Skip to main content

Epitaxy Part A. LEDs Based on Heteroepitaxial GaN on Si Substrates

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 126))

Abstract

Recently, LEDs based on heteroepitaxial GaN on Si substrates (GaN/Si) are attracting a great attention and are industrially developed by many companies in order to compete with LEDs based on GaN/sappire and GaN/SiC which are commercially marketed advancing GaN/Si LEDs, though GaN/Si LEDs have been realized early in 2002. The recent attention on GaN/Si is due to the availability of low cost and large wafer size availability (up to 300 mm diameter) of Si substrates. In this article, we review the developments of the GaN epitaxial growth on Si and summarize the developments made in our laboratory including the device structures achieving the GaN/Si LEDs with higher emission efficiency. We describe on GaN/Si using (i) high temperature (HT) AlN/AlGaN intermediate layers, (ii) HT intermediate layers (ILs) and multilayers (MLs), and (iii) strained-layer superlattices (SLS) interlayers and their LED performances respectively. We believe that GaN/Si LEDs with low prices will become important LEDs for general lighting in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See a review in [23].

  2. 2.

    See reviews in [23, 179].

References

  1. I. Akasaki et al., Jpn. Annu. Rev. Electron. Comput. Telecommun. 19, 295 (1986)

    Google Scholar 

  2. H. Amano et al., Appl. Phys. Lett. 48, 353 (1986)

    Article  ADS  Google Scholar 

  3. H. Amano et al., Thin Solid Films 163, 415 (1988)

    Article  ADS  Google Scholar 

  4. H. Amano et al., Jpn. J. Appl. Phys. 28, L2112 (1989)

    Article  ADS  Google Scholar 

  5. S. Nakamura et al., Jpn. J. Appl. Phys. 31, 1258 (1992)

    Article  ADS  Google Scholar 

  6. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991)

    Article  ADS  Google Scholar 

  7. S. Nakamura et al., Jpn. J. Appl. Phys. 30, L1708 (1991)

    Article  ADS  Google Scholar 

  8. S. Nakamura et al., Jpn. J. Appl. Phys. 31, L139 (1992)

    Article  ADS  Google Scholar 

  9. S. Nakamura et al., Jpn. J. Appl. Phys. 30, L1998 (1991)

    Article  ADS  Google Scholar 

  10. S. Nakamura et al., Appl. Phys. Lett. 64, 1687 (1994)

    Article  ADS  Google Scholar 

  11. S. Nakamura et al., Jpn. J. Appl. Phys. 34, L797 (1995)

    Article  ADS  Google Scholar 

  12. S. Nakamura et al., Jpn. J. Appl. Phys. 34, L1332 (1995)

    Article  ADS  Google Scholar 

  13. T. Mukai et al., Jpn. J. Appl. Phys. 37, L839 (1998)

    Article  ADS  Google Scholar 

  14. C.H. Carter Jr. et al., Mater. Sci. Eng. B 61–62, 1 (1999)

    Article  Google Scholar 

  15. Compound Semicond. 6, 11 (2000)

    Google Scholar 

  16. V. Harle et al., Phys. Status Solidi A 180, 5 (2000)

    Article  ADS  Google Scholar 

  17. Compound Semicond. 7, 7 (2001)

    Google Scholar 

  18. D. Eisert et al., in Proc. Int. Workshop on Nitride Semiconductors (IWN 2000). IPAP Conf. Ser., vol. 1 (2000), p. 841

    Google Scholar 

  19. U. Zehnder et al., J. Cryst. Growth 230, 497 (2001)

    Article  ADS  Google Scholar 

  20. J. Baur et al., Phys. Status Solidi A 194, 399 (2002)

    Article  ADS  Google Scholar 

  21. U. Strauss et al., Phys. Status Solidi C 0, 276 (2002)

    Article  Google Scholar 

  22. H. Amano, in III-Nitride Based Lighting Emitting Diodes and Applications, ed. by T.-Y. Seong et al. Topics in Applied Physics, vol. 126 (2013), in this book

    Google Scholar 

  23. O. Oda, Compound Semiconductor Materials and Characterization, vol. 2 (World Scientific, Singapore, 2012), p. 205

    Book  Google Scholar 

  24. D. Hobgood et al., Mater. Sci. Forum 338–342, 3 (2000)

    Article  Google Scholar 

  25. N. Ohtani et al., Mater. Sci. Forum 389–393, 29 (2002)

    Article  Google Scholar 

  26. A.R. Powell et al., Mater. Sci. Forum 457–460, 41 (2004)

    Article  Google Scholar 

  27. J.J. Sumaeris et al., MRS Bull. 30, 280 (2005)

    Article  Google Scholar 

  28. R.T. Leonard et al., Mater. Sci. Forum 600–603, 7 (2009)

    Article  Google Scholar 

  29. Cree Research Inc., Industrial Session at the 8th Euro. Conf. SiC Relat. Mater. (ECSCRM2010, Norway, Oslo)

    Google Scholar 

  30. http://www.cree.com/press/press_detail.asp?i=1283181742965

  31. A. Krost, A. Dadgar, Mater. Sci. Eng. B 93, 77 (2002)

    Article  Google Scholar 

  32. M. Akiyama et al., Jpn. J. Appl. Phys. 23, L843 (1984)

    Article  ADS  Google Scholar 

  33. T. Egawa, Doctor Thesis, Nagoya Institute of Technology (1991)

    Google Scholar 

  34. T. Egawa et al., Jpn. J. Appl. Phys. 37, 1552 (1998)

    Article  ADS  Google Scholar 

  35. M. Umeno et al., Oyo Butsuri 72, 273 (2003)

    Google Scholar 

  36. Y. Nakada et al., Appl. Phys. Lett. 73, 827 (1998)

    Article  ADS  Google Scholar 

  37. S.A. Nikishin et al., Appl. Phys. Lett. 75, 2073 (1999)

    Article  ADS  Google Scholar 

  38. E. Calleja et al., J. Cryst. Growth 201–202, 296 (1999)

    Article  Google Scholar 

  39. F. Semond et al., Phys. Status Solidi A 188, 501 (2001)

    Article  ADS  Google Scholar 

  40. F. Semond et al., Appl. Phys. Lett. 78, 335 (2001)

    Article  ADS  Google Scholar 

  41. F. Semond et al., Phys. Status Solidi A 188, 501 (2001)

    Article  ADS  Google Scholar 

  42. F. Semond et al., Appl. Phys. Lett. 78, 335 (2001)

    Article  ADS  Google Scholar 

  43. T. Takeuchi et al., J. Cryst. Growth 115, 634 (1991)

    Article  ADS  Google Scholar 

  44. H. Amano et al., Appl. Phys. Lett. 48, 353 (1986)

    Article  ADS  Google Scholar 

  45. A. Watanabe et al., J. Cryst. Growth 128, 391 (1993)

    Article  ADS  Google Scholar 

  46. S. Guha et al., Appl. Phys. Lett. 72, 415 (1998)

    Article  ADS  Google Scholar 

  47. S. Guha et al., Appl. Phys. Lett. 723, 1487 (1998)

    Article  ADS  Google Scholar 

  48. U. Kaiser et al., J. Mater. Res. 14, 2036 (1999)

    Article  ADS  Google Scholar 

  49. C.A. Tran et al., Appl. Phys. Lett. 75, 1494 (1999)

    Article  ADS  Google Scholar 

  50. D.D. Koleske et al., Appl. Phys. Lett. 75, 3141 (1999)

    Article  ADS  Google Scholar 

  51. D.M. Follstaedt et al., MRS Internet J. Nitride Semicond. Res. 4S1, G3.72 (1999)

    Google Scholar 

  52. H. Lahreche et al., J. Cryst. Growth 217, 13 (2000)

    Article  ADS  Google Scholar 

  53. A. Dadger et al., Jpn. J. Appl. Phys. 39, L1183 (2000)

    Article  ADS  Google Scholar 

  54. A.T. Schremer et al., Appl. Phys. Lett. 76, 736 (2000)

    Article  ADS  Google Scholar 

  55. H. Machand et al., J. Appl. Phys. 89, 7846 (2001)

    Article  ADS  Google Scholar 

  56. J.D. Brown et al., Solid-State Electron. 46, 1535 (2002)

    Article  ADS  Google Scholar 

  57. F. Reihner et al., J. Cryst. Growth 248, 563 (2003)

    Article  ADS  Google Scholar 

  58. Y. Dikme et al., J. Cryst. Growth 248, 578 (2003)

    Article  ADS  Google Scholar 

  59. Y. Honda et al., Phys. Status Solidi C 2, 2125 (2005)

    Article  ADS  Google Scholar 

  60. S. Ohkoshi et al., in Tenth Record of Alloy Semiconductor Physics and Electronics Symp., Nagoya (1991), p. 172

    Google Scholar 

  61. H. Ishikawa et al., J. Cryst. Growth 189–190, 178 (1998)

    Article  Google Scholar 

  62. H. Ishikawa et al., Phys. Status Solidi A 176, 599 (1999)

    Article  ADS  Google Scholar 

  63. H. Ishikawa et al., Jpn. J. Appl. Phys. 38, L492 (1999)

    Article  ADS  Google Scholar 

  64. B.J. Zhang et al., Phys. Status Solidi A 188, 151 (2001)

    Article  ADS  Google Scholar 

  65. N. Nishikawa et al. Tech. Rep. IEICE, LQE 2001-142(2002-2), p. 37

    Google Scholar 

  66. T. Egawa et al., J. Appl. Phys. 91, 528 (2002)

    Article  ADS  Google Scholar 

  67. A. Dadgar et al., Appl. Phys. Lett. 78, 2211 (2001)

    Article  ADS  Google Scholar 

  68. H. Marchand et al., J. Appl. Phys. 89, 7846 (2001)

    Article  ADS  Google Scholar 

  69. M.H. Kim et al., Appl. Phys. Lett. 79, 2713 (2001)

    Article  ADS  Google Scholar 

  70. H. Lahreche et al., J. Cryst. Growth 231, 329 (2001)

    Article  ADS  Google Scholar 

  71. T. Egawa et al., Jpn. J. Appl. Phys. 41, L663 (2002)

    Article  ADS  Google Scholar 

  72. T. Egawa, ICN-5, Th-A8.1 (2003), p. 263

    Google Scholar 

  73. B. Zhang et al., Jpn. J. Appl. Phys. 42, L226 (2003)

    Article  ADS  Google Scholar 

  74. T. Egawa et al., Tech. Rep. IEICE, OPE-2003-202, 177 (2003)

    Google Scholar 

  75. H. Ishikawa et al., Tech. Rep. IEICE, ED2003-149, 291 (2003)

    Google Scholar 

  76. T. Egawa, Taiyo-Nissan Tech. Rep. 2, 23 (2004)

    Google Scholar 

  77. T. Egawa et al., IEEE Electron Device Lett. 26, 169 (2005)

    Article  ADS  Google Scholar 

  78. T. Egawa, in Wide Bandgap Semicondcutors, ed. by K. Takahashi, A. Yoshikawa, A. Sandhu (Springer, Berlin, 2007), p. 370

    Google Scholar 

  79. B. Zhang et al., Appl. Phys. Lett. 86, 071113 (2005)

    Article  ADS  Google Scholar 

  80. N.R. Hashimoto et al., Mater. Res. Soc. Symp. Proc. 395, 243 (1996)

    Google Scholar 

  81. N.P. Kobayashi et al., Appl. Phys. Lett. 71, 3569 (1997)

    Article  ADS  Google Scholar 

  82. N.P. Kobayashi et al., J. Cryst. Growth 189–190, 172 (1998)

    Article  Google Scholar 

  83. A. Strittmatter et al., Phys. Status Solidi A 176, 611 (1999)

    Article  ADS  Google Scholar 

  84. L.S. Wang et al., Appl. Phys. Lett. 72, 109 (1998)

    Article  ADS  Google Scholar 

  85. P.R. Hageman et al., Phys. Status Solidi A 188, 523 (2001)

    Article  ADS  Google Scholar 

  86. K.J. Lee et al., Appl. Phys. Lett. 85, 1502 (2004)

    Article  ADS  Google Scholar 

  87. T. Riemann et al., J. Appl. Phys. 99, 123518 (2006)

    Article  ADS  Google Scholar 

  88. J. Tolle et al., Appl. Phys. Lett. 82, 2398 (2003)

    Article  ADS  Google Scholar 

  89. J. Tolle et al., Appl. Phys. Lett. 84, 3510 (2004)

    Article  ADS  Google Scholar 

  90. C.-W. Hu et al., J. Cryst. Growth 267, 554 (2004)

    Article  ADS  Google Scholar 

  91. Y. Yamada-Takamura et al., Phys. Rev. Lett. 95, 266105 (2005)

    Article  ADS  Google Scholar 

  92. T. Wang et al., J. Appl. Phys. 100, 033506 (2006)

    Article  ADS  Google Scholar 

  93. A.H. Blake et al., J. Appl. Phys. 111, 033107 (2012)

    Article  ADS  Google Scholar 

  94. O. Contreas et al., Appl. Phys. Lett. 81, 4712 (2002)

    Article  ADS  Google Scholar 

  95. E. Feltin et al., Jpn. J. Appl. Phys. 40, L738 (2001)

    Article  ADS  Google Scholar 

  96. S. Lee et al., J. Korean Phys. Soc. 46, 1356 (2004)

    Google Scholar 

  97. B.A.B.A. Shunaimi et al., Mater. Res. Soc. Symp. Proc. 1167, O04-01 (2009)

    Google Scholar 

  98. B.A.B.A. Shunaimi et al., Jpn. J. Appl. Phys. 49, 021002 (2019)

    Google Scholar 

  99. T. Egawa et al., J. Phys. D, Appl. Phys. 43, 354008 (2010)

    Article  Google Scholar 

  100. H. Lahreche et al., Mater. Sci. Forum 338–342, 1487 (2000)

    Article  Google Scholar 

  101. A. Strittmatter et al., Appl. Phys. Lett. 78, 727 (2001)

    Article  ADS  Google Scholar 

  102. T. Decchprohm et al., Jpn. J. Appl. Phys. 40, L16 (2001)

    Article  ADS  Google Scholar 

  103. R.F. Davis et al., J. Cryst. Growth 231, 335 (2001)

    Article  ADS  Google Scholar 

  104. T.M. Katona et al., Phys. Status Solidi A 194, 550 (2002)

    Article  ADS  Google Scholar 

  105. T. Kato et al., J. Cryst. Growth 237–239, 1099 (2002)

    Article  Google Scholar 

  106. K.J. Kim et al., J. Korean Phys. Soc. 47, S500 (2005)

    Google Scholar 

  107. S. Zamir et al., Appl. Phys. Lett. 78, 288 (2001)

    Article  ADS  Google Scholar 

  108. S. Zamir et al., J. Cryst. Growth 230, 341 (2001)

    Article  ADS  Google Scholar 

  109. S. Zamir et al., J. Appl. Phys. 81, 1191 (2001)

    Google Scholar 

  110. Z. Yang et al., Appl. Phys. Lett. 88, 041913 (2006)

    Article  ADS  Google Scholar 

  111. B. Zhang et al., J. Cryst. Growth 298, 725 (2007)

    Article  ADS  Google Scholar 

  112. S.-J. Lee et al., Jpn. J. Appl. Phys. 47, 3070 (2008)

    Article  ADS  Google Scholar 

  113. A. Dadgar et al., Phys. Status Solidi A 192, 308 (2002)

    Article  ADS  Google Scholar 

  114. A. Dadgar et al., Appl. Phys. Lett. 80, 3670 (2002)

    Article  ADS  Google Scholar 

  115. Y. Kawaguchi et al., Jpn. J. Appl. Phys. 37, L966 (1998)

    Article  ADS  Google Scholar 

  116. Y. Kawaguchi et al., Phys. Status Solidi A 176, 553 (1999)

    Article  ADS  Google Scholar 

  117. S. Tanaka et al., Appl. Phys. Lett. 76, 2701 (2000)

    Article  ADS  Google Scholar 

  118. M. Seon et al., Appl. Phys. Lett. 76, 1842 (2000)

    Article  ADS  Google Scholar 

  119. J.W. Yang et al., Appl. Phys. Lett. 76, 273 (2000)

    Article  ADS  Google Scholar 

  120. Y. Honda et al., J. Cryst. Growth 230, 346 (2001)

    Article  ADS  Google Scholar 

  121. S. Tanaka et al., Appl. Phys. Lett. 79, 955 (2001)

    Article  ADS  Google Scholar 

  122. Y. Honda et al., J. Cryst. Growth 242, 82 (2002)

    Article  ADS  Google Scholar 

  123. Y. Honda et al., Appl. Phys. Lett. 80, 222 (2002)

    Article  ADS  Google Scholar 

  124. Y. Honda et al., J. Cryst. Growth 242, 77 (2002)

    Article  ADS  Google Scholar 

  125. T. Narita et al., Phys. Status Solidi C 2, 2349 (2005)

    Article  ADS  Google Scholar 

  126. T. Tanikawa et al., J. Cryst. Growth 310, 4999 (2008)

    Article  ADS  Google Scholar 

  127. T. Hikosaka et al., Phys. Status Solidi C 5, 2234 (2008)

    Article  ADS  Google Scholar 

  128. T. Tanikawa et al., Phys. Status Solidi C 5, 2966 (2008)

    Article  ADS  Google Scholar 

  129. T. Tanikawa et al., J. Cryst. Growth 311, 2879 (2009)

    Article  ADS  Google Scholar 

  130. M. Yang et al., J. Korean Phys. Soc. 54, 2363 (2009)

    Article  ADS  Google Scholar 

  131. M. Yang et al., J. Cryst. Growth 311, 2914 (2009)

    Article  ADS  Google Scholar 

  132. N. Sawaki et al., J. Cryst. Growth 311, 2867 (2009)

    Article  ADS  Google Scholar 

  133. C.-H. Chiu et al., J. Cryst. Growth 318, 500 (2011)

    Article  ADS  Google Scholar 

  134. C.-H. Chiu et al., Appl. Phys. Express 4, 012105 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  135. T. Murase et al., Jpn. J. Appl. Phys. 50, 01AD04 (2011)

    Article  Google Scholar 

  136. T. Tanikkawa et al., Phys. Status Solidi A 208, 1175 (2011)

    Article  ADS  Google Scholar 

  137. T. Mitsunarit et al., Phys. Status Solidi C 9, 480 (2012)

    Article  ADS  Google Scholar 

  138. D. Zubia et al., Appl. Phys. Lett. 76, 858 (2000)

    Article  ADS  Google Scholar 

  139. D. Zubia et al., J. Vac. Sci. Technol. B 18, 3514 (2000)

    Article  Google Scholar 

  140. S.D. Harsee et al., IEEE J. Quantum Electron. 38, 1017 (2002)

    Article  ADS  Google Scholar 

  141. J. Liang et al., Appl. Phys. Lett. 83, 1752 (2003)

    Article  ADS  Google Scholar 

  142. X.Y. Sun et al., J. Appl. Phys. 95, 1450 (2004)

    Article  ADS  Google Scholar 

  143. N.H. Zang et al., Appl. Phys. Lett. 87, 193106 (2005)

    Article  ADS  Google Scholar 

  144. K.Y. Zang et al., Appl. Phys. Lett. 88, 141925 (2006)

    Article  ADS  Google Scholar 

  145. L.S. Wang et al., Appl. Phys. Lett. 89, 011901 (2006)

    Article  ADS  Google Scholar 

  146. Z. Yang et al., J. Vac. Sci. Technol. B 13, 789 (1995)

    Article  Google Scholar 

  147. A.J. Steckl et al., Appl. Phys. Lett. 69, 2264 (1996)

    Article  ADS  Google Scholar 

  148. J. Cao et al., Appl. Phys. Lett. 71, 3880 (1997)

    Article  ADS  Google Scholar 

  149. J. Cao et al., J. Appl. Phys. 83, 3829 (1998)

    Article  ADS  Google Scholar 

  150. E.K. Koh et al., J. Cryst. Growth 218, 214 (2000)

    Article  ADS  Google Scholar 

  151. A. Dadgar et al., Proc. SPIE 6355, 63550R (2006)

    Article  Google Scholar 

  152. A. Ubukata et al., J. Cryst. Growth 298, 198 (2007)

    Article  ADS  Google Scholar 

  153. Y. Fu et al., J. Vac. Sci. Technol. A 18, 965 (2000)

    Article  ADS  Google Scholar 

  154. E. Feltin et al., Appl. Phys. Lett. 79, 3230 (2001)

    Article  ADS  Google Scholar 

  155. E. Feltin et al., Phys. Status Solidi A 188, 531 (2001)

    Article  ADS  Google Scholar 

  156. J.A. Floro et al., Mater. Res. Soc. Bull. 27, 19 (2002)

    Article  Google Scholar 

  157. E.F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  158. H. Ishikawa et al., Phys. Status Solidi A 201, 2653 (2004)

    Article  ADS  Google Scholar 

  159. H. Ishikawa et al., J. Cryst. Growth 272, 322 (2004)

    Article  ADS  Google Scholar 

  160. S.J. Lee et al., Appl. Phys. Express 4, 066501 (2011)

    Article  ADS  Google Scholar 

  161. W.S. Wong et al., Appl. Phys. Lett. 77, 2822 (2000)

    Article  ADS  Google Scholar 

  162. A. Dadger et al., IPAP Conf. Ser. 1, 845 (2000)

    Google Scholar 

  163. A. Dadgar et al., Phys. Status Solidi A 188, 155 (2001)

    Article  ADS  Google Scholar 

  164. F. Reiner et al., J. Phys. D 42, 055107 (2009)

    Article  ADS  Google Scholar 

  165. J. Wei et al., Jpn. J. Appl. Phys. 49, 072104 (2010)

    Article  ADS  Google Scholar 

  166. A. Krost et al., Phys. Status Solidi A 194, 361 (2002)

    Article  ADS  Google Scholar 

  167. A. Krost et al., Phys. Status Solidi A 200, 26 (2003)

    Article  ADS  Google Scholar 

  168. T. Egawa et al., J. Phys. D, Appl. Phys. 43, 354008 (2010)

    Article  Google Scholar 

  169. Nikkei, Nov. 22 (2001)

    Google Scholar 

  170. http://www.bridgelux.com/

  171. http://www.latticepower.com/

  172. http://ledsmagazine.com/news/8/7/2

  173. http://www.electroiq.com/articles/sst/2012/03/siltronic-scales-down-150mm-silicon-wafer-production-in-us-and-germany.html

  174. http://www.electroiq.com/articles/sst/2012/06/lattice-power-ramps-high-power-gan-on-si-led-production.html

  175. http://www.virtual-strategy.com/2012/03/25/plessey-acquires-gan-si-led-technology

  176. http://www.widepr.com/36402

  177. http://www.eetindia.co.in/ART_8800644758_1800010_NP_0f814454.HTM

  178. http://www.electroiq.com/articles/sst/2011/06/gan-on-si-hb-led-demo.html

  179. O. Oda, Compound Semiconductor Materials and Characterization (World Scientific, Singapore, 2007), p. 27

    Book  Google Scholar 

  180. J.I. Pankove, E.A. Miler, J.E. Berkeyheiser, RCA Rev. 32, 383 (1971)

    Google Scholar 

  181. S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42, 427 (1983)

    Article  ADS  Google Scholar 

  182. H.P. Maryska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  ADS  Google Scholar 

  183. S. Nakamura, S.F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, London, 2000)

    Google Scholar 

  184. S.D. Lester et al., Appl. Phys. Lett. 66, 1249 (1995)

    Article  ADS  Google Scholar 

  185. Y. Narukawa et al., Appl. Phys. Lett. 70, 981 (1997)

    Article  ADS  Google Scholar 

  186. L. Sugiura, Appl. Phys. Lett. 70, 1317 (1997)

    Article  ADS  Google Scholar 

  187. T. Egawa et al., Appl. Phys. Lett. 81, 292 (2002)

    Article  ADS  Google Scholar 

  188. T. Sasaki et al., Appl. Surf. Sci. 41, 504 (1989)

    Article  ADS  Google Scholar 

  189. S.Y. Ren, J.D. Dow, Appl. Phys. Lett. 69, 251 (1996)

    Article  ADS  Google Scholar 

  190. M. Horie et al., Phys. Status Solidi A 192, 151 (2002)

    Article  ADS  Google Scholar 

  191. A. Hashimoto et al., J. Cryst. Growth 175–176, 129 (1997)

    Article  Google Scholar 

  192. R. Graupner et al., J. Cryst. Growth 217, 55 (2000)

    Article  ADS  Google Scholar 

  193. A. Munkholm et al., Appl. Phys. Lett. 77, 1626 (2000)

    Article  ADS  Google Scholar 

  194. M.K. Sankara et al., Appl. Phys. Lett. 79, 1546 (2001)

    Article  ADS  Google Scholar 

  195. P. Chen et al., J. Cryst. Growth 225, 150 (2001)

    Article  ADS  Google Scholar 

  196. I.-H. Lee et al., J. Cryst. Growth 235, 73 (2002)

    Article  ADS  Google Scholar 

  197. X.H. Wu et al., Appl. Phys. Lett. 72, 692 (1998)

    Article  ADS  Google Scholar 

  198. Y. Sun et al., Appl. Phys. Lett. 87, 093115 (2005)

    Article  ADS  Google Scholar 

  199. H. Ishikawa et al., Jpn. J. Appl. Phys. 42, 6413 (2003)

    Article  ADS  Google Scholar 

  200. http://www.sanken-ele.co.jp/prod/semicon/led/led_f/gan.htm

  201. K. Orita et al., IEEE J. Quantum Electron. 44, 151 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Special Coordination Funds for Promoting Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Egawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Egawa, T., Oda, O. (2013). Epitaxy Part A. LEDs Based on Heteroepitaxial GaN on Si Substrates. In: Seong, TY., Han, J., Amano, H., Morkoç, H. (eds) III-Nitride Based Light Emitting Diodes and Applications. Topics in Applied Physics, vol 126. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5863-6_3

Download citation

Publish with us

Policies and ethics