issues, methods and case studies. UNEP, Nairobi

    Google Scholar 

  • UN/ISDR (International Strategy for Disaster Reduction) (2004) Living with risk: a global review of disaster reduction initiatives. United Nations Publications, Geneva

    Google Scholar 

  • van der Sande CJ, de Jong SM, de Roo APJ (2003) A segmentation and classification of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int J Appl Earth Observ Geoinf 4(3):217–229

    Article  Google Scholar 

  • van Oosterom P, Zlatanova S, Fendel EM (2005) Geo-information for disaster management. Springer, Berlin

    Book  Google Scholar 

  • van Westen CJ (1993) Remote sensing and geographic information systems for geological hazard mitigation. ITC J 4:393–399

    Google Scholar 

  • Wadge G, Wislocki AP, Pearson EJ (1993) Spatial analysis in GIS for natural hazard assessment. In: Goodchild MF, Parks BO, Steyaert LT (eds) GIS and environmental modelling. Oxford University Press, New York, pp 332–338

    Google Scholar 

  • Waisurasingha C, Aniya M, Hirano A, Sommut W (2008) Use of Radarsat-1 data and a digital elevation model to assess flood damage and improve rice production in the lower part of the Chi river basin, Thailand. Int J Remote Sens 29(20):5837–5850

    Article  Google Scholar 

  • Waite WP, Macdonald HC, Kaupp VH, Demarcke JS (1981) Wetland mapping with imaging radar. In: International geoscience and remote sensing symposium, Washington DC, 8–10 June, pp 794–799

    Google Scholar 

  • Wang Y (2004) Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int J Remote Sens 25(5):959–974

    Article  Google Scholar 

  • Wang J-F, Li L-F (2008) Improving tsunami warning systems with remote sensing and geographical information systems input. Risk Anal 28(6):1653–1668

    Article  Google Scholar 

  • Wang Y, Hess LL, Filso S, Melack JM (1995) Understanding the radar backscattering from flooded and non-flooded Amazonian forest: results from canopy backscatter modeling. Remote Sens Environ 54(3):324–332

    Article  Google Scholar 

  • Wang Y, Colby JD, Mulcahy KA (2002) An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int J Remote Sens 23(18):3681–3696

    Article  Google Scholar 

  • Wang Y, Li Z, Tang Z, Zeng G (2011) A GIS-based spatial multi-criteria approach for flood risk assessment in Dongting lake region, Hunan, Central China. Water Resour Manage 25(13):3465–3484

    Article  Google Scholar 

  • Watson CC Jr (1992) GIS aids hurricane planning. GIS World, July (Special Issue):46–52

    Google Scholar 

  • Watts MJ, Bohle HG (1993) The space of vulnerability: the causal structure of hunger and famine. Prog Hum Geogr 17(1):43–67

    Article  Google Scholar 

  • Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30(1):64–76

    Article  Google Scholar 

  • Webster TL, Forbes DL, MacKinnon E, Roberts D (2006) Flood-risk mapping for storm-surge events and sea level rise using lidar for southeast New Brunswick. Can J Remote Sens 32(2):194–211

    Article  Google Scholar 

  • Weichselgartner J (2001) Disaster mitigation: the concept of vulnerability revisited. Disast Prev Manage 10(2):85–94

    Article  Google Scholar 

  • Weng Q (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ Manage 28(6):737–748

    Article  Google Scholar 

  • Werner MGF (2001) Impact of grid size in GIS based flood extent mapping using a 1D flow model. Phys Chem Earth Part B: Hydrol Oceans Atmos 26(7–8):517–522

    Article  Google Scholar 

  • White GF (ed) (1974) Natural hazards: local, national, global. Oxford University Press, New York

    Google Scholar 

  • White GF, Haas JE (1975) Assessment of research on natural hazards. MIT Press, Cambridge

    Google Scholar 

  • White GF, Kates RW, Burton I (2001) Knowing better and losing even more: the use of knowledge in hazards management. Environ Hazard 3(3–4):81–92

    Google Scholar 

  • Wiesnet DR, McGinnis DF, Pritchard JA (1974) Mapping of the 1973 Mississippi River floods by NOAA-2 satellite. Water Resour Bull 10(5):1040–1049

    Article  Google Scholar 

  • Willett K, Sharda R (1991) Using the analytical hierarchy process in water resources planning: selection of flood control projects. Socioecon Plann Sci 25(2):103–112

    Article  Google Scholar 

  • Williamson AN (1974) Mississippi river flood maps from ERTS-1 digital data. Water Resour Bull 10(5):1050–1059

    Article  Google Scholar 

  • Wisner B (1993) Disaster vulnerability: scale, power and daily life. GeoJournal 30(2):127–140

    Article  Google Scholar 

  • Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: natural hazard, people’s vulnerability and disasters, 2nd edn. Routledge, Abingdon

    Google Scholar 

  • Wu SY, Yarnal B, Fisher A (2002) Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersey, USA. Clim Res 22:255–270

    Article  Google Scholar 

  • Yahaya S (2008) Multicriteria analysis for flood vulnerable areas in Hadejia-Jama’ Are river basin, Nigeria. ASPRS annual conference, Oregon, April 28–May 2

    Google Scholar 

  • Yalcin G, Akyurek Z (2004) Analysing flood vulnerable areas with multicriteria evaluation. Available at http://www.isprs.org/proceedings/XXXV/congress/comm2/papers/154.pdf. Accessed 15 Jan, 2012

  • Yamagata Y, Akiyama T (1988) Flood damage analysis using multitemporal Landsat thematic mapper data. Int J Remote Sens 9(3):503–514

    Article  Google Scholar 

  • Yoon DK (2012) Assessment of social vulnerability to natural disasters: a comparative study. Nat Hazard 63(2):823–843

    Article  Google Scholar 

  • Zahran S, Brody SD, Peacock WG, Vedlitz A, Grover H (2008) Social vulnerability and the natural and built environment: a model of flood causalities in Texas. Disasters 32(4):537–560

    Article  Google Scholar 

  • Zerger A (2002) Examining GIS decision utility for natural hazard risk modelling. Environ Model Software 17(3):287–294

    Article  Google Scholar 

  • Zerger A, Smith DI (2003) Impediments to using GIS for real-time disaster decision support. Comput Environ Urban Syst 27(2):123–141

    Article  Google Scholar 

  • Zerger A, Wealands S (2004) Beyond modelling: linking models with GIS for flood risk management. Nat Hazard 33(2):191–208

    Article  Google Scholar 

  • Zhang J, Hori T, Tatano H, Okada N, Matsumoto T (2003) GIS and flood inundation model-based flood risk assessment in urbanized floodplain. In: Cheng Y et al (eds) GIS and RS in hydrology, water resources and environment, vol 1. Sun Yat-sen University Press, Guangzhou, pp 92–99

    Google Scholar 

  • Zheng N, Takara K, Yamashiki Y, Tachikawa Y (2009) Large scale quantitative vulnerability analysis for regional flood hazards. Annuals of Disaster Prevention and Research Institute, Kyoto University, No. 52B, Japan

    Google Scholar 

  • Zhou YC, Qing CW (1999) Deciding the flood extent with RADARSAT SAR data and image fusion. http://www.gisdevelopment.net/aars/acrs/1999/ps3/ps3999.shtml. Accessed 11 July, 2003

  • Zhou C, Luo J, Yang C, Li B, Wang S (2000) Flood monitoring using multi-temporal AVHRR and RADARSAT imagery. Photogramm Eng Remote Sens 66(5):633–638

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dewan, A.M. (2013). Hazards, Risk, and Vulnerability. In: Floods in a Megacity. Springer Geography. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5875-9_2

Download citation

Publish with us

Policies and ethics