Skip to main content

Climate-Scale Oceanic Rainfall Based on Passive Microwave Radiometry

  • Chapter
  • First Online:

Abstract

In the microwave regime, the relatively low and stable emissivity of the sea surface serves as an excellent background over which brightly emitting hydrometeors can be distinguished. Space/time oceanic rainfall has been estimated from microwave radiometry using a simple radiative transfer model of an atmospheric rain column, a rain rate distribution to account for sampling deficiencies, and an empirical correction of the nonuniformly filled field of view of the microwave sensor. The microwave emission-based brightness temperature histogram (METH) technique has been applied to the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) to produce over 25 years of monthly oceanic rainfall. The METH technique is described and the retrieved parameters are assessed. The inter-satellite calibration of microwave and DMSP SSM/I sensors provided a climate-scale oceanic rainfall time series capable of examining climate trends and variabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMSR-E:

Advanced Microwave Scanning Radiometer-Earth Observing System

BFC:

Beamfilling correction

DMSP:

Defense Meteorological Satellite Program

EMI:

El Nino Southern Oscillation Modoki Index

ENSO:

El Nino Southern Oscillation

EOF:

Empirical Orthogonal Function

FOV:

Field of view

GARP:

Global Atmospheric Research Experiment

GATE:

GARP Atlantic Tropical Experiment

GCM:

General circulation model

GOES:

Geostationary Operational Environmental Satellite

GPCP:

Global Precipitation Climatology Project

GPI:

Geostationary Operational Environmental Satellite Precipitation Index

GSSTF:

Goddard Space Flight Center Satellite-based Sea surface Turbulent

ICOADS:

International Comprehensive Ocean-Atmosphere Data Set

ITCZ:

Intertropical Convergence Zone

METH:

Microwave emission-based brightness temperature histogram

NASA:

National Aeronautics and Space Administration

NSIDC:

National Snow and Ice Data Center

PC:

Principal component

PSPDC:

Polar Satellite Precipitation Data Center

RSS:

Remote Sensing Systems

SACZ:

South Atlantic Convergence Zone

SOI:

Southern Oscillation Index

SPCZ:

South Pacific Convergence Zone

SSM/I:

Special sensor microwave imager

SSMIS:

Special Sensor Microwave Imager/Sounder

TMI:

Tropical Rainfall Measuring Mission Microwave Imager

TRMM:

Tropical Rainfall Measuring Mission

References

  • Acker J, Williams R, Chiu LS et al (2002) Remote sensing from satellites. In: Meyers R (ed) Encyclopedia in physical science and technology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Adler RF, Huffman GJ, Chang ATC, Ferraro A, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Arkin P (1979) The relationship between the fractional coverage of high cloud and rainfall accumulation during the GATE over the B–Scale array. Mon Weather Rev 107:1382–1387

    Article  Google Scholar 

  • Barrett E, Martin D (1981) The use of satellite data in rainfall monitoring. Academic, London

    Google Scholar 

  • Chang ATC, Chiu LS (2001) Nonsystematic errors of oceanic monthly rainfall derived from microwave radiometry. Geophys Res Lett 28:1223–1226

    Article  Google Scholar 

  • Chang ATC, Chiu LS, Kummerow C, Meng J, Wilheit TT (1999) First results of the TRMM Microwave Imager (TMI) monthly oceanic rain rate: comparison with SSM/I. Geophys Res Lett 26:2379–2382

    Article  Google Scholar 

  • Chang ATC, Chiu LS, Wilheit TT (1993) Oceanic monthly rainfall derived from SSM/I. Eos Trans 74:505

    Article  Google Scholar 

  • Chang ATC, Chiu LS, Yang G (1995) Diurnal cycle of oceanic precipitation from SSM/I data. Mon Weather Rev 123:3371–3380

    Article  Google Scholar 

  • Chiu LS (1988) Estimating areal rainfall from rain area. In: Theon J, Fugono N (eds) Tropical precipitation measurements. Deepak, Hampton

    Google Scholar 

  • Chiu LS (2011) Atmospheric remote sensing. In: Yang C, Wong D, Miao Q, Yang R (eds) Advanced geoinformation science. CRC, Boca Raton

    Google Scholar 

  • Chiu LS, Chang ATC (1994) Oceanic rain rate parameters derived from SSM/I. U.R.S.I. commission F, Climate arameters in Radiowave Propagation Prediction, CLIMPARA’94, p11.3:1–5, Moscow, May 31–June 3 1994. (URL: http://www.scribd.com/doc/81459037/Climatic-Parameters-in-Radiowave-Propagation-Prediction-Climpara-94-Rutherford-Appleton-Laboratory-06-1994)

  • Chiu LS, Chang ATC (2000) Oceanic rain column height derived from SSM/I. J Climate 13:4125–4136

    Article  Google Scholar 

  • Chiu LS, Chokngamwong R (2010) Microwave emission brightness temperature histograms (METH) rain rates for climate studies: Remote Sensing Systems SSM/I version-6 results. J Appl Meteorol Clim 49:115

    Article  Google Scholar 

  • Chiu LS, Kedem B (1990) Estimating the exceedance probability of rain by logistic regression. J Geophys Res 95:2177–2227

    Article  Google Scholar 

  • Chiu LS, North G, Short D, McConnell A (1990) Rain estimation from satellite: effect of finite field of view. J Geophys Res 95(D3):2177–2185

    Article  Google Scholar 

  • Chiu LS, Chang ATC, Janowiak J (1993) Comparison of monthly rain rates derived from GPI and SSM/I using probability distribution functions. J Appl Meteorol 32:323–334

    Article  Google Scholar 

  • Chiu LS, Chokngamwong R, Xing Y, Shie C-L (2008) “Trends” and variations of global oceanic evaporation data set from remote sensing. Acta Oceanol Sin 24:127–135

    Google Scholar 

  • Chiu LS, Chokngamwong R, Wilheit TT (2010) Modified monthly oceanic rain-rate algorithm to account for TRMM boost. IEEE Trans Geosci Remote Sens 48:3081–3086

    Article  Google Scholar 

  • Chiu LS, Gao S, Shie C-L (2012) Oceanic evaporation: trends and variabilities. In: Escalante-Ramírez B (ed) Remote sensing – applications. InTech, Rijeka

    Google Scholar 

  • Cho H-K, Bowman KP, North GR (2004) A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J Appl Meteorol 43:1586–1597

    Article  Google Scholar 

  • Chokngamwong R, Chiu LS (2006) Variation of oceanic rain rate parameters from SSM/I: mode of brightness temperature histogram, 14th conference in satellite meteorology and oceanography, AMS annual meeting, Atlanta, Jan 29–Feb 2 2006

    Google Scholar 

  • Chokngamwong R, Chiu LS (2009) Development of the microwave calibrated infrared split-window technique (MIST) for rainfall estimation. Int J Remote Sens 30:3115–3131

    Article  Google Scholar 

  • Dai A (2001) Global precipitation and thunderstorm frequencies. Part I: seasonal and interannual variations. J Climate 14:1092–1111

    Article  Google Scholar 

  • Ellis TD, L’Ecuyer T, Haynes JM, Stephens GL (2009) How often does it rain over the global oceans? The perspective from CloudSat. Geophys Res Lett 36:L03815

    Article  Google Scholar 

  • Ha E, North GR (1995) Model study of the beam-filling error for rainfall retrieval with microwave radiometers. J Atmos Ocean Technol 12:268–281

    Article  Google Scholar 

  • Hollinger JP, Pierce JL, Poe GA (1990) SSM/I instrument evaluation. IEEE Trans Geosci Remote Sens 28:781–790

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang ATC, Ferrero R, Gruber A, Janowiak J, McNab A, Rudolph B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Inoue T (1987) An instantaneous delineation of convective rainfall area using split window data of NOAA-7 AVHRR. J Meteorol Soc Jpn 65:469–481

    Google Scholar 

  • Kafatos M, Chiu LS, Yang RX et al (2001) Interannual variation of oceanic precipitation, IGARSS 2001: scanning the present and resolving the future, vol 1–7, Proceedings, in IEEE international symposium on geoscience and remote sensing (IGARSS), pp 1143–1145

    Google Scholar 

  • Kedem B, Chiu LS (1987a) On the lognormality of rain rate. Proc Natl Acad Sci 84:901–905

    Article  Google Scholar 

  • Kedem B, Chiu LS (1987b) Are rain rate processes self–similar? Water Resour Res 23:1816–1818

    Article  Google Scholar 

  • Kedem B, Chiu LS, North G (1990) Estimation of mean rain rate: application to satellite observation. J Geophys Res 95:1965–1972

    Article  Google Scholar 

  • Kubota T, Shige S, Aonashi K, Okamoto K (2009) Development of nonuniform beamfilling correction method in rainfall retrievals for passive microwave radiometers over ocean using TRMM observations. J Meteorol Soc Jpn 87a:153–164

    Article  Google Scholar 

  • Kummerow C (1998) Beamfilling errors in passive microwave rainfall retrievals. J Appl Meteorol 37:356–370

    Article  Google Scholar 

  • Kummerow C et al (2000) The status of the tropical rainfall measuring mission (TRMM) after 2 years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Kummerow C, Poyner P, Berg W, Thomas-Stahle J (2004) The effects of rainfall inhomogeneity on climate variability of rainfall estimated from passive microwave sensors. J Atmos Ocean Technol 21:624–638

    Article  Google Scholar 

  • Kunkee DB, Poe GA, Boucher DJ, Swadley SD, Hong Y, Wessel JE, Uliana EA (2008) Design and evaluation of the first special sensor microwave imager/sounder. IEEE Trans Geosci Remote Sens 46:863–883

    Article  Google Scholar 

  • Lafont D, Guillemet B (2004) Subpixel fractional cloud cover and inhomogeneity effects on microwave beam-filling error. Atmos Res 72:149–168

    Article  Google Scholar 

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Climate 20:4497–4525

    Article  Google Scholar 

  • Liu WT, Xie X (2002) Double intertropical convergence zones–a new look using scatterometer. Geophys Res Lett 29:2072

    Article  Google Scholar 

  • Lovejoy G, Austin G (1979) The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmos-Ocean 17:77–92

    Article  Google Scholar 

  • Marshall JS, Palmer W (1948) The distribution of raindrops with size. J Meteorol 5:165–166

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Petty GW (1995) Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull Am Meteorol Soc 76:1593–1616

    Article  Google Scholar 

  • Petty G (1997) An intercomparison of oceanic precipitation frequencies from 10 special sensor microwave/imager rain rate algorithms and shipboard present weather reports. J Geophys Res 102:1757–1777

    Article  Google Scholar 

  • Shimizu S, Oki R, Tagawa T, Iguchi T, Hirose M (2009) Evaluation of the effects of the orbit boost of the TRMM satellite on PR rain estimates. J Meteorol Soc Jpn 87:83–92

    Article  Google Scholar 

  • Shin DB, Chiu LS (2008) Effects of TRMM boost on oceanic rainfall estimates based on microwave emission brightness temperature histograms (METH). J Atmos Ocean Technol 25:1888–1893

    Article  Google Scholar 

  • Short DA (2003) Equatorial Atlantic rain frequency: an intercentennial comparison. J Climate 16:2296–2301

    Article  Google Scholar 

  • Short DA, Nakamura K (2010) Effect of TRMM orbit boost on radar reflectivity distributions. J Atmos Ocean Technol 27:1247–1254

    Article  Google Scholar 

  • Short DA, North GR (1990) The beam-filling error in the NIMBUS 5 electrically scanning microwave radiometer observations of global tropical Atlantic tropical experiment rainfall. J Geophys Res 95:2187–2193

    Article  Google Scholar 

  • Wang A (1997) Modeling the beam filling correction for the microwave retrieval of oceanic rainfall. PhD dissertation, Texas A&M University

    Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn 29:113–129

    Article  Google Scholar 

  • Wilheit TT, Chang ATC, Rao MSV, Rodgers EB, Theon JS (1977) A satellite technique for quantitatively mapping rainfall rates over the oceans. J Appl Meteorol 16:551–560

    Article  Google Scholar 

  • Wilheit TT, Chang ATC, Chiu LS (1991) Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J Atmos Ocean Technol 8:118–136

    Article  Google Scholar 

  • Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A comprehensive ocean-atmosphere data set. Bull Am Meteorol Soc 68:1239–1250

    Article  Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR, Wilkinson C (2011) ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967

    Article  Google Scholar 

  • Xie P, Janowiak JE, Arkin PA, Adler RF, Gruber A, Ferraro RR, Huffman GJ, Curtis S (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Climate 16:2197–2214

    Article  Google Scholar 

  • Yeh S-W, Kirtman BP, Kug J-S, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi–centennial timescales. Geophys Res Lett 38:L02704

    Article  Google Scholar 

  • Zhang C (2001) Double ITCZs. J Geophys Res 106:11785–11792

    Article  Google Scholar 

Download references

Acknowledgments

Drs. T. Wilheit and A. T-C. Chang are codevelopers of this technique. Dr. Chang started the GPCP-PSPDC and was responsible for the initial development and operations. He passed away in May 2004. His leadership, perseverance, and mentoring would be sorely missed. Thanks are due to Drs. R. North, B. Kedem, D. Short, A. McConnell, R. Adler, and G. Huffman for their input throughout the course of development. Our work has been supported by NASA TRMM and NOAA Office of Global Programs during its various stages of development and processing. Drs. R. Adler, P. Arkin, A. Gruber, R. Kakar, S. Braun, and A. Hou are acknowledged for their support. DBS was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012–2063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long S. Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiu, L.S., Gao, S., Shin, DB. (2013). Climate-Scale Oceanic Rainfall Based on Passive Microwave Radiometry. In: Qu, J., Powell, A., Sivakumar, M. (eds) Satellite-based Applications on Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5872-8_15

Download citation

Publish with us

Policies and ethics