Skip to main content

Toward a Personalized Approach in Amyotrophic Lateral Sclerosis: New Developments in Diagnosis, Genetics, Pathogenesis and Therapies

  • Chapter
  • First Online:
Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 2))

  • 972 Accesses

Abstract

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease that affects upper and lower motor neurons in the brain and spinal cord, with progressive weakness and atrophy of most muscles in the body and is almost always fatal within 3–5 years. A small proportion of cases are familial, and remarkable achievements have been made during the last years in understanding the genetics of the disease. In spite of this, the basic pathogenic mechanisms underlying the sporadic disease are still poorly understood. There is an urgent need for better understanding of the pathogenic processes in order to be able to develop effective treatments.

The present review will focus on recent knowledge gained in diagnosis, genetics, pathogenesis and therapies in ALS. Future development of diagnostic technologies integrating genetic, environmental and individual information will enable us to predict a population at risk for ALS. New treatments actually in development will help improve the medical management of ALS patients, taking into consideration individual traits, as genetic background, and pave a way for a more effective personalized diagnostic and treatment approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Graaff MM, de Jong JM, Baas F, de Visser M (2009) Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord 19:53–58

    PubMed  Google Scholar 

  2. Qureshi M, Schoenfeld DA, Paliwal Y, Shui A, Cudkowicz ME (2009) The natural history of ALS is changing: improved survival. Amyotroph Lateral Scler 10:324–331

    PubMed  Google Scholar 

  3. Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E; EURALS (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385–390

    PubMed  Google Scholar 

  4. Steele JC, McGeer PL (2008) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70:1984–1990

    PubMed  Google Scholar 

  5. Kuzuhara S, Kokubo Y (2005) Atypical parkinsonism of Japan: amyotrophic lateral sclerosis – parkinsonism – dementia complex of the Kii peninsula of Japan (Muro disease): an update. Mov Disord 20:S108–S113

    PubMed  Google Scholar 

  6. Worms PM (2001) The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 191:3–9

    PubMed  CAS  Google Scholar 

  7. Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V, Lepore V, Simone IL, Lamberti P, Serlenga L, Logroscino G; SLAP Registry (2008) Analysis of survival and prognostic factors in amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 79:33–37

    PubMed  CAS  Google Scholar 

  8. Sorenson EJ, Stalker AP, Kurland LT, Windebank AJ (2002) Amyotrophic lateral sclerosis in Olmsted County, Minnesota, 1925–1998. Neurology 59:280–282

    PubMed  Google Scholar 

  9. Raaphorst J, de Visser M, Linssen WJP, de Haan R, Schmand B (2010) The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph Lateral Scler 11:38–45

    Google Scholar 

  10. Kurian KM, Forbes RB, Colville S, Swingler RJ (2009) Cause of death and clinical grading criteria in a cohort of amyotrophic lateral sclerosis cases undergoing autopsy from the Scottish Motor Neurone Disease Register. J Neurol Neurosurg Psychiatry 80:84–87

    PubMed  CAS  Google Scholar 

  11. Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V, Lepore V, Simone IL, Lamberti P, Serlenga L, Logroscino G (2008) Predictors of long survival in amyotrophic lateral sclerosis: a population-based study. J Neurol Sci 268:28–32

    PubMed  Google Scholar 

  12. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    PubMed  CAS  Google Scholar 

  13. Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman OM (2000) Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House criteria: a population-based study. Arch Neurol 57:1171–1176

    PubMed  CAS  Google Scholar 

  14. de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, Mills K, Mitsumoto H, Nodera H, Shefner J, Swash M (2008) Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119:497–503

    PubMed  Google Scholar 

  15. Zhang L, Ulug AM, Zimmerman RD, Lin MT, Rubin M, Beal MF (2003) The diagnostic utility of FLAIR imaging in clinically verified amyotrophic lateral sclerosis. J Magn Reson Imaging 17:521–527

    PubMed  Google Scholar 

  16. Lule D, Ludolph AC, Kassubek J (2009) MRI-based functional neuroimaging in ALS: an update. Amyotroph Lateral Scler 10:258–268

    PubMed  Google Scholar 

  17. Senda J, Ito M, Watanabe H, Atsuta N, Kawai Y, Katsuno M, Tanaka F, Naganawa S, Fukatsu H, Sobue G (2009) Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: a study with tractography and diffusion-tensor imaging. Amyotroph Lateral Scler 10:288–294

    PubMed  Google Scholar 

  18. Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR (2010) Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75:1645–1652

    PubMed  CAS  Google Scholar 

  19. Ben Bashat D, Artzi M, Tarrasch R, Nefussy B, Drory VE, Aizenstein O (2011) A potential tool for the diagnosis of ALS based on diffusion tensor imaging. Amyotroph Lateral Scler 12:398–405

    PubMed  Google Scholar 

  20. Dabby R, Lange DJ, Trojaborg W, Hays AP, Lovelace RE, Brannagan TH, Rowland LP (2001) Inclusion body myositis mimicking motor neuron disease. Arch Neurol 58:1253–1256

    PubMed  CAS  Google Scholar 

  21. Nobile-Orazio E, Carpo M, Meucci N (2001) Are there immunologically treatable motor neuron diseases? Amyotroph Lateral Scler Other Motor Neuron Disord 2:S23–S30

    PubMed  Google Scholar 

  22. Parboosingh JS, Figlewicz DA, Krizus A, Meininger V, Azad NA, Newman DS, Rouleau GA (1997) Spinobulbar muscular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology 49:568–572

    PubMed  CAS  Google Scholar 

  23. Drory VE, Birnbaum M, Peleg L, Goldman B, Korczyn AD (2003) Hexosaminidase A deficiency is an uncommon cause of a syndrome mimicking amyotrophic lateral sclerosis. Muscle Nerve 28:109–112

    PubMed  CAS  Google Scholar 

  24. Tashiro K, Kikuchi S, Itoyama Y, Tokumaru Y, Sobue G, Mukai E, Akiguchi I, Nakashima K, Kira J, Hirayama K (2006) Nationwide survey of juvenile muscular atrophy of distal upper extremity (Hirayama disease) in Japan. Amyotroph Lateral Scler 7:38–45

    PubMed  Google Scholar 

  25. Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, McLaughlin R, Hardiman O (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82:623–627

    PubMed  Google Scholar 

  26. Schymick JC, Talbot K, Traynor BJ (2007) Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 16:R233–R242

    PubMed  CAS  Google Scholar 

  27. Graham AJ, Macdonald AM, Hawkes CH (1997) British motor neuron disease twin study. J Neurol Neurosurg Psychiatry 62:562–569

    PubMed  CAS  Google Scholar 

  28. Fang F, Kamel F, Lichtenstein P, Bellocco R, Sparén P, Sandler DP, Ye W (2009) Familial aggregation of amyotrophic lateral sclerosis. Ann Neurol 66:94–99

    PubMed  Google Scholar 

  29. Hanby MF, Scott KM, Scotton W, Wijesekera L, Mole T, Ellis CE, Leigh PN, Shaw CE, Al-Chalabi A (2011) The risk to relatives of patients with sporadic amyotrophic lateral sclerosis. Brain 134:3454–3457

    PubMed  Google Scholar 

  30. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615

    PubMed  CAS  Google Scholar 

  31. Beleza-Meireles A, Al-Chalabi A (2009) Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler 10:1–14

    PubMed  CAS  Google Scholar 

  32. Dion PA, Daoud H, Rouleau GA (2009) Genetics of motor neuron disorders: new insights into pathogenetic mechanisms. Nat Rev Genet 10:769–782

    PubMed  CAS  Google Scholar 

  33. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  34. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neuron disease. J Neurol Neurosurg Psychiatry 76:1046–1057

    PubMed  CAS  Google Scholar 

  35. Abe K, Aoki M, Ikeda M, Watanabe M, Hirai S, Itoyama Y (1996) Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations. J Neurol Sci 136:108–116

    PubMed  CAS  Google Scholar 

  36. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    PubMed  CAS  Google Scholar 

  37. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434

    PubMed  CAS  Google Scholar 

  38. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    PubMed  CAS  Google Scholar 

  39. Yokoseki A, Shiga A, Tan CF, Tagawa A, Kaneko H, Koyama A, Eguchi H, Tsujino A, Ikeuchi T, Kakita A, Okamoto K, Nishizawa M, Takahashi H, Onodera O (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542

    PubMed  CAS  Google Scholar 

  40. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    PubMed  CAS  Google Scholar 

  41. Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    PubMed  CAS  Google Scholar 

  42. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal degeneration. Proc Natl Acad Sci 106:18809–18814

    PubMed  CAS  Google Scholar 

  43. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    PubMed  CAS  Google Scholar 

  44. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    PubMed  CAS  Google Scholar 

  45. Belzil VV, Valdmanis PN, Dion PA, Daoud H, Kabashi E, Noreau A, Gauthier J; S2D team, Hince P, Desjarlais A, Bouchard JP, Lacomblez L, Salachas F, Pradat PF, Camu W, Meininger V, Dupré N, Rouleau GA (2009) Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 73:1176–1179

    PubMed  CAS  Google Scholar 

  46. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, Skehel P, Zatz M (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    PubMed  CAS  Google Scholar 

  47. Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC (2004) Point mutations in the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63:724–726

    PubMed  CAS  Google Scholar 

  48. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J, Morrison KE, Green A, Acharya KR, Brown RH Jr, Hardiman O (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    PubMed  CAS  Google Scholar 

  49. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74:1128–1135

    PubMed  CAS  Google Scholar 

  50. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 456:223–226

    Google Scholar 

  51. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurrò MR, Battistini S, Salvi F, Spataro R, Sola P, Borghero G; ITALSGEN Consortium, Galassi G, Scholz SW, Taylor JP, Restagno G, Chiò A, Traynor BJ (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    PubMed  CAS  Google Scholar 

  52. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–213

    PubMed  CAS  Google Scholar 

  53. Wroe R, Wai-Ling Butler A, Andersen PM, Powell JF, Al-Chalabi A (2008) ALSOD: the amyotrophic lateral sclerosis online database. Amyotroph Lateral Scler 9:249–250

    PubMed  CAS  Google Scholar 

  54. ALS Online Genetics database (online). http://alsod.iop.kcl.ac.uk

  55. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    PubMed  CAS  Google Scholar 

  56. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in a noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    PubMed  CAS  Google Scholar 

  57. Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65

    PubMed  CAS  Google Scholar 

  58. Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, Heverin M, Jordan N, Kenna K, Lynch C, McLaughlin RL, Iyer PM, O'Brien C, Phukan J, Wynne B, Bokde AL, Bradley DG, Pender N, Al-Chalabi A, Hardiman O (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240

    PubMed  CAS  Google Scholar 

  59. Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330

    PubMed  CAS  Google Scholar 

  60. Elden A, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rüb U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin 2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075

    PubMed  CAS  Google Scholar 

  61. Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, de Carvalho M, Meyer T, Tysnes OB, Auburger G, Gispert S, Bonini NM, Andersen PM, Gitler AD (2011) Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 20:1697–1700

    PubMed  CAS  Google Scholar 

  62. Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, Meininger V, Camu W, Dupré N, Dion PA, Rouleau GA (2011) Association of long ATXN2 CAG repeats sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol 68:739–742

    PubMed  Google Scholar 

  63. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Google Scholar 

  64. Dunckley T, Huentelman MJ, Craig DW et al (2007) Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med 357:775–788

    PubMed  CAS  Google Scholar 

  65. van Es MA, Veldink JH, Saris CG et al (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087

    PubMed  Google Scholar 

  66. Blauw HM, Veldink JH, van Es MA, van Vught PW, Saris CG, van der Zwaag B, Franke L, Burbach JP, Wokke JH, Ophoff RA, van den Berg LH (2008) Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 7:319–326

    PubMed  CAS  Google Scholar 

  67. Chio A, Schymick JC, Restagno G et al (2009) A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 18:1524–1532

    PubMed  CAS  Google Scholar 

  68. Landers JE, Melki J, Meininger V et al (2009) Reduced expression of the Kinesin-associated protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci 106:9004–9009

    PubMed  CAS  Google Scholar 

  69. Orsetti V, Pegoraro E, Cima V, D’Ascenzo C, Palmieri A, Querin G, Volpe M, Ermani M, Angelini C, \( {\rm Sorar}\grave{\rm u}\ {\rm G} \) (2011) Genetic variation in KIFAP3 is associated with an upper motor neuron-predominant phenotype in amyotrophic lateral sclerosis. Neurodegener Dis 8:491–495

    PubMed  CAS  Google Scholar 

  70. Gros-Louis F, Andersen PM, Dupre N, Urushitani M, Dion P, Souchon F, D’Amour M, Camu W, Meininger V, Bouchard JP, Rouleau GA, Julien JP (2009) Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis. Proc Natl Acad Sci 106:21777–21782

    PubMed  CAS  Google Scholar 

  71. van Vught PW, Veldink JH, van den Berg LH (2010) P413L CHGB is not associated with ALS susceptibility or age at onset in a Dutch population. Proc Natl Acad Sci U S A 107:E77

    PubMed  Google Scholar 

  72. Blasco H, Corcia P, Veyrat-Durebex C, Coutadeur C, Fournier C, Camu W, Gordon P, Praline J, Andres CR, Vourc’h P; French ALS Study Group (2011) The P413L chromogranin B variation in French patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:210–214

    PubMed  CAS  Google Scholar 

  73. Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW, Thijs V, Dubois B, Matthijs G, van den Berg LH, Robberecht W (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76:2066–2072

    PubMed  Google Scholar 

  74. Ross OA, Rutherford NJ, Baker M et al (2011) Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 20:3207–3212

    PubMed  CAS  Google Scholar 

  75. Gallo V, Bueno-De-Mesquita HB, Vermeulen R, Andersen PM, Kyrozis A, Linseisen J (2009) Smoking and risk for amyotrophic lateral sclerosis: analysis of the EPIC cohort. Ann Neurol 65:378–385

    PubMed  Google Scholar 

  76. Armon C (2009) Smoking may be considered an established risk factor for sporadic ALS. Neurology 73:1693–1698

    PubMed  Google Scholar 

  77. Armon C (2003) An evidence-based medicine approach to the evaluation of the role of exogenous risk factors in sporadic amyotrophic lateral sclerosis. Neuroepidemiology 22:217–228

    PubMed  Google Scholar 

  78. Sutedja NA, Fischer K, Veldink JH, van der Heijden GJ, Kromhout H, Heederik D, Huisman MH, Wokke JJ, van den Berg LH (2009) What we truly know about occupation as a risk factor for ALS: a critical and systematic review. Amyotroph Lateral Scler 10:295–301

    PubMed  Google Scholar 

  79. Horner RD, Kamins KG, Feussner JR, Grambow SC, Hoff-Lindquist J, Harati Y, Mitsumoto H, Pascuzzi R, Spencer PS, Tim R, Howard D, Smith TC, Ryan MA, Coffman CJ, Kasarskis EJ (2003) Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology 61:742–749

    PubMed  CAS  Google Scholar 

  80. Haley RW (2003) Excess incidence of ALS in young Gulf War veterans. Neurology 61:750–756

    PubMed  Google Scholar 

  81. Chiò A, Benzi G, Dossena M, Mutani R, Mora G (2005) Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128:472–476

    PubMed  Google Scholar 

  82. Chio A, Calvo A, Dossena M, Ghiglione P, Mutani R, Mora G (2009) ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph Lateral Scler 10:205–209

    PubMed  Google Scholar 

  83. Hyams KC, Brown M, White DS (2005) Resolving disputes about toxicological risks during military conflict: the US Gulf War experience. Toxicol Rev 24:167–180

    PubMed  CAS  Google Scholar 

  84. Armon C (2007) Sports and trauma in amyotrophic lateral sclerosis revisited. J Neurol Sci 262:45–53

    PubMed  Google Scholar 

  85. Edwards IR, Star K, Kiuru A (2007) Statins, neuromuscular degenerative disease and an amyotrophic lateral sclerosis–like syndrome: an analysis of individual case safety reports from vigibase. Drug Saf 30:515–525

    PubMed  Google Scholar 

  86. Colman E, Szarfman A, Wyeth J, Mosholder A, Jillapalli D, Levine J, Avigan M (2008) An evaluation of a data mining signal for amyotrophic lateral sclerosis and statins detected in FDA’s spontaneous adverse event reporting system. Pharmacoepidemiol Drug Saf 17:1068–1076

    PubMed  Google Scholar 

  87. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009

    PubMed  CAS  Google Scholar 

  88. Keizman D, Ish-Shalom M, Berliner S, Maimon N, Vered Y, Artamonov I, Tsehori J, Nefussy B, Drory VE (2009) Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? J Neurol Sci 285:95–99

    PubMed  CAS  Google Scholar 

  89. Jawaid A, Salamone AR, Strutt AM, Murthy SB, Wheaton M, McDowell EJ, Simpson E, Appel SH, York MK, Schulz PE (2010) ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur J Neurol 17:733–739

    PubMed  CAS  Google Scholar 

  90. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    PubMed  CAS  Google Scholar 

  91. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    PubMed  CAS  Google Scholar 

  92. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    PubMed  CAS  Google Scholar 

  93. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    PubMed  CAS  Google Scholar 

  94. Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci 20:660–665

    PubMed  CAS  Google Scholar 

  95. Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor neuron impairment. J Neurosci 21:3369–3374

    PubMed  CAS  Google Scholar 

  96. Lino MM, Schneider C, Caroni P (2002) Accumulation of SOD1 mutant in postnatal motor neurons does not cause motor neuron pathology of motoneuron disease. J Neurosci 22:4825–4832

    PubMed  CAS  Google Scholar 

  97. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extended survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    PubMed  CAS  Google Scholar 

  98. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    PubMed  CAS  Google Scholar 

  99. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci 103:16021–16026

    PubMed  CAS  Google Scholar 

  100. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    PubMed  CAS  Google Scholar 

  101. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    PubMed  CAS  Google Scholar 

  102. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci 105: 7594–7599

    PubMed  CAS  Google Scholar 

  103. Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with colometric detection in a large cohort of patients. J Neurol Sci 193:73–78

    PubMed  CAS  Google Scholar 

  104. Rothstein JD, Van Kammen M, Levey AL, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    PubMed  CAS  Google Scholar 

  105. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    PubMed  CAS  Google Scholar 

  106. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RH Jr (2010) Wild-type and mutated SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13:1396–1403

    PubMed  CAS  Google Scholar 

  107. Forsberg K, Jonsson PA, Andersen PM, Bergemalm D, Graffmo KS, Hultdin M, Jacobsson J, Rosquist R, Marklund SL, Brännström T (2010) Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients. PLoS One 5:e11552

    PubMed  Google Scholar 

  108. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 35:602–611

    Google Scholar 

  109. Tan CF, Eguchi H, Tagawa A, Onodera O, Iwasaki T, Tsujino A, Nishizawa M, Kakita A, Takahashi H (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 113:535–542

    PubMed  CAS  Google Scholar 

  110. Kabashi E, Bercier V, Lissouba A, Liao M, Brustein E, Rouleau GA, Drapeau P (2011) FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet 7:e1002214

    PubMed  CAS  Google Scholar 

  111. Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (2010) ALS-associated mutations in TDP-43 increase its stability and promote complexes with FUS/TLS. Proc Natl Acad Sci U S A 107:13318–13323

    PubMed  CAS  Google Scholar 

  112. Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802:45–51

    PubMed  CAS  Google Scholar 

  113. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5:347–350

    PubMed  CAS  Google Scholar 

  114. Rosenfeld J, King RM, Jackson CE, Bedlack RS, Barohn RJ, Dick A, Phillips LH, Chapin J, Gelinas DF, Lou JS (2008) Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler 9:266–272

    PubMed  CAS  Google Scholar 

  115. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82

    PubMed  CAS  Google Scholar 

  116. Kunita R, Otomo A, Mizumura H, Suzuki-Utsunomiya K, Hadano S, Ikeda JE (2007) The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytocis. J Biol Chem 282:16599–16611

    PubMed  CAS  Google Scholar 

  117. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    PubMed  CAS  Google Scholar 

  118. Michell RH, Dove SK (2009) A protein complex that regulates PtdIns(3,5)P2 levels. EMBO J 28:86–87

    PubMed  CAS  Google Scholar 

  119. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    PubMed  CAS  Google Scholar 

  120. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65:S3–S9

    PubMed  CAS  Google Scholar 

  121. Gitler AG, Shorter J (2011) RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5:179–189

    PubMed  CAS  Google Scholar 

  122. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–506

    PubMed  CAS  Google Scholar 

  123. Mendonça DM, Martins SC, Higashi R, Muscara MN, Neto VM, Chimelli L, Martinez AM (2011) Neurofilament heavy subunit in cerebrospinal fluid: a biomarker of amyotrophic lateral sclerosis? Amyotroph Lateral Scler 12:144–147

    PubMed  Google Scholar 

  124. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342:1034–1039

    PubMed  CAS  Google Scholar 

  125. Wilson ME, Boumaza I, Lacomis D, Bowser R (2010) Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 5:e15133

    PubMed  Google Scholar 

  126. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117:528–537

    PubMed  CAS  Google Scholar 

  127. Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc’h P, Emond P, Gordon P, Pradat PF, Praline J, Devos D, Nadal-Desbarats L, Andres CR (2010) H-1-NMR- based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5:e13223

    PubMed  Google Scholar 

  128. Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease- related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One 6:e17947

    PubMed  CAS  Google Scholar 

  129. Cheah BC, Boland RA, Brodaty NE (2009) INSPIRATIonAL – INSPIRAtory muscle training in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:384–392

    PubMed  Google Scholar 

  130. Bourke SC, Tomlinson M, Williams TL, Bullock RE, Shaw PJ, Gibson GJ (2006) Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis. Lancet Neurol 5:140–157

    PubMed  Google Scholar 

  131. Heffernan C, Jenkinson C, Holmes T, Macleod H, Kinnear W, Oliver D, Leigh N, Ampong MA (2006) Management of respiration in MND/ALS patients: an evidence-based review. Amyotroph Lateral Scler 7:5–15

    PubMed  Google Scholar 

  132. Carratu P, Spicuzza L, Cassano A, Maniscalco M, Gadaleta F, Lacedonia D, Scoditti C, Boniello E, Di Maria G, Resta O (2009) Early treatment with noninvasive positive pressure ventilation prolongs survival in amyotrophic lateral sclerosis patients with nocturnal respiratory insufficiency. Orphanet J Rare Dis 10:4–10

    Google Scholar 

  133. Radunovic A, Annane D, Jewitt K, Mustfa N (2009) Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 4:CD004427

    Google Scholar 

  134. Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC; Quality Standards Subcommittee of the American Academy of Neurology (2009) Practice Parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review). Neurology 73:1218–1226

    CAS  Google Scholar 

  135. Onders RP, Elmo M, Khansarinia S, Bowman B, Yee J, Road J, Bass B, Dunkin B, Ingvarsson PE, Oddsdóttir M (2009) Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients. Surg Endosc 23:1433–1440

    PubMed  Google Scholar 

  136. Onders RP, Carlin AM, Elmo M, Sivashankaran S, Katirji B, Schilz R (2009) Amyotrophic lateral sclerosis: the Midwestern surgical experience with the diaphragm pacing stimulation system shows that general anesthesia can be safely performed. Am J Surg 197:386–390

    PubMed  Google Scholar 

  137. Vaisman N, Lusaus M, Nefussy B, Niv E, Comaneshter D, Hallack R, Drory VE (2009) Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J Neurol Sci 279:26–29

    PubMed  Google Scholar 

  138. Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117

    PubMed  CAS  Google Scholar 

  139. Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7:1032–1043

    PubMed  Google Scholar 

  140. Drory VE, Goltsman E, Goldman Reznik J, Mosek A, Korczyn AD (2001) The value of muscle exercise in patients with amyotrophic lateral sclerosis. J Neurol Sci 191:133–137

    PubMed  CAS  Google Scholar 

  141. Dal Bello-Hass V, Florence JM, Kloos AD, Scheirbecker J, Lopate G, Hayes SM, Pioro EP, Mitsumoto H (2007) A randomized controlled trial of resistance exercise in individuals with ALS. Neurology 68:2003–2007

    Google Scholar 

  142. Dal Bello-Haas V, Florence JM, Krivickas LS (2008) Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev 2:CD005229

    Google Scholar 

  143. Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O (2003) Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996–2000. J Neurol Neurosurg Psychiatry 74:1258–1261

    PubMed  CAS  Google Scholar 

  144. Bensimon G, Lacomblez L, Meininger VA (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330:585–591

    PubMed  CAS  Google Scholar 

  145. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347:1425–1431

    PubMed  CAS  Google Scholar 

  146. Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17:4–31

    PubMed  CAS  Google Scholar 

  147. Miller RG, Mitchell JD, Lyon M, Moore DH (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 1:CD001447

    Google Scholar 

  148. Stone CA, O’Leary N (2009) Systematic review of the effectiveness of botulinum toxin or radiotherapy for sialorrhea in patients with amyotrophic lateral sclerosis. J Pain Symptom Manage 37:246–258

    PubMed  CAS  Google Scholar 

  149. Pioro EP, Brooks BR, Cummings J, Schiffer R, Thisted RA, Wynn D, Hepner A, Kaye R; Safety, Tolerability, and Efficacy Results Trial of AVP-923 in PBA Investigators (2010) Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect. Ann Neurol 68:693–702

    PubMed  CAS  Google Scholar 

  150. Bedlack RS, Pastula DM, Hawes J, Heydt D (2009) Open-label trial of levetiracetam for cramps and spasticity in patients with motor neuron disease. Amyotroph Lateral Scler 10:205–209

    Google Scholar 

  151. Rabkin JG, Gordon PH, McElhiney M, Rabkin R, Chew S, Mitsumoto H (2009) Modafinil treatment of fatigue in patients with ALS: a placebo-controlled study. Muscle Nerve 39:297–303

    PubMed  CAS  Google Scholar 

  152. Martinez HR, Gonzales-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E, Segura JJ (2009) Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11:26–34

    PubMed  CAS  Google Scholar 

  153. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223:229–237

    PubMed  CAS  Google Scholar 

  154. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Nefussy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nefussy, B., Drory, V.E. (2013). Toward a Personalized Approach in Amyotrophic Lateral Sclerosis: New Developments in Diagnosis, Genetics, Pathogenesis and Therapies. In: Mandel, S. (eds) Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in Predictive, Preventive and Personalised Medicine, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5866-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5866-7_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5865-0

  • Online ISBN: 978-94-007-5866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics