Skip to main content

Genetics of Endometrial Carcinoma

  • Chapter
  • First Online:
Cancer Genomics

Abstract

Endometrial cancer (EC) is the most common gynaecological malignancy in the western world and it comprises a heterogeneous group of tumours with distinct risk factors, clinical presentation, and histopathological features. Two main groups of EC exist, endometrioid endometrial carcinomas (EECs or type I) and non endometrioid endometrial carcinoma (NEECs or type II), which evolve via distinct molecular pathways. The most common molecular alterations associated with EECs affect the phosphoinositide 3-kinase (PI3K)/Akt pathway due to mutations in PTEN or PI3KCA. Other pathways, such as the RAS-RAF-MEK-ERK, FGF and WNT signalling pathways are also frequently affected by gene mutations or epigenetic changes. In addition, a group of sporadic EECs are characterized by microsatellite instability due to DNA mismatch repair (MMR) deficiency secondary to promoter hypermethylation of MLH1. In addition, EC is the second most frequent malignancy in hereditary Lynch syndrome. MMR deficiency in these patients is secondary to germline mutations in MLH1, MSH2 or MSH6. Finally, ARID1A mutations have been recently described in a subset of EECs.

Endometrial serous carcinoma is the most frequent histological type of NEEC and is characterized by alterations in TP53 with secondary chromosomal instability, which leads to multiple chromosomal gains and losses, including amplification of oncogenes and loss of important tumour suppressor genes. By contrast, the molecular alterations in clear cell carcinomas, another histological type of NEEC, are poorly defined. Differences in genetic and epigenetic alterations between EEC and NEEC tumours are reflected in distinct gene expression profiles observed amongst different EC types. In the near future, careful molecular characterization of ECs must be necessary in order to implement new directed targeted therapies.

Endometrial carcinoma (EC) is a primary malignant epithelial tumour that arises in the endometrium and that can invade the myometrium in order to spread to distant sites [1]. In developed countries, EC is the most common malignant primary tumour of the female genital tract, and it represents the fourth and fifth most-frequently diagnosed cancer in women in Europe and the USA respectively, although this incidence is lower in Japan and developing countries. Moreover, while the incidence of EC among black women is approximately half that in white women, the proportion of EC-related deaths is greater in black than in white women for reasons that remain poorly understood [2]. The median age at which these tumours are diagnosed is 61 years, although some specific subtypes are diagnosed later, such as serous or clear cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverberg SG, Kurman R, Nogales F (ed) (2006) Tumours of the uterine corpus: epithelial tumours and related lesions. WHO classification of tumours of the breast and female genital organs, 1st edn. International agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  2. Allard JE, Maxwell GL (2009) Race disparities between black and white women in the incidence, treatment, and prognosis of endometrial cancer. Cancer Control 16(1):53–56

    PubMed  Google Scholar 

  3. Potischman N, Hoover RN, Brinton LA, Siiteri P, Dorgan JF, Swanson CA, Berman ML, Mortel R, Twiggs LB, Barrett RJ, Wilbanks GD, Persky V, Lurain JR (1996) Case-control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst 88(16):1127–1135

    PubMed  CAS  Google Scholar 

  4. Ambros RA, Sherman ME, Zahn CM, Bitterman P, Kurman RJ (1995) Endometrial intraepithelial carcinoma: a distinctive lesion specifically associated with tumors displaying serous differentiation. Hum Pathol 26(11):1260–1267. doi: 0046-8177(95)90203-1[pii]

    PubMed  CAS  Google Scholar 

  5. Kurman RJHEL, Ronnet BM (eds) (2011) Blaustein’s pathology of the female genital tract. Springer, New York

    Google Scholar 

  6. Soslow RA, Pirog E, Isacson C (2000) Endometrial intraepithelial carcinoma with associated peritoneal carcinomatosis. Am J Surg Pathol 24(5):726–732

    PubMed  CAS  Google Scholar 

  7. Yeremian AM-BG, Dolcet X, Catasus L, Abal M, Colas E, Reventos J, Palacios J, Prat J, Matias-Guiu X (2012) Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. doi: 10.1038/onc.2012.76

    Google Scholar 

  8. Soslow RA, Bissonnette JP, Wilton A, Ferguson SE, Alektiar KM, Duska LR, Oliva E (2007) Clinicopathologic analysis of 187 high-grade endometrial carcinomas of different histologic subtypes: similar outcomes belie distinctive biologic differences. Am J Surg Pathol 31(7):979–987. doi: 10.1097/PAS.0b013e31802ee49400000478-200707000-00001[pii]

    PubMed  Google Scholar 

  9. Zaino R (ed) (2007) Molecular pathology of gynecologic cancer, 1st edn. Humana Press, Totowa

    Google Scholar 

  10. Oliver KE, Enewold LR, Zhu K, Conrads TP, Rose GS, Maxwell GL, Farley JH (2011) Racial disparities in histopathologic characteristics of uterine cancer are present in older, not younger blacks in an equal-access environment. Gynecol Oncol 123(1):76–81. doi: S0090-8258(11)00496-3[pii]10.1016/j.ygyno.2011.06.027

    PubMed  Google Scholar 

  11. Prat J (2004) Prognostic parameters of endometrial carcinoma. Hum Pathol 35(6):649–662. doi: S0046817704001352[pii]

    PubMed  Google Scholar 

  12. Jordan LB, Al-Nafussi A (2002) Clinicopathological study of the pattern and significance of cervical involvement in cases of endometrial adenocarcinoma. Int J Gynecol Cancer 12(1):42–48

    PubMed  CAS  Google Scholar 

  13. Chan JK, Kapp DS (2007) Role of complete lymphadenectomy in endometrioid uterine cancer. Lancet Oncol 8(9):831–841. doi: S1470-2045(07)70275-9[pii]10.1016/S1470-2045(07)70275-9

    PubMed  Google Scholar 

  14. Cohn DE, Pavelka JC, Frankel WL, Morrison CD, Hampel H, Copeland LJ, Fowler JM (2008) Correlation between patient weight and defects in DNA mismatch repair: is this the link between an increased risk of previous cancer in thinner women with endometrial cancer? Int J Gynecol Cancer 18(1):136–140. doi: IJG964[pii]10.1111/j.1525-1438.2007.00964.x

    PubMed  CAS  Google Scholar 

  15. McCourt CK, Mutch DG, Gibb RK, Rader JS, Goodfellow PJ, Trinkaus K, Powell MA (2007) Body mass index: relationship to clinical, pathologic and features of microsatellite instability in endometrial cancer. Gynecol Oncol 104(3):535–539. doi: S0090-8258(06)00717-7[pii]10.1016/j.ygyno.2006.09.019

    PubMed  Google Scholar 

  16. Macdonald ND, Salvesen HB, Ryan A, Malatos S, Stefansson I, Iversen OE, Akslen LA, Das S, Jacobs IJ (2004) Molecular differences between RER+ and RER− sporadic endometrial carcinomas in a large population-based series. Int J Gynecol Cancer 14(5):957–965. doi: 10.1111/j.1048-891X.2004.014535.xIJG14535[pii]

    PubMed  CAS  Google Scholar 

  17. Catasus L, Matias-Guiu X, Machin P, Zannoni GF, Scambia G, Benedetti-Panici P, Prat J (2000) Frameshift mutations at coding mononucleotide repeat microsatellites in endometrial carcinoma with microsatellite instability. Cancer 88(10):2290–2297. doi:10.1002/(SICI)1097-0142(20000515)88:10<2290::AID-CNCR13>3.0.CO;2-I [pii]

    PubMed  CAS  Google Scholar 

  18. Kuismanen SA, Moisio AL, Schweizer P, Truninger K, Salovaara R, Arola J, Butzow R, Jiricny J, Nystrom-Lahti M, Peltomaki P (2002) Endometrial and colorectal tumors from patients with hereditary nonpolyposis colon cancer display different patterns of microsatellite instability. Am J Pathol 160(6):1953–1958. doi: S0002-9440(10)61144-3[pii]10.1016/S0002-9440(10)61144-3

    PubMed  CAS  Google Scholar 

  19. de Leeuw WJ, Dierssen J, Vasen HF, Wijnen JT, Kenter GG, Meijers-Heijboer H, Brocker-Vriends A, Stormorken A, Moller P, Menko F, Cornelisse CJ, Morreau H (2000) Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J Pathol 192(3):328–335. doi:10.1002/1096-9896(2000) 9999:9999<::AID-PATH701>3.0.CO;2-2 [pii] 10.1002/1096-9896(2000) 9999:9999<::AID-PATH701>3.0.CO;2-2

    PubMed  Google Scholar 

  20. Gurin CC, Federici MG, Kang L, Boyd J (1999) Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res 59(2):462–466

    PubMed  CAS  Google Scholar 

  21. Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M (1999) Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 59(12):2995–3002

    PubMed  CAS  Google Scholar 

  22. Myeroff LL, Parsons R, Kim SJ, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K et al (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55(23):5545–5547

    PubMed  CAS  Google Scholar 

  23. Shia J, Black D, Hummer AJ, Boyd J, Soslow RA (2008) Routinely assessed morphological features correlate with microsatellite instability status in endometrial cancer. Hum Pathol 39(1):116–125. doi: S0046-8177(07)00299-7[pii]10.1016/j.humpath.2007.05.022

    PubMed  CAS  Google Scholar 

  24. Karamurzin Y, Rutgers JK (2009) DNA mismatch repair deficiency in endometrial carcinoma. Int J Gynecol Pathol 28(3):239–255. doi: 10.1097/PGP.0b013e31818d8fe600004347-200905000-00006[pii]

    PubMed  Google Scholar 

  25. Hecht JL, Mutter GL (2006) Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol 24(29):4783–4791. doi: 24/29/4783[pii]10.1200/JCO.2006.06.7173

    PubMed  CAS  Google Scholar 

  26. Risinger JI, Hayes AK, Berchuck A, Barrett JC (1997) PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 57(21):4736–4738

    PubMed  CAS  Google Scholar 

  27. Bussaglia E, del Rio E, Matias-Guiu X, Prat J (2000) PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol 31(3):312–317

    PubMed  CAS  Google Scholar 

  28. Byron SA, Gartside MG, Wellens CL, Mallon MA, Keenan JB, Powell MA, Goodfellow PJ, Pollock PM (2008) Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res 68(17):6902–6907. doi: 68/17/6902[pii]10.1158/0008-5472.CAN-08-0770

    PubMed  CAS  Google Scholar 

  29. Konopka B, Janiec-Jankowska A, Czapczak D, Paszko Z, Bidzinski M, Olszewski W, Goluda C (2007) Molecular genetic defects in endometrial carcinomas: microsatellite instability, PTEN and beta-catenin (CTNNB1) genes mutations. J Cancer Res Clin Oncol 133(6):361–371. doi: 10.1007/s00432-006-0179-4

    PubMed  CAS  Google Scholar 

  30. Konopka B, Paszko Z, Janiec-Jankowska A, Goluda M (2002) Assessment of the quality and frequency of mutations occurrence in PTEN gene in endometrial carcinomas and hyperplasias. Cancer Lett 178(1):43–51. doi: S0304383501008151[pii]

    PubMed  CAS  Google Scholar 

  31. Turbiner J, Moreno-Bueno G, Dahiya S, Sanchez-Estevez C, Hardisson D, Prat J, Oliva E, Palacios J (2008) Clinicopathological and molecular analysis of endometrial carcinoma associated with tamoxifen. Mod Pathol 21(8):925–936. doi: modpathol200849[pii]10.1038/modpathol.2008.49

    PubMed  CAS  Google Scholar 

  32. Rudd ML, Price JC, Fogoros S, Godwin AK, Sgroi DC, Merino MJ, Bell DW (2011) A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res 17(6):1331–1340. doi: 1078-0432.CCR-10-0540[pii]10.1158/1078-0432.CCR-10-0540

    PubMed  CAS  Google Scholar 

  33. Bilbao C, Rodriguez G, Ramirez R, Falcon O, Leon L, Chirino R, Rivero JF, Falcon O Jr, Diaz-Chico BN, Diaz-Chico JC, Perucho M (2006) The relationship between microsatellite instability and PTEN gene mutations in endometrial cancer. Int J Cancer 119(3):563–570. doi: 10.1002/ijc.21862

    PubMed  CAS  Google Scholar 

  34. Zhou XP, Kuismanen S, Nystrom-Lahti M, Peltomaki P, Eng C (2002) Distinct PTEN mutational spectra in hereditary non-polyposis colon cancer syndrome-related endometrial carcinomas compared to sporadic microsatellite unstable tumors. Hum Mol Genet 11(4):445–450

    PubMed  CAS  Google Scholar 

  35. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, Berchuck A (1998) PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res 4(12):3005–3010

    PubMed  CAS  Google Scholar 

  36. Minaguchi T, Yoshikawa H, Oda K, Ishino T, Yasugi T, Onda T, Nakagawa S, Matsumoto K, Kawana K, Taketani Y (2001) PTEN mutation located only outside exons 5, 6, and 7 is an independent predictor of favorable survival in endometrial carcinomas. Clin Cancer Res 7(9):2636–2642

    PubMed  CAS  Google Scholar 

  37. An HJ, Kim KI, Kim JY, Shim JY, Kang H, Kim TH, Kim JK, Jeong JK, Lee SY, Kim SJ (2007) Microsatellite instability in endometrioid type endometrial adenocarcinoma is associated with poor prognostic indicators. Am J Surg Pathol 31(6):846–853. doi: 10.1097/01.pas.0000213423.30880.ac00000478-200706000-00004[pii]

    PubMed  Google Scholar 

  38. Oda K, Stokoe D, Taketani Y, McCormick F (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65(23):10669–10673. doi: 65/23/10669[pii]10.1158/0008-5472.CAN-05-2620

    PubMed  CAS  Google Scholar 

  39. Velasco A, Bussaglia E, Pallares J, Dolcet X, Llobet D, Encinas M, Llecha N, Palacios J, Prat J, Matias-Guiu X (2006) PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol 37(11):1465–1472. doi: S0046-8177(06)00315-7[pii]10.1016/j.humpath.2006.05.007

    PubMed  CAS  Google Scholar 

  40. Catasus L, Gallardo A, Cuatrecasas M, Prat J (2009) Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol 22(4):522–529. doi: modpathol20095[pii]10.1038/modpathol.2009.5

    PubMed  CAS  Google Scholar 

  41. Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW (2011) PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res 71(12):4061–4067. doi: 0008-5472.CAN-11-0549[pii]10.1158/0008-5472.CAN-11-0549

    PubMed  CAS  Google Scholar 

  42. Konopka B, Janiec-Jankowska A, Kwiatkowska E, Najmola U, Bidzinski M, Olszewski W, Goluda C (2011) PIK3CA mutations and amplification in endometrioid endometrial carcinomas: relation to other genetic defects and clinicopathologic status of the tumors. Hum Pathol 42(11):1710–1719. doi: S0046-8177(11)00054-2[pii]10.1016/j.humpath.2010.01.030

    PubMed  CAS  Google Scholar 

  43. Kang S, Seo SS, Chang HJ, Yoo CW, Park SY, Dong SM (2008) Mutual exclusiveness between PIK3CA and KRAS mutations in endometrial carcinoma. Int J Gynecol Cancer 18(6):1339–1343. doi: IJG1172[pii]10.1111/j.1525-1438.2007.01172.x

    PubMed  CAS  Google Scholar 

  44. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444. doi: nature05933[pii]10.1038/nature05933

    PubMed  CAS  Google Scholar 

  45. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, Sone K, Miyamoto Y, Hiraike H, Hiraike-Wada O, Nei T, Kawana K, Kuramoto H, Aburatani H, Yano T, Taketani Y (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101(1):145–148. doi: 6605109[pii]10.1038/sj.bjc.6605109

    PubMed  CAS  Google Scholar 

  46. Cohen Y, Shalmon B, Korach J, Barshack I, Fridman E, Rechavi G (2009) AKT1 pleckstrin homology domain E17K activating mutation in endometrial carcinoma. Gynecol Oncol 116(1):88–91. doi: S0090-8258(09)00737-9[pii]10.1016/j.ygyno.2009.09.038

    PubMed  CAS  Google Scholar 

  47. Dutt A, Salvesen HB, Greulich H, Sellers WR, Beroukhim R, Meyerson M (2009) Somatic mutations are present in all members of the AKT family in endometrial carcinoma. Br J Cancer 101(7):1218–1219. doi: 6605301[pii]10.1038/sj.bjc.6605301; author reply 1220–1211

    PubMed  CAS  Google Scholar 

  48. Mori N, Kyo S, Sakaguchi J, Mizumoto Y, Ohno S, Maida Y, Hashimoto M, Takakura M, Inoue M (2007) Concomitant activation of AKT with extracellular-regulated kinase 1/2 occurs independently of PTEN or PIK3CA mutations in endometrial cancer and may be associated with favorable prognosis. Cancer Sci 98(12):1881–1888. doi: CAS630[pii]10.1111/j.1349-7006.2007.00630.x

    PubMed  CAS  Google Scholar 

  49. Gurumurthy S, Rangnekar VM (2004) Par-4 inducible apoptosis in prostate cancer cells. J Cell Biochem 91(3):504–512. doi: 10.1002/jcb.20000

    PubMed  CAS  Google Scholar 

  50. Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C, Haber DA, Licht JD, Sugrue SP, Roberts T, Rangnekar VM, Shi Y (1996) A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16(12):6945–6956

    PubMed  CAS  Google Scholar 

  51. Sells SF, Han SS, Muthukkumar S, Maddiwar N, Johnstone R, Boghaert E, Gillis D, Liu G, Nair P, Monnig S, Collini P, Mattson MP, Sukhatme VP, Zimmer SG, Wood DP Jr, McRoberts JW, Shi Y, Rangnekar VM (1997) Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 17(7):3823–3832

    PubMed  CAS  Google Scholar 

  52. Moreno-Bueno G, Fernandez-Marcos PJ, Collado M, Tendero MJ, Rodriguez-Pinilla SM, Garcia-Cao I, Hardisson D, Diaz-Meco MT, Moscat J, Serrano M, Palacios J (2007) Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res 67(5):1927–1934. doi: 67/5/1927[pii]10.1158/0008-5472.CAN-06-2687

    PubMed  CAS  Google Scholar 

  53. Lagarda H, Catasus L, Arguelles R, Matias-Guiu X, Prat J (2001) K-ras mutations in endometrial carcinomas with microsatellite instability. J Pathol 193(2):193–199. doi:10.1002/1096-9896(2000) 9999:9999<::AID-PATH769>3.0.CO;2-9 [pii] 10.1002/1096-9896(2000) 9999:9999<::AID-PATH769>3.0.CO;2-9

    PubMed  CAS  Google Scholar 

  54. Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, Mutch DG, Goodfellow PJ, Pollock PM (2012) FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One 7(2):e30801. doi: 10.1371/journal.pone.0030801PONE-D-11-16471[pii]

    PubMed  CAS  Google Scholar 

  55. Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A, Konishi I (2005) BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression. Clin Cancer Res 11(17):6133–6138. doi: 11/17/6133[pii]10.1158/1078-0432.CCR-04-2670

    PubMed  CAS  Google Scholar 

  56. Kawaguchi M, Yanokura M, Banno K, Kobayashi Y, Kuwabara Y, Kobayashi M, Nomura H, Hirasawa A, Susumu N, Aoki D (2009) Analysis of a correlation between the BRAF V600E mutation and abnormal DNA mismatch repair in patients with sporadic endometrial cancer. Int J Oncol 34(6):1541–1547

    PubMed  CAS  Google Scholar 

  57. Pappa KI, Choleza M, Markaki S, Giannikaki E, Kyroudi A, Vlachos G, Voulgaris Z, Anagnou NP (2006) Consistent absence of BRAF mutations in cervical and endometrial cancer despite KRAS mutation status. Gynecol Oncol 100(3):596–600. doi: S0090-8258(05)00825-5[pii]10.1016/j.ygyno.2005.09.029

    PubMed  CAS  Google Scholar 

  58. Mizumoto Y, Kyo S, Mori N, Sakaguchi J, Ohno S, Maida Y, Hashimoto M, Takakura M, Inoue M (2007) Activation of ERK1/2 occurs independently of KRAS or BRAF status in endometrial cancer and is associated with favorable prognosis. Cancer Sci 98(5):652–658. doi: CAS445[pii]10.1111/j.1349-7006.2007.00445.x

    PubMed  CAS  Google Scholar 

  59. Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, Dolcet X, Prat J, Matias-Guiu X (2011) FGFR2 alterations in endometrial carcinoma. Mod Pathol 24(11):1500–1510. doi: modpathol2011110[pii]10.1038/modpathol.2011.110

    PubMed  CAS  Google Scholar 

  60. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM, Goodfellow PJ (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26(50):7158–7162. doi: 1210529[pii]10.1038/sj.onc.1210529

    PubMed  CAS  Google Scholar 

  61. Moreno-Bueno G, Hardisson D, Sanchez C, Sarrio D, Cassia R, Garcia-Rostan G, Prat J, Guo M, Herman JG, Matias-Guiu X, Esteller M, Palacios J (2002) Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene 21(52):7981–7990. doi: 10.1038/sj.onc.1205924

    PubMed  CAS  Google Scholar 

  62. Schlosshauer PW, Ellenson LH, Soslow RA (2002) Beta-catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod Pathol 15(10):1032–1037. doi: 10.1097/01.MP.0000028573.34289.04

    PubMed  Google Scholar 

  63. Schlosshauer PW, Pirog EC, Levine RL, Ellenson LH (2000) Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod Pathol 13(10):1066–1071. doi: 10.1038/modpathol.3880196

    PubMed  CAS  Google Scholar 

  64. Saegusa M, Hashimura M, Yoshida T, Okayasu I (2001) beta- Catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer 84(2):209–217. doi: 10.1054/bjoc.2000.1581S0007092000915817[pii]

    PubMed  CAS  Google Scholar 

  65. Saegusa M, Okayasu I (2001) Frequent nuclear beta-catenin accumulation and associated mutations in endometrioid-type endometrial and ovarian carcinomas with squamous differentiation. J Pathol 194(1):59–67. doi: 10.1002/path.856[pii]10.1002/path.856

    PubMed  CAS  Google Scholar 

  66. Zaino RJ, Kurman R, Herbold D, Gliedman J, Bundy BN, Voet R, Advani H (1991) The significance of squamous differentiation in endometrial carcinoma. Data from a Gynecologic Oncology Group study. Cancer 68(10):2293–2302

    PubMed  CAS  Google Scholar 

  67. Tao MH, Freudenheim JL (2010) DNA methylation in endometrial cancer. Epigenetics 5(6):491–498. doi: 12431[pii]

    PubMed  CAS  Google Scholar 

  68. Ikeda T, Yoshinaga K, Semba S, Kondo E, Ohmori H, Horii A (2000) Mutational analysis of the CTNNB1 (beta-catenin) gene in human endometrial cancer: frequent mutations at codon 34 that cause nuclear accumulation. Oncol Rep 7(2):323–326

    PubMed  CAS  Google Scholar 

  69. Sif S, Saurin AJ, Imbalzano AN, Kingston RE (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15(5):603–618. doi: 10.1101/gad.872801

    PubMed  CAS  Google Scholar 

  70. Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28(14):1653–1668. doi: onc20094[pii]10.1038/onc.2009.4

    PubMed  CAS  Google Scholar 

  71. Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231. doi: science.1196333[pii]10.1126/science.1196333

    PubMed  CAS  Google Scholar 

  72. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, Yang W, Heravi-Moussavi A, Giuliany R, Chow C, Fee J, Zayed A, Prentice L, Melnyk N, Turashvili G, Delaney AD, Madore J, Yip S, McPherson AW, Ha G, Bell L, Fereday S, Tam A, Galletta L, Tonin PN, Provencher D, Miller D, Jones SJ, Moore RA, Morin GB, Oloumi A, Boyd N, Aparicio SA, Shih Ie M, Mes-Masson AM, Bowtell DD, Hirst M, Gilks B, Marra MA, Huntsman DG (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543. doi: 10.1056/NEJMoa1008433

    PubMed  CAS  Google Scholar 

  73. Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y, Shih Ie M (2010) Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci 11(12):5120–5128. doi: 10.3390/ijms11125120ijms-11-05120[pii]

    PubMed  CAS  Google Scholar 

  74. Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL, Shih Ie M (2011) Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol 35(5):625–632. doi: 10.1097/PAS.0b013e318212782a

    PubMed  Google Scholar 

  75. Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, Huntsman DG (2011) Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol 224(3):328–333. doi: 10.1002/path.2911

    PubMed  CAS  Google Scholar 

  76. McConechy MK, Ding J, Cheang MC, Wiegand K, Senz J, Tone A, Yang W, Prentice L, Tse K, Zeng T, McDonald H, Schmidt AP, Mutch DG, McAlpine JN, Hirst M, Shah SP, Lee CH, Goodfellow PJ, Gilks CB, Huntsman DG (2012) Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. doi: 10.1002/path.4056

    Google Scholar 

  77. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L (2000) The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88(4):814–824. doi:10.1002/(SICI)1097-0142(20000215)88:4<814::AID-CNCR12>3.0.CO;2-U [pii]

    PubMed  CAS  Google Scholar 

  78. Tashiro H, Isacson C, Levine R, Kurman RJ, Cho KR, Hedrick L (1997) p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol 150(1):177–185

    PubMed  CAS  Google Scholar 

  79. Moll UM, Chalas E, Auguste M, Meaney D, Chumas J (1996) Uterine papillary serous carcinoma evolves via a p53-driven pathway. Hum Pathol 27(12):1295–1300. doi: S0046-8177(96)90340-8[pii]

    PubMed  CAS  Google Scholar 

  80. Prat J, Oliva E, Lerma E, Vaquero M, Matias-Guiu X (1994) Uterine papillary serous adenocarcinoma. A 10-case study of p53 and c-erbB-2 expression and DNA content. Cancer 74(6):1778–1783

    PubMed  CAS  Google Scholar 

  81. Sherman ME, Bur ME, Kurman RJ (1995) p53 in endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis. Hum Pathol 26(11):1268–1274. doi: 0046-8177(95)90204-X[pii]

    PubMed  CAS  Google Scholar 

  82. Janiec-Jankowska A, Konopka B, Goluda C, Najmola U (2010) TP53 mutations in endometrial cancers: relation to PTEN gene defects. Int J Gynecol Cancer 20(2):196–202

    PubMed  Google Scholar 

  83. Pijnenborg JM, van de Broek L, Dam de Veen GC, Roemen GM, de Haan J, van Engeland M, Voncken JW, Groothuis PG (2006) TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol 100(2):397–404. doi: S0090-8258(05)00847-4[pii]10.1016/j.ygyno.2005.09.056

    PubMed  CAS  Google Scholar 

  84. Engelsen IB, Stefansson I, Akslen LA, Salvesen HB (2006) Pathologic expression of p53 or p16 in preoperative curettage specimens identifies high-risk endometrial carcinomas. Am J Obstet Gynecol 195(4):979–986. doi: S0002-9378(06)00289-4[pii]10.1016/j.ajog.2006.02.045

    PubMed  CAS  Google Scholar 

  85. Jongen VH, Briet JM, de Jong RA, Joppe E, ten Hoor KA, Boezen HM, Evans DB, Hollema H, van der Zee AG, Nijman HW (2009) Aromatase, cyclooxygenase 2, HER-2/neu, and p53 as prognostic factors in endometrioid endometrial cancer. Int J Gynecol Cancer 19(4):670–676. doi: 10.1111/IGC.0b013e3181a47c2500009577-200905000-00031[pii]

    PubMed  Google Scholar 

  86. Lee EJ, Kim TJ, Kim DS, Choi CH, Lee JW, Lee JH, Bae DS, Kim BG (2010) p53 alteration independently predicts poor outcomes in patients with endometrial cancer: a clinicopathologic study of 131 cases and literature review. Gynecol Oncol 116(3):533–538. doi: S0090-8258(09)00959-7[pii]10.1016/j.ygyno.2009.11.018

    PubMed  CAS  Google Scholar 

  87. Saffari B, Bernstein L, Hong DC, Sullivan-Halley J, Runnebaum IB, Grill HJ, Jones LA, El-Naggar A, Press MF (2005) Association of p53 mutations and a codon 72 single nucleotide polymorphism with lower overall survival and responsiveness to adjuvant radiotherapy in endometrioid endometrial carcinomas. Int J Gynecol Cancer 15(5):952–963. doi: IJG159[pii]10.1111/j.1525-1438.2005.00159.x

    PubMed  CAS  Google Scholar 

  88. Chiesa-Vottero AG, Malpica A, Deavers MT, Broaddus R, Nuovo GJ, Silva EG (2007) Immunohistochemical overexpression of p16 and p53 in uterine serous carcinoma and ovarian high-grade serous carcinoma. Int J Gynecol Pathol 26(3):328–333. doi: 10.1097/01.pgp.0000235065.31301.3e00004347-200707000-00023[pii]

    PubMed  Google Scholar 

  89. Reid-Nicholson M, Iyengar P, Hummer AJ, Linkov I, Asher M, Soslow RA (2006) Immunophenotypic diversity of endometrial adenocarcinomas: implications for differential diagnosis. Mod Pathol 19(8):1091–1100. doi: 3800620[pii]10.1038/modpathol.3800620

    PubMed  CAS  Google Scholar 

  90. Hayes MP, Douglas W, Ellenson LH (2009) Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma. Gynecol Oncol 113(3):370–373. doi: S0090-8258(08)01063-9[pii]10.1016/j.ygyno.2008.12.021

    PubMed  CAS  Google Scholar 

  91. Santin AD, Bellone S, Gokden M, Palmieri M, Dunn D, Agha J, Roman JJ, Hutchins L, Pecorelli S, O’Brien T, Cannon MJ, Parham GP (2002) Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res 8(5):1271–1279

    PubMed  CAS  Google Scholar 

  92. Slomovitz BM, Broaddus RR, Burke TW, Sneige N, Soliman PT, Wu W, Sun CC, Munsell MF, Gershenson DM, Lu KH (2004) Her-2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol 22(15):3126–3132. doi: 10.1200/JCO.2004.11.15422/15/3126[pii]

    PubMed  CAS  Google Scholar 

  93. Grushko TA, Filiaci VL, Mundt AJ, Ridderstrale K, Olopade OI, Fleming GF (2008) An exploratory analysis of HER-2 amplification and overexpression in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 108(1):3–9. doi: S0090-8258(07)00727-5[pii]10.1016/j.ygyno.2007.09.007

    PubMed  CAS  Google Scholar 

  94. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, Berek JS, Chapman JA, DiSilvestro PA, Horowitz IR, Fiorica JV (2010) Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 116(1):15–20. doi: S0090-8258(09)00724-0[pii]10.1016/j.ygyno.2009.09.025

    PubMed  CAS  Google Scholar 

  95. Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Marcos R, Hardisson D, Cigudosa JC, Palacios J (2004) Molecular alterations associated with cyclin D1 overexpression in endometrial cancer. Int J Cancer 110(2):194–200. doi: 10.1002/ijc.20130

    PubMed  CAS  Google Scholar 

  96. Cassia R, Moreno-Bueno G, Rodriguez-Perales S, Hardisson D, Cigudosa JC, Palacios J (2003) Cyclin E gene (CCNE) amplification and hCDC4 mutations in endometrial carcinoma. J Pathol 201(4):589–595. doi: 10.1002/path.1474

    PubMed  CAS  Google Scholar 

  97. O’Toole SA, Dunn E, Sheppard BL, Klocker H, Bektic J, Smyth P, Martin C, Sheils O, O’Leary JJ (2006) Genome-wide analysis of deoxyribonucleic acid in endometrial cancer using comparative genomic hybridization microarrays. Int J Gynecol Cancer 16(2):834–842. doi: IJG530[pii]10.1111/j.1525-1438.2006.00530.x

    PubMed  Google Scholar 

  98. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, Raeder MB, Sos ML, Engelsen IB, Trovik J, Wik E, Greulich H, Bo TH, Jonassen I, Thomas RK, Zander T, Garraway LA, Oyan AM, Sellers WR, Kalland KH, Meyerson M, Akslen LA, Beroukhim R (2009) Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A 106(12):4834–4839. doi: 0806514106[pii]10.1073/pnas.0806514106

    PubMed  CAS  Google Scholar 

  99. Samuelson E, Levan K, Adamovic T, Levan G, Horvath G (2008) Recurrent gene amplifications in human type I endometrial adenocarcinoma detected by fluorescence in situ hybridization. Cancer Genet Cytogenet 181(1):25–30. doi: S0165-4608(07)00762-5[pii]10.1016/j.cancergencyto.2007.11.006

    PubMed  CAS  Google Scholar 

  100. Mell LK, Meyer JJ, Tretiakova M, Khramtsov A, Gong C, Yamada SD, Montag AG, Mundt AJ (2004) Prognostic significance of E-cadherin protein expression in pathological stage I-III endometrial cancer. Clin Cancer Res 10(16):5546–5553. doi: 10.1158/1078-0432.CCR-0943-0310/16/5546[pii]

    PubMed  CAS  Google Scholar 

  101. Moreno-Bueno G, Hardisson D, Sarrio D, Sanchez C, Cassia R, Prat J, Herman JG, Esteller M, Matias-Guiu X, Palacios J (2003) Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol 199(4):471–478. doi: 10.1002/path.1310

    PubMed  CAS  Google Scholar 

  102. Stefansson IM, Salvesen HB, Akslen LA (2004) Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol 22(7):1242–1252. doi: 10.1200/JCO.2004.09.034JCO.2004.09.034[pii]

    PubMed  CAS  Google Scholar 

  103. Singh M, Spoelstra NS, Jean A, Howe E, Torkko KC, Clark HR, Darling DS, Shroyer KR, Horwitz KB, Broaddus RR, Richer JK (2008) ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol 21(7):912–923. doi: modpathol200882[pii]10.1038/modpathol.2008.82

    PubMed  CAS  Google Scholar 

  104. Lax SF, Pizer ES, Ronnett BM, Kurman RJ (1998) Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum Pathol 29(6):551–558

    PubMed  CAS  Google Scholar 

  105. Okuda T, Otsuka J, Sekizawa A, Saito H, Makino R, Kushima M, Farina A, Kuwano Y, Okai T (2003) p53 mutations and overexpression affect prognosis of ovarian endometrioid cancer but not clear cell cancer. Gynecol Oncol 88(3):318–325. doi: S009082580200149X[pii]

    PubMed  CAS  Google Scholar 

  106. Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ, Barrett JC, Boyd J, Birrer MJ (2005) Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 11(18):6422–6430. doi: 11/18/6422[pii]10.1158/1078-0432.CCR-05-0508

    PubMed  CAS  Google Scholar 

  107. Pradhan M, Abeler VM, Danielsen HE, Trope CG, Risberg BA (2006) Image cytometry DNA ploidy correlates with histological subtypes in endometrial carcinomas. Mod Pathol 19(9):1227–1235. doi: 3800641[pii]10.1038/modpathol.3800641

    PubMed  CAS  Google Scholar 

  108. Habermann JK, Bundgen NK, Gemoll T, Hautaniemi S, Lundgren C, Wangsa D, Doering J, Bruch HP, Nordstroem B, Roblick UJ, Jornvall H, Auer G, Ried T (2011) Genomic instability influences the transcriptome and proteome in endometrial cancer subtypes. Mol Cancer 10:132. doi: 1476-4598-10-132[pii]10.1186/1476-4598-10-132

    PubMed  CAS  Google Scholar 

  109. Lundgren C, Auer G, Frankendal B, Nilsson B, Nordstrom B (2004) Prognostic factors in surgical stage I endometrial carcinoma. Acta Oncol 43(1):49–56

    PubMed  Google Scholar 

  110. Pradhan M, Abeler VM, Danielsen HE, Sandstad B, Trope CG, Kristensen GB, Risberg BA (2011) Prognostic importance of DNA ploidy and DNA index in stage I and II endometrioid adenocarcinoma of the endometrium. Ann Oncol. doi: mdr368[pii]10.1093/annonc/mdr368

    Google Scholar 

  111. Suehiro Y, Okada T, Anno K, Okayama N, Ueno K, Hiura M, Nakamura M, Kondo T, Oga A, Kawauchi S, Hirabayashi K, Numa F, Ito T, Saito T, Sasaki K, Hinoda Y (2008) Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin Cancer Res 14(11):3354–3361. doi: 14/11/3354[pii]10.1158/1078-0432.CCR-07-4609

    PubMed  CAS  Google Scholar 

  112. Susini T, Amunni G, Molino C, Carriero C, Rapi S, Branconi F, Marchionni M, Taddei G, Scarselli G (2007) Ten-year results of a prospective study on the prognostic role of ploidy in endometrial carcinoma: dNA aneuploidy identifies high-risk cases among the so-called ‘low-risk’ patients with well and moderately differentiated tumors. Cancer 109(5):882–890. doi: 10.1002/cncr.22465

    PubMed  CAS  Google Scholar 

  113. Wik E, Trovik J, Iversen OE, Engelsen IB, Stefansson IM, Vestrheim LC, Haugland HK, Akslen LA, Salvesen HB (2009) Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am J Obstet Gynecol 201(6):603.e601–603.e607. doi: S0002-9378(09)00816-3[pii]10.1016/j.ajog.2009.07.029

    Google Scholar 

  114. Hogberg T, Fredstorp-Lidebring M, Alm P, Baldetorp B, Larsson G, Ottosen C, Svanberg L, Lindahl B (2004) A prospective population-based management program including primary surgery and postoperative risk assessment by means of DNA ploidy and histopathology. Adjuvant radiotherapy is not necessary for the majority of patients with FIGO stage I-II endometrial cancer. Int J Gynecol Cancer 14(3):437–450. doi: 10.1111/j.1048-891x.2004.014303.xIJG14303[pii]

    PubMed  CAS  Google Scholar 

  115. Mangili G, Montoli S, De Marzi P, Sassi I, Aletti G, Taccagni G (2008) The role of DNA ploidy in postoperative management of stage I endometrial cancer. Ann Oncol 19(7):1278–1283. doi: mdn041[pii]10.1093/annonc/mdn041

    PubMed  CAS  Google Scholar 

  116. Fles R, Hoogendoorn WE, Platteel I, Scheerman CE, de Leeuw-Mantel G, Mourits MJ, Hollema H, van Leeuwen FE, van Boven HH, Nederlof PM (2010) Genomic profile of endometrial tumors depends on morphological subtype, not on tamoxifen exposure. Genes Chromosomes Cancer 49(8):699–710. doi: 10.1002/gcc.20781

    PubMed  CAS  Google Scholar 

  117. Levan K, Partheen K, Osterberg L, Helou K, Horvath G (2006) Chromosomal alterations in 98 endometrioid adenocarcinomas analyzed with comparative genomic hybridization. Cytogenet Genome Res 115(1):16–22. doi: 94796[pii]10.1159/000094796

    PubMed  CAS  Google Scholar 

  118. Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S (2004) Genomic aberrations in carcinomas of the uterine corpus. Genes Chromosomes Cancer 40(3):229–246. doi: 10.1002/gcc.20038

    PubMed  CAS  Google Scholar 

  119. Muslumanoglu HM, Oner U, Ozalp S, Acikalin MF, Yalcin OT, Ozdemir M, Artan S (2005) Genetic imbalances in endometrial hyperplasia and endometrioid carcinoma detected by comparative genomic hybridization. Eur J Obstet Gynecol Reprod Biol 120(1):107–114. doi: S0301-2115(04)00490-7[pii]10.1016/j.ejogrb.2004.08.015

    PubMed  CAS  Google Scholar 

  120. Pere H, Tapper J, Wahlstrom T, Knuutila S, Butzow R (1998) Distinct chromosomal imbalances in uterine serous and endometrioid carcinomas. Cancer Res 58(5):892–895

    PubMed  CAS  Google Scholar 

  121. Schulten HJ, Gunawan B, Enders C, Donhuijsen K, Emons G, Fuzesi L (2004) Overrepresentation of 8q in carcinosarcomas and endometrial adenocarcinomas. Am J Clin Pathol 122(4):546–551. doi: 10.1309/10FC-NCTC-56NM-N0YE

    PubMed  CAS  Google Scholar 

  122. Suzuki A, Fukushige S, Nagase S, Ohuchi N, Satomi S, Horii A (1997) Frequent gains on chromosome arms 1q and/or 8q in human endometrial cancer. Hum Genet 100(5–6):629–636

    PubMed  CAS  Google Scholar 

  123. Mitelman F, Johansson B, Mertens FE (2012) Mitelman database of chromosome aberrations and gene fusions in cancer. http://cgapncinihgov/Chromosomes/Mitelman

  124. Kildal W, Micci F, Risberg B, Abeler VM, Kristensen GB, Heim S, Danielsen HE (2012) Genomic imbalances in endometrial adenocarcinomas – comparison of DNA ploidy, karyotyping and comparative genomic hybridization. Mol Oncol 6(1):98–107. doi: S1574-7891(11)9-0[pii]10.1016/j.molonc.2011.10.002

    PubMed  CAS  Google Scholar 

  125. Moreno-Bueno G, Sanchez-Estevez C, Cassia R, Rodriguez-Perales S, Diaz-Uriarte R, Dominguez O, Hardisson D, Andujar M, Prat J, Matias-Guiu X, Cigudosa JC, Palacios J (2003) Differential gene expression profile in endometrioid and nonendometrioid endometrial carcinoma: STK15 is frequently overexpressed and amplified in nonendometrioid carcinomas. Cancer Res 63(18):5697–5702

    PubMed  CAS  Google Scholar 

  126. Planaguma J, Diaz-Fuertes M, Gil-Moreno A, Abal M, Monge M, Garcia A, Baro T, Thomson TM, Xercavins J, Alameda F, Reventos J (2004) A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma. Cancer Res 64(24):8846–8853. doi: 64/24/8846[pii]10.1158/0008-5472.CAN-04-2066

    PubMed  CAS  Google Scholar 

  127. Planaguma J, Abal M, Gil-Moreno A, Diaz-Fuertes M, Monge M, Garcia A, Baro T, Xercavins J, Reventos J, Alameda F (2005) Up-regulation of ERM/ETV5 correlates with the degree of myometrial infiltration in endometrioid endometrial carcinoma. J Pathol 207(4):422–429. doi: 10.1002/path.1853

    PubMed  CAS  Google Scholar 

  128. Mhawech-Fauceglia P, Wang D, Kesterson J, Clark K, Monhollen L, Odunsi K, Lele S, Liu S (2010) Microarray analysis reveals distinct gene expression profiles among different tumor histology, stage and disease outcomes in endometrial adenocarcinoma. PLoS One 5(11):e15415. doi: 10.1371/journal.pone.0015415.s001

    PubMed  Google Scholar 

  129. Campan M, Weisenberger DJ, Laird PW (2006) DNA methylation profiles of female steroid hormone-driven human malignancies. Curr Top Microbiol Immunol 310:141–178

    PubMed  CAS  Google Scholar 

  130. Kang S, Kim JW, Kang GH, Lee S, Park NH, Song YS, Park SY, Kang SB, Lee HP (2006) Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer 118(9):2168–2171. doi: 10.1002/ijc.21609

    PubMed  CAS  Google Scholar 

  131. Nieminen TT, Gylling A, Abdel-Rahman WM, Nuorva K, Aarnio M, Renkonen-Sinisalo L, Jarvinen HJ, Mecklin JP, Butzow R, Peltomaki P (2009) Molecular analysis of endometrial tumorigenesis: importance of complex hyperplasia regardless of atypia. Clin Cancer Res 15(18):5772–5783. doi: 1078-0432.CCR-09-0506[pii]10.1158/1078-0432.CCR-09-0506

    PubMed  CAS  Google Scholar 

  132. Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, Trojan J, Vaurs-Barriere C, Bignon YJ, Ramus S, Benitez J, Caldes T, Akiyama Y, Yuasa Y, Launonen V, Canal MJ, Rodriguez R, Capella G, Peinado MA, Borg A, Aaltonen LA, Ponder BA, Baylin SB, Herman JG (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10(26):3001–3007

    PubMed  CAS  Google Scholar 

  133. Muraki Y, Banno K, Yanokura M, Kobayashi Y, Kawaguchi M, Nomura H, Hirasawa A, Susumu N, Aoki D (2009) Epigenetic DNA hypermethylation: clinical applications in endometrial cancer (Review). Oncol Rep 22(5):967–972

    PubMed  CAS  Google Scholar 

  134. Yanokura M, Banno K, Susumu N, Kawaguchi M, Kuwabara Y, Tsukazaki K, Aoki D (2006) Hypermethylation in the p16 promoter region in the carcinogenesis of endometrial cancer in Japanese patients. Anticancer Res 26(2A):851–856

    PubMed  CAS  Google Scholar 

  135. Sasaki M, Kotcherguina L, Dharia A, Fujimoto S, Dahiya R (2001) Cytosine-phosphoguanine methylation of estrogen receptors in endometrial cancer. Cancer Res 61(8):3262–3266

    PubMed  CAS  Google Scholar 

  136. Sasaki M, Dharia A, Oh BR, Tanaka Y, Fujimoto S, Dahiya R (2001) Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res 61(1):97–102

    PubMed  CAS  Google Scholar 

  137. Navari JR, Roland PY, Keh P, Salvesen HB, Akslen LA, Iversen OE, Das S, Kothari R, Howey S, Phillips B (2000) Loss of estrogen receptor (ER) expression in endometrial tumors is not associated with de novo methylation of the 5′ end of the ER gene. Clin Cancer Res 6(10):4026–4032

    PubMed  CAS  Google Scholar 

  138. Ignatov A, Bischoff J, Schwarzenau C, Krebs T, Kuester D, Herrmann K, Costa SD, Roessner A, Semczuk A, Schneider-Stock R (2008) P16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol Oncol 111(2):365–371. doi: S0090-8258(08)00558-1[pii]10.1016/j.ygyno.2008.07.037

    PubMed  CAS  Google Scholar 

  139. Salvesen HB, Das S, Akslen LA (2000) Loss of nuclear p16 protein expression is not associated with promoter methylation but defines a subgroup of aggressive endometrial carcinomas with poor prognosis. Clin Cancer Res 6(1):153–159

    PubMed  CAS  Google Scholar 

  140. Kang S, Lee JM, Jeon ES, Lee S, Kim H, Kim HS, Seo SS, Park SY, Sidransky D, Dong SM (2006) RASSF1A hypermethylation and its inverse correlation with BRAF and/or KRAS mutations in MSI-associated endometrial carcinoma. Int J Cancer 119(6):1316–1321. doi: 10.1002/ijc.21991

    PubMed  CAS  Google Scholar 

  141. Pallares J, Velasco A, Eritja N, Santacana M, Dolcet X, Cuatrecasas M, Palomar-Asenjo V, Catasus L, Prat J, Matias-Guiu X (2008) Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod Pathol 21(6):691–699. doi: modpathol200838[pii]10.1038/modpathol.2008.38

    PubMed  CAS  Google Scholar 

  142. Jo H, Kim JW, Kang GH, Park NH, Song YS, Kang SB, Lee HP (2006) Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer. Oncol Res 16(4):205–209

    PubMed  CAS  Google Scholar 

  143. Zysman M, Saka A, Millar A, Knight J, Chapman W, Bapat B (2002) Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype. Cancer Res 62(13):3663–3666

    PubMed  CAS  Google Scholar 

  144. Banno K, Yanokura M, Susumu N, Kawaguchi M, Hirao N, Hirasawa A, Tsukazaki K, Aoki D (2006) Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer. Oncol Rep 16(6):1189–1196

    PubMed  CAS  Google Scholar 

  145. Yi TZ, Guo J, Zhou L, Chen X, Mi RR, Qu QX, Zheng JH, Zhai L (2011) Prognostic value of E-cadherin expression and CDH1 promoter methylation in patients with endometrial carcinoma. Cancer Invest 29(1):86–92. doi: 10.3109/07357907.2010.512603

    PubMed  CAS  Google Scholar 

  146. Pijnenborg JM, Kisters N, van Engeland M, Dunselman GA, de Haan J, de Goeij AF, Groothuis PG (2004) APC, beta-catenin, and E-cadherin and the development of recurrent endometrial carcinoma. Int J Gynecol Cancer 14(5):947–956. doi: 10.1111/j.1048-891X.2004.014534.xIJG14534[pii]

    PubMed  CAS  Google Scholar 

  147. Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438(7070):981–987. doi: nature04225[pii]10.1038/nature04225

    PubMed  CAS  Google Scholar 

  148. Xiong Y, Dowdy SC, Xue A, Shujuan J, Eberhardt NL, Podratz KC, Jiang SW (2005) Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol Oncol 96(3):601–609. doi: S0090-8258(04)00967-9[pii]10.1016/j.ygyno.2004.11.047

    PubMed  CAS  Google Scholar 

  149. Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen DT, Dressman H, Lancaster JM (2008) MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 110(2):206–215. doi: S0090-8258(08)00200-X[pii]10.1016/j.ygyno.2008.03.023

    PubMed  CAS  Google Scholar 

  150. Cohn DE, Fabbri M, Valeri N, Alder H, Ivanov I, Liu CG, Croce CM, Resnick KE (2010) Comprehensive miRNA profiling of surgically staged endometrial cancer. Am J Obstet Gynecol 202(6):656.e651–656.e658. doi: S0002-9378(10)00277-2[pii]10.1016/j.ajog.2010.02.051

    Google Scholar 

  151. Ratner ES, Tuck D, Richter C, Nallur S, Patel RM, Schultz V, Hui P, Schwartz PE, Rutherford TJ, Weidhaas JB (2010) MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol Oncol 118(3):251–257. doi: S0090-8258(10)00366-5[pii]10.1016/j.ygyno.2010.05.010

    PubMed  CAS  Google Scholar 

  152. Snowdon J, Zhang X, Childs T, Tron VA, Feilotter H (2011) The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One 6(8):e22828. doi: 10.1371/journal.pone.0022828PONE-D-11-06765[pii]

    PubMed  CAS  Google Scholar 

  153. Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF, Siu NS, Wong YM, Tsang PT, Pang MW, Yu MY, To KF, Mok SC, Wang VW, Li C, Cheung AY, Doran G, Birrer MJ, Smith DI, Wong YF (2009) Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer 124(6):1358–1365. doi: 10.1002/ijc.24071

    PubMed  CAS  Google Scholar 

  154. Wu W, Lin Z, Zhuang Z, Liang X (2009) Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 18(1):50–55. doi: 10.1097/CEJ.0b013e328305a07a00008469-200902000-00008[pii]

    PubMed  CAS  Google Scholar 

  155. Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, Sasano H, Yaegashi N (2010) Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci 101(1):241–249. doi: CAS1385[pii]10.1111/j.1349-7006.2009.01385.x

    PubMed  CAS  Google Scholar 

  156. Devor EJ, Hovey AM, Goodheart MJ, Ramachandran S, Leslie KK (2011) microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncol Rep 26(4):995–1002. doi: 10.3892/or.2011.1372

    PubMed  CAS  Google Scholar 

  157. Lee JW, Park YA, Choi JJ, Lee YY, Kim CJ, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2011) The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol 120(1):56–62. doi: S0090-8258(10)00718-3[pii]10.1016/j.ygyno.2010.09.022

    PubMed  CAS  Google Scholar 

  158. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5(3):115–119. doi: 6558[pii]

    PubMed  CAS  Google Scholar 

  159. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA, Prat J, Matias-Guiu X, Cano A, Oliva E, Palacios J (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223(1):72–80. doi: 10.1002/path.2802

    PubMed  CAS  Google Scholar 

  160. Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D, Richer JK (2010) MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer 1(6):306–319. doi: 10.1007/s12672-010-0043-5

    PubMed  CAS  Google Scholar 

  161. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70(1):367–377. doi: 0008-5472.CAN-09-1891[pii]10.1158/0008-5472.CAN-09-1891

    PubMed  CAS  Google Scholar 

  162. Karaayvaz M, Zhang C, Liang S, Shroyer KR, Ju J (2012) Prognostic significance of miR-205 in endometrial cancer. PLoS One 7(4):e35158. doi: 10.1371/journal.pone.0035158PONE-D-11-23460[pii]

    PubMed  CAS  Google Scholar 

  163. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004. doi: 10.1073/pnas.03073231010307323101[pii]

    PubMed  CAS  Google Scholar 

  164. Torres A, Torres K, Paszkowski T, Jodlowska-Jedrych B, Radomanski T, Ksiazek A, Maciejewski R (2011) Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol 32(4):769–776. doi: 10.1007/s13277-011-0179-0

    PubMed  CAS  Google Scholar 

  165. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Butzow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105(19):7004–7009. doi: 0801615105[pii]10.1073/pnas.0801615105

    PubMed  CAS  Google Scholar 

  166. Dedes KJ, Natrajan R, Lambros MB, Geyer FC, Lopez-Garcia MA, Savage K, Jones RL, Reis-Filho JS (2011) Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 47(1):138–150. doi: S0959-8049(10)00788-4[pii]10.1016/j.ejca.2010.08.007

    PubMed  CAS  Google Scholar 

  167. Han L, Zhang A, Zhou X, Xu P, Wang GX, Pu PY, Kang CS (2010) Downregulation of Dicer enhances tumor cell proliferation and invasion. Int J Oncol 37(2):299–305

    PubMed  CAS  Google Scholar 

  168. Fujino T, Risinger JI, Collins NK, Liu FS, Nishii H, Takahashi H, Westphal EM, Barrett JC, Sasaki H, Kohler MF et al (1994) Allelotype of endometrial carcinoma. Cancer Res 54(16):4294–4298

    PubMed  CAS  Google Scholar 

  169. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37. doi: 06-PLCB-RA-0334R2[pii]10.1371/journal.pcbi.0030037

    PubMed  Google Scholar 

  170. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69(23):9038–9046. doi: 0008-5472.CAN-09-1499[pii]10.1158/0008-5472.CAN-09-1499

    PubMed  CAS  Google Scholar 

  171. Wu Y, Liu S, Xin H, Jiang J, Younglai E, Sun S, Wang H (2011) Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer 117(17):3989–3998. doi: 10.1002/cncr.25944

    PubMed  CAS  Google Scholar 

  172. Scully REBT, Kurman RJ et al (eds) (1994) Uterine corpus: World Health Organization: histological typing of the female genital tract tumours. Springer, New York

    Google Scholar 

  173. Sherman ME (2000) Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol 13(3):295–308. doi: 10.1038/modpathol.3880051

    PubMed  CAS  Google Scholar 

  174. Mutter GL (2000) Histopathology of genetically defined endometrial precancers. Int J Gynecol Pathol 19(4):301–309

    PubMed  CAS  Google Scholar 

  175. Maxwell GL, Risinger JI, Gumbs C, Shaw H, Bentley RC, Barrett JC, Berchuck A, Futreal PA (1998) Mutation of the PTEN tumor suppressor gene in endometrial hyperplasias. Cancer Res 58(12):2500–2503

    PubMed  CAS  Google Scholar 

  176. Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH (1998) PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res 58(15):3254–3258

    PubMed  CAS  Google Scholar 

  177. Hayes MP, Wang H, Espinal-Witter R, Douglas W, Solomon GJ, Baker SJ, Ellenson LH (2006) PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia. Clin Cancer Res 12(20 Pt 1):5932–5935. doi: 12/20/5932[pii]10.1158/1078-0432.CCR-06-1375

    PubMed  CAS  Google Scholar 

  178. Sasaki H, Nishii H, Takahashi H, Tada A, Furusato M, Terashima Y, Siegal GP, Parker SL, Kohler MF, Berchuck A et al (1993) Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cancer Res 53(8):1906–1910

    PubMed  CAS  Google Scholar 

  179. Brachtel EF, Sanchez-Estevez C, Moreno-Bueno G, Prat J, Palacios J, Oliva E (2005) Distinct molecular alterations in complex endometrial hyperplasia (CEH) with and without immature squamous metaplasia (squamous morules). Am J Surg Pathol 29(10):1322–1329. doi: 00000478-200510000-00009[pii]

    PubMed  Google Scholar 

  180. Jarboe EA, Pizer ES, Miron A, Monte N, Mutter GL, Crum CP (2009) Evidence for a latent precursor (p53 signature) that may precede serous endometrial intraepithelial carcinoma. Mod Pathol 22(3):345–350. doi: modpathol2008197[pii]10.1038/modpathol.2008.197

    PubMed  CAS  Google Scholar 

  181. Zhang X, Liang SX, Jia L, Chen N, Fadare O, Schwartz PE, Kong B, Zheng W (2009) Molecular identification of “latent precancers” for endometrial serous carcinoma in benign-appearing endometrium. Am J Pathol 174(6):2000–2006. doi: S0002-9440(10)61059-0[pii]10.2353/ajpath.2009.081085

    PubMed  CAS  Google Scholar 

  182. Koornstra JJ, Mourits MJ, Sijmons RH, Leliveld AM, Hollema H, Kleibeuker JH (2009) Management of extracolonic tumours in patients with Lynch syndrome. Lancet Oncol 10(4):400–408. doi: S1470-2045(09)70041-5[pii]10.1016/S1470-2045(09)70041-5

    PubMed  CAS  Google Scholar 

  183. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, Guimbaud R, Buecher B, Bignon YJ, Caron O, Colas C, Nogues C, Lejeune-Dumoulin S, Olivier-Faivre L, Polycarpe-Osaer F, Nguyen TD, Desseigne F, Saurin JC, Berthet P, Leroux D, Duffour J, Manouvrier S, Frebourg T, Sobol H, Lasset C, Bonaiti-Pellie C (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305(22):2304–2310. doi: 305/22/2304[pii]10.1001/jama.2011.743

    PubMed  CAS  Google Scholar 

  184. Baglietto L, Lindor NM, Dowty JG, White DM, Wagner A, Gomez Garcia EB, Vriends AH, Cartwright NR, Barnetson RA, Farrington SM, Tenesa A, Hampel H, Buchanan D, Arnold S, Young J, Walsh MD, Jass J, Macrae F, Antill Y, Winship IM, Giles GG, Goldblatt J, Parry S, Suthers G, Leggett B, Butz M, Aronson M, Poynter JN, Baron JA, Le Marchand L, Haile R, Gallinger S, Hopper JL, Potter J, de la Chapelle A, Vasen HF, Dunlop MG, Thibodeau SN, Jenkins MA (2010) Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst 102(3):193–201. doi: djp473[pii]10.1093/jnci/djp473

    PubMed  CAS  Google Scholar 

  185. Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, Comeras I, La Jeunesse J, Nakagawa H, Westman JA, Prior TW, Clendenning M, Penzone P, Lombardi J, Dunn P, Cohn DE, Copeland L, Eaton L, Fowler J, Lewandowski G, Vaccarello L, Bell J, Reid G, de la Chapelle A (2006) Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res 66(15):7810–7817. doi: 66/15/7810[pii]10.1158/0008-5472.CAN-06-1114

    PubMed  CAS  Google Scholar 

  186. Lu KH, Schorge JO, Rodabaugh KJ, Daniels MS, Sun CC, Soliman PT, White KG, Luthra R, Gershenson DM, Broaddus RR (2007) Prospective determination of prevalence of lynch syndrome in young women with endometrial cancer. J Clin Oncol 25(33):5158–5164. doi: JCO.2007.10.8597[pii]10.1200/JCO.2007.10.8597

    PubMed  CAS  Google Scholar 

  187. Westin SN, Lacour RA, Urbauer DL, Luthra R, Bodurka DC, Lu KH, Broaddus RR (2008) Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J Clin Oncol 26(36):5965–5971. doi: JCO.2008.18.6296[pii]10.1200/JCO.2008.18.6296

    PubMed  Google Scholar 

  188. Walsh MD, Cummings MC, Buchanan DD, Dambacher WM, Arnold S, McKeone D, Byrnes R, Barker MA, Leggett BA, Gattas M, Jass JR, Spurdle AB, Young J, Obermair A (2008) Molecular, pathologic, and clinical features of early-onset endometrial cancer: identifying presumptive Lynch syndrome patients. Clin Cancer Res 14(6):1692–1700. doi: 1078-0432.CCR-07-1849[pii]10.1158/1078-0432.CCR-07-1849

    PubMed  CAS  Google Scholar 

  189. Garg K, Leitao MM Jr, Kauff ND, Hansen J, Kosarin K, Shia J, Soslow RA (2009) Selection of endometrial carcinomas for DNA mismatch repair protein immunohistochemistry using patient age and tumor morphology enhances detection of mismatch repair abnormalities. Am J Surg Pathol 33(6):925–933. doi: 10.1097/PAS.0b013e318197a046

    PubMed  Google Scholar 

  190. Resnick K, Straughn JM Jr, Backes F, Hampel H, Matthews KS, Cohn DE (2009) Lynch syndrome screening strategies among newly diagnosed endometrial cancer patients. Obstet Gynecol 114(3):530–536. doi: 10.1097/AOG.0b013e3181b11ecc00006250-200909000-00008[pii]

    PubMed  Google Scholar 

  191. Kwon JS, Scott JL, Gilks CB, Daniels MS, Sun CC, Lu KH (2011) Testing women with endometrial cancer to detect Lynch syndrome. J Clin Oncol 29(16):2247–2252. doi: JCO.2010.32.9979[pii]10.1200/JCO.2010.32.9979

    PubMed  Google Scholar 

  192. Pilarski R (2009) Cowden syndrome: a critical review of the clinical literature. J Genet Couns 18(1):13–27. doi: 10.1007/s10897-008-9187-7

    PubMed  Google Scholar 

  193. Riegert-Johnson DL, Gleeson FC, Roberts M, Tholen K, Youngborg L, Bullock M, Boardman LA (2010) Cancer and Lhermitte-Duclos disease are common in Cowden syndrome patients. Hered Cancer Clin Pract 8(1):6. doi: 1897-4287-8-6[pii]10.1186/1897-4287-8-6

    PubMed  Google Scholar 

  194. Nelen MR, Kremer H, Konings IB, Schoute F, van Essen AJ, Koch R, Woods CG, Fryns JP, Hamel B, Hoefsloot LH, Peeters EA, Padberg GW (1999) Novel PTEN mutations in patients with Cowden disease: absence of clear genotype-phenotype correlations. Eur J Hum Genet 7(3):267–273. doi: 10.1038/sj.ejhg.5200289

    PubMed  CAS  Google Scholar 

  195. Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, Lindboe CF, Fryns JP, Sijmons RH, Woods DG, Mariman EC, Padberg GW, Kremer H (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6(8):1383–1387. doi: dda179[pii]

    PubMed  CAS  Google Scholar 

  196. Marsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PL, Zheng Z, Liaw D, Caron S, Duboue B, Lin AY, Richardson AL, Bonnetblanc JM, Bressieux JM, Cabarrot-Moreau A, Chompret A, Demange L, Eeles RA, Yahanda AM, Fearon ER, Fricker JP, Gorlin RJ, Hodgson SV, Huson S, Lacombe D, Eng C et al (1998) Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 7(3):507–515. doi: ddb041[pii]

    PubMed  CAS  Google Scholar 

  197. Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, Berchuck A, Barrett JC (2003) Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res 63(1):6–11

    PubMed  CAS  Google Scholar 

  198. Santin AD, Zhan F, Cane S, Bellone S, Palmieri M, Thomas M, Burnett A, Roman JJ, Cannon MJ, Shaughnessy J Jr, Pecorelli S (2005) Gene expression fingerprint of uterine serous papillary carcinoma: identification of novel molecular markers for uterine serous cancer diagnosis and therapy. Br J Cancer 92(8):1561–1573. doi: 6602480[pii]10.1038/sj.bjc.6602480

    PubMed  CAS  Google Scholar 

  199. Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, Risinger JI (2005) Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res 11(11):4056–4066. doi: 11/11/4056[pii]10.1158/1078-0432.CCR-04-2001

    PubMed  CAS  Google Scholar 

  200. Samarnthai N, Hall K, Yeh IT (2010) Molecular profiling of endometrial malignancies. Obstet Gynecol Int 2010:162363. doi: 10.1155/2010/162363

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

López-García, M.A. et al. (2013). Genetics of Endometrial Carcinoma. In: Pfeffer, U. (eds) Cancer Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5842-1_11

Download citation

Publish with us

Policies and ethics