Skip to main content

Abstract

This chapter presents an overview of the human immune system and the potential role it plays in the immunologic treatment of SCCHN cancers. More specifically, it examines the significance of both innate antibody formation and introduction of bioengineered monoclonal antibodies, and how they interact. Further, this chapter discusses how these immunologic tools may be improved upon to more successfully address, and potentially clear various forms of SCCHN cancers. Initially, we study immune system mechanisms, immunotherapy, immunogenicity, and the formation of antibodies within the human immune system in reaction to antigens and targeted toxins. Secondly, we describe monoclonal antibody development, production, and biochemical and biomechanical behavior pathways. Third, we present current most commonly used monoclonal antibody therapy, such as; cetuximab and trastuzumab, and possible drug pathways being considered for future development and use in SCCHN. Fourth, we review various antibody and monoclonal antibody molecular combination therapies, developing and in use, such as; antibody drug conjugates and bispecific antibodies. The final portion of our discussion explores the most probable future directions for SCCHN immunotherapeutic development and applications including; nanomaterials, biophysics and mass transport/oncophysics across biological barriers, and cancer stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ADC:

Antibody drug conjugates

ADCC:

Antibody dependent cellular cytotoxicity

ATP:

Adenosine-5′-triphosphate has a variety of functions including intracellular energy transfer

B Cells:

Lymphocytes

biAbs:

Bispecific antibodies

CDC:

Complement dependent cytotoxicity

CDR:

Complementary determining region

CSC:

Cancer stem cells

DC:

Dendritic cells

EGFR:

Epidermal growth factor receptor

FcR:

Region on IgG responsible for regulating and promoting immune and inflammatory response to immune complexes

FcγRIIB:

One of four low-affinity receptors binding only to immune-complexed IgG. The only inhibitory FcR.

HAADs:

Highly active agonistic antibodies

HAMA:

Human anti-mouse antibody response

IAI:

Induction of adaptive immunity

IC:

Immune complexes antigens bound to antibodies

IgG:

Immunoglobulin G IgG makes up more than 75% of serum immunoglobulins in humans

IgG (FcγRs):

Key human FcR receptors of IgG which vary in function and affinity

kDa:

Kilodalton or Dalton; a unified atomic mass unit

LNM:

Lymph node metastasis

mAb:

Monoclonal antibody

mAbs:

Monoclonal antibodies

MDSC:

Myeloid-derived suppressor cells

MHC:

Histocompatibility complex

NK:

Natural killer cells

p53:

Protein 53 involved in cancer suppression

R/M-SCCHN:

Recurrent or metastatic SCCHN

TAAs:

Tumor associated antigens

TECs:

Tumor endothelial cells

Tregs:

T regulatory cells

VH and VL :

Two variable domains

References

  1. Lee SC, Ferris RL (2011) Immunology of head and neck cancer. In: Bernier J (ed) Head and neck cancer. Springer, New York, pp 107–119

    Chapter  Google Scholar 

  2. Tabrizi M, Bornstein GG, Suria H (2010) Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 12(1):33–43

    Article  PubMed  CAS  Google Scholar 

  3. Mayer G (2006) Immunology – chapter one: “innate (non-specific) immunity”. In: Hunt R (ed) Microbiology and immunology on-line textbook. USC School of Medicine, Columbia

    Google Scholar 

  4. Janeway CA Jr, Travers P, Walport M et al (2004) Immunobiology: the immune system in health and disease, 6th edn. Garland Science, New York

    Google Scholar 

  5. Holtmeier W, Kabelitz D (2005) Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 86:151–183

    Article  PubMed  CAS  Google Scholar 

  6. Ehrlich P (1900) Croonian lecture: on immunity with special reference to cell life. Proc R Soc London 66:424–448

    CAS  Google Scholar 

  7. Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715

    Article  PubMed  CAS  Google Scholar 

  8. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275

    Article  PubMed  CAS  Google Scholar 

  9. Albrecht H, Radosevich JA, Babich M (2009) Fundamentals of antibody-related therapy and diagnostics. Drugs Today (Barc) 45(3):199–211

    Article  CAS  Google Scholar 

  10. Paradise WA, Vesper BA, Babich M et al (2011) Methods, processes and comparative yield economics for the production of antibodies and recombinant proteins. Immunol Endocr Metab Agents Med Chem 11(3):199–219

    Article  CAS  Google Scholar 

  11. Albrecht H (2010) Role of antibodies in cancer treatment (an overview). In: Hayat MA (ed) Methods of cancer diagnosis, therapy and prognosis. Springer, New York, pp 135–152

    Chapter  Google Scholar 

  12. Clark MR (1997) IgC effector mechanisms. Chem Immunol 65:88–110

    Article  PubMed  CAS  Google Scholar 

  13. Diskin R et al (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334(6060):1289–1293, PDB ID: 3U7W

    Article  PubMed  CAS  Google Scholar 

  14. Dimitrov DS (2010) Therapeutic antibodies, vaccines and antibodyomes. MAbs 2(3):347–356

    Article  PubMed  Google Scholar 

  15. Descotes J, Gouraud A (2008) Clinical immunotoxicity of therapeutic proteins. Expert Opin Drug Metab Toxicol 4(12):1537–1549

    Article  PubMed  CAS  Google Scholar 

  16. De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8(5):620–626

    Article  PubMed  CAS  Google Scholar 

  17. Stas P, Lasters I (2009) Strategies for preclinical immunogenicity assessment of protein therapeutics. IDrugs 12(3):169–173

    PubMed  CAS  Google Scholar 

  18. Baker MP, Jones TD (2007) Identification and removal of immunogenicity in therapeutic proteins. Curr Opin Drug Discov Devel 10(2):219–227

    PubMed  CAS  Google Scholar 

  19. Onda M (2009) Reducing the immunogenicity of protein therapeutics. Curr Drug Targets 10(2):131–139

    Article  PubMed  CAS  Google Scholar 

  20. Schellekens H (2008) How to predict and prevent the immunogenicity of therapeutic proteins. Biotechnol Annu Rev 14:191–202

    Article  PubMed  CAS  Google Scholar 

  21. Pendley C, Schantz A, Wagner C (2003) Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther 5(2):172–179

    PubMed  CAS  Google Scholar 

  22. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  23. Grandis JR et al (2000) Human leukocyte antigen class I allelic and haplotype loss in squamous cell carcinoma of the head and neck: clinical and immunogenetic consequences. Clin Cancer Res 6(7):2794–2802

    PubMed  CAS  Google Scholar 

  24. Albers AE et al (2010) T cell-tumor interaction directs the development of immunotherapies in head and neck cancer. Clin Dev Immunol 2010:236378

    Article  PubMed  CAS  Google Scholar 

  25. Jemal A et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  26. Lee J, Moon C (2011) Current status of experimental therapeutics for head and neck cancer. Exp Biol Med (Maywood) 236(4):375–389

    Article  CAS  Google Scholar 

  27. Shin DM, Khuri FR (2011) Advances in the management of recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 15s:n/a

    Google Scholar 

  28. Forastiere A et al (2001) Head and neck cancer. N Engl J Med 345(26):1890–1900

    Article  PubMed  CAS  Google Scholar 

  29. Chen ZG (2009) The cancer stem cell concept in progression of head and neck cancer. J Oncol 2009:894064

    Article  PubMed  CAS  Google Scholar 

  30. Patrawala L et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  PubMed  CAS  Google Scholar 

  31. Gilman A, Goodman LS, Hardman JG et al (2001) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  32. Pak AS et al (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1(1):95–103

    PubMed  CAS  Google Scholar 

  33. Bergmann C et al (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14(12):3706–3715

    Article  PubMed  CAS  Google Scholar 

  34. Cosmi L et al (2003) Human CD8  +  CD25+ thymocytes share phenotypic and functional features with CD4  +  CD25+ regulatory thymocytes. Blood 102(12):4107–4114

    Article  PubMed  CAS  Google Scholar 

  35. Alhamarneh O et al (2008) Regulatory T cells: what role do they play in antitumor immunity in patients with head and neck cancer? Head Neck 30(2):251–261

    Article  PubMed  Google Scholar 

  36. Ralainirina N et al (2007) Control of NK cell functions by CD4  +  CD25+ regulatory T cells. J Leukoc Biol 81(1):144–153

    Article  PubMed  CAS  Google Scholar 

  37. Strauss L, Bergmann C, Whiteside TL (2007) Functional and phenotypic characteristics of CD4  +  CD25highFoxp3+ Treg clones obtained from peripheral blood of patients with cancer. Int J Cancer 121(11):2473–2483

    Article  PubMed  CAS  Google Scholar 

  38. Strauss L et al (2007) A unique subset of CD4  +  CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13(15 Pt 1):4345–4354

    Article  PubMed  CAS  Google Scholar 

  39. Strauss L et al (2007) The frequency and suppressor function of CD4  +  CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(21):6301–6311

    Article  PubMed  CAS  Google Scholar 

  40. Lathers DM, Young MR (2004) Increased aberrance of cytokine expression in plasma of patients with more advanced squamous cell carcinoma of the head and neck. Cytokine 25(5):220–228

    Article  PubMed  CAS  Google Scholar 

  41. Hardisson D (2003) Molecular pathogenesis of head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 260(9):502–508

    Article  PubMed  Google Scholar 

  42. Ang KK et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62(24):7350–7356

    PubMed  CAS  Google Scholar 

  43. Ah-See KW et al (1994) An allelotype of squamous carcinoma of the head and neck using microsatellite markers. Cancer Res 54(7):1617–1621

    PubMed  CAS  Google Scholar 

  44. Kong A et al (2006) Prognostic value of an activation state marker for epidermal growth factor receptor in tissue microarrays of head and neck cancer. Cancer Res 66(5):2834–2843

    Article  PubMed  CAS  Google Scholar 

  45. Watling DL, Gown AM, Coltrera MD (1992) Overexpression of p53 in head and neck cancer. Head Neck 14(6):437–444

    Article  PubMed  CAS  Google Scholar 

  46. el-Naggar AK et al (1995) Sequential p53 mutation analysis of pre-invasive and invasive head and neck squamous carcinoma. Int J Cancer 64(3):196–201

    Article  PubMed  CAS  Google Scholar 

  47. Erber R et al (1998) TP53 DNA contact mutations are selectively associated with allelic loss and have a strong clinical impact in head and neck cancer. Oncogene 16(13):1671–1679

    Article  PubMed  CAS  Google Scholar 

  48. Koch WM et al (1996) p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 88(21):1580–1586

    Article  PubMed  CAS  Google Scholar 

  49. Goldsmith LE, Robinson MK (2011) Engineering antibodies for cancer therapy. In: Al-Rubeai M (ed) Antibody expression and production, cell engineering 7. Springer, Dordrecht/New York, pp 197–233

    Chapter  Google Scholar 

  50. Currie GA (1972) Eighty years of immunotherapy: a review of immunological methods used for the treatment of human cancer. Br J Cancer 26(3):141–153

    Article  PubMed  CAS  Google Scholar 

  51. Badger CC et al (1987) Treatment of malignancy with unmodified antibody. Pathol Immunopathol Res 6(5–6):419–434

    Article  PubMed  CAS  Google Scholar 

  52. Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother Emphasis Tumor Immunol 15(1):42–52

    Article  PubMed  CAS  Google Scholar 

  53. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36(1):3–10

    Article  PubMed  CAS  Google Scholar 

  54. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312(5995):643–646

    Article  PubMed  CAS  Google Scholar 

  55. Morrison SL et al (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81(21):6851–6855

    Article  PubMed  CAS  Google Scholar 

  56. Almagro JC, Fransson J (2008) Humanization of antibodies. Front Biosci 13:1619–1633

    PubMed  CAS  Google Scholar 

  57. Jones PT et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522–525

    Article  PubMed  CAS  Google Scholar 

  58. McGrath S, Van Sinderen D (eds) (2007) Bacteriophage: genetics and molecular biology, 1st edn. Caister Academic Press, Norfolk

    Google Scholar 

  59. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  PubMed  CAS  Google Scholar 

  60. Lipps G (ed) (2008) Plasmids: current research and future trends. Caister Academic Press, Norfolk

    Google Scholar 

  61. Costa RA, Rodriguesa ME, Henriques M et al (2010) Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 74:127–138

    Article  CAS  Google Scholar 

  62. Chai HC, Chua KL, Oh SKW, Yap MGS et al (1996) Insect cell line dependent gene expression of recombinant human tumor necrosis factor- beta. Enzyme Mircrob Technol 18:126–132

    Article  CAS  Google Scholar 

  63. Gu MB, Todd P, Kompala DS (1995) Metabolic burden in recombinant CHO cells: effects of dhfr gene amplification and lacZ expression. Cytotechnology 18:159–166

    Article  PubMed  CAS  Google Scholar 

  64. Banik GG, Todd PW, Kompala DS (1996) Foreign protein expression from S phase specific promoters in continous cultures of recombinant CHO. Cytotechnology 22:179–184

    Article  PubMed  CAS  Google Scholar 

  65. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  PubMed  CAS  Google Scholar 

  66. Lloyd DR, Al-Rubeai M (1999) In: Drew SW, Flickinger MC (eds) Encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. Wiley, New York

    Google Scholar 

  67. Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    Article  PubMed  CAS  Google Scholar 

  68. Melton D, Ann-Marie Ketchen A-E, Kind A et al (2001) A one-step gene amplication system for use in cultured mammalian cells and transgenic animals. Transgenic Res 10:133–142

    Article  PubMed  CAS  Google Scholar 

  69. Mohan CM, Kim YG, Koo J et al (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3:624–630

    Article  PubMed  CAS  Google Scholar 

  70. Werner RG, Noé W, Kopp K et al (1998) Appropriate mammalian expression systems for biopharmaceuticals. Drug Res 48:870–880

    CAS  Google Scholar 

  71. Ozturk SS, Hu W-S (2006) Cell culture technology for pharmaceutical and cell based therapies. CRC Press, New York

    Google Scholar 

  72. Constantinou A, Chen C, Deonarain MP (2010) Modulating the pharmacokinetics of therapeutic antibodies. Biotechnol Lett 32(5):609–622

    Article  PubMed  CAS  Google Scholar 

  73. Ober RJ et al (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13(12):1551–1559

    Article  PubMed  CAS  Google Scholar 

  74. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109(2):170–179

    Article  PubMed  CAS  Google Scholar 

  75. Wochner RD, Strober W, Waldmann TA (1967) The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J Exp Med 126(2):207–221

    Article  PubMed  CAS  Google Scholar 

  76. Ferrari M (2010) Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol 28(4):181–188

    Article  PubMed  CAS  Google Scholar 

  77. Tabrizi M, Roskos LK (2006) Exposure-response: relationships for therapeutic tumor tissues. In: Meibothem B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Wiley, New York, pp 295–327

    Chapter  Google Scholar 

  78. Tabrizi MA et al (2009) Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today 14(5–6):298–305

    Article  PubMed  CAS  Google Scholar 

  79. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88

    Article  PubMed  CAS  Google Scholar 

  80. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93(11):2645–2668

    Article  PubMed  CAS  Google Scholar 

  81. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252

    Article  PubMed  CAS  Google Scholar 

  82. Tabrizi M, Suria H (2009) Application of translational biomarkers in development of antibody-based therapies. Drug Discov 5(1):2–6

    Google Scholar 

  83. Tabrizi M (2009) Application of translational biomarkers in development of antibody-based therapies. Drug Discov 5(1):2–6

    Google Scholar 

  84. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50(3 Suppl):814s–819s

    PubMed  CAS  Google Scholar 

  85. Weinstein JN, van Osdol W (1992) The macroscopic and microscopic pharmacology of monoclonal antibodies. Int J Immunopharmacol 14(3):457–463

    Article  PubMed  CAS  Google Scholar 

  86. Clauss MA, Jain RK (1990) Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res 50(12):3487–3492

    PubMed  CAS  Google Scholar 

  87. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  PubMed  CAS  Google Scholar 

  88. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327

    Article  PubMed  CAS  Google Scholar 

  89. Clynes RA et al (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  90. Cartron G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–758

    Article  PubMed  CAS  Google Scholar 

  91. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    Article  PubMed  CAS  Google Scholar 

  92. Musolino A et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    Article  PubMed  CAS  Google Scholar 

  93. Bibeau F et al (2009) Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27(7):1122–1129

    Article  PubMed  CAS  Google Scholar 

  94. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89

    Article  PubMed  CAS  Google Scholar 

  95. Berard F et al (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192(11):1535–1544

    Article  PubMed  CAS  Google Scholar 

  96. Hoffmann TK et al (2000) Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res 60(13):3542–3549

    PubMed  CAS  Google Scholar 

  97. Vermorken JB (2011) Chapter 47: systemic treatment of recurrent/metastatic squamous cell carcinoma of the head and neck. In: Bernier J (ed) Head and neck cancer: multimodality management. Springer, New York

    Google Scholar 

  98. Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Semin Oncol 33(4):369–385

    Article  PubMed  CAS  Google Scholar 

  99. Rubin Grandis J et al (1998) Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90(11):824–832

    Article  PubMed  CAS  Google Scholar 

  100. Moon C, Chae YK, Lee J (2010) Targeting epidermal growth factor receptor in head and neck cancer: lessons learned from cetuximab. Exp Biol Med (Maywood) 235(8):907–920

    Article  CAS  Google Scholar 

  101. Herbst RS, Hong WK (2002) IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin Oncol 29(5 Suppl 14):18–30

    Article  PubMed  CAS  Google Scholar 

  102. Needle MN (2002) Safety experience with IMC-C225, an anti-epidermal growth factor receptor antibody. Semin Oncol 29(5 Suppl 14):55–60

    Article  PubMed  CAS  Google Scholar 

  103. Cuello M et al (2001) Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61(12):4892–4900

    PubMed  CAS  Google Scholar 

  104. zum Buschenfelde CM et al (2002) Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 62(8):2244–2247

    PubMed  Google Scholar 

  105. Baselga J et al (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23(24):5568–5577

    Article  PubMed  CAS  Google Scholar 

  106. Bourhis J et al (2006) Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 24(18):2866–2872

    Article  PubMed  CAS  Google Scholar 

  107. Hitt R et al (2007) Phase II study of combination cetuximab and weekly paclitaxel in patients with metastatic/recurrent squamous cell carcinoma of head and neck (SCCHN): Spanish Head and Neck Cancer Group (TTCC). J Clin Oncol 25(18):6012

    Google Scholar 

  108. Buentzel J (2007) Experience with cetuximab plus paclitaxel/carboplatinum in primary platinum-resistant recurrent head and neck cancer. J Clin Oncol 25(18):6077

    Google Scholar 

  109. Li S et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311, PDB ID: 1YY9

    Article  PubMed  CAS  Google Scholar 

  110. Cheng F et al (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19(3):425–436

    Article  PubMed  CAS  Google Scholar 

  111. Pratt WB et al (1994) Part 2. The anticancer drugs. Oxford University Press, Oxford

    Google Scholar 

  112. Goldmacher VS, Kovtun YV (2011) Antibody–drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv 2(3):397–416

    Article  PubMed  CAS  Google Scholar 

  113. Vater AV, Goldmacher VS (2009) Antibody-cytotoxic compound conjugates for oncology. In: Reddy LH, Conuvreur P (eds) Macromolecular anticancer therapeutics. Springer, New York, pp 331–369

    Google Scholar 

  114. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    Article  PubMed  CAS  Google Scholar 

  115. Kovtun YV, Goldmacher VS (2007) Cell killing by antibody-drug conjugates. Cancer Lett 255(2):232–240

    Article  PubMed  CAS  Google Scholar 

  116. Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21(1):5–13

    Article  PubMed  CAS  Google Scholar 

  117. Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107

    Article  PubMed  CAS  Google Scholar 

  118. Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13(3):235–244

    Article  PubMed  CAS  Google Scholar 

  119. Goldmacher VS, Blattler WA et al (2002) Immunotoxins and antibody-drug conjugates for cancer treatment. In: Torchilin V, Muzykantoz V (eds) Biomedical aspects of drug targeting. Kluwer Academic, Boston, pp 291–309

    Chapter  Google Scholar 

  120. Lambert JM (2010) Anitbody-maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs Future 35(6):471–480

    CAS  Google Scholar 

  121. Hamann PR et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    Article  PubMed  CAS  Google Scholar 

  122. Bross PF, Beitz J et al (2001) Approval summary: gentuzumab ozogamicin in relaped acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    PubMed  CAS  Google Scholar 

  123. Singh R, Erickson HK (2008) Antibody-cytotoxic agent conjugates: preparation and characterization. In: Therapeutic antibodies: methods and protocols, vol 525, Methods in molecular biology. Humana, New York, pp 445–467

    Chapter  Google Scholar 

  124. Wang L et al (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14(9):2436–2446

    Article  PubMed  CAS  Google Scholar 

  125. Vater AV, Goldmacher VS (2009) Antibody-cytotoxic compound conjugates for oncology. In: Reddy CLH, Couvreur P (eds) Macromolecular anticancer therapeutics. Springer, New York, pp 331–369

    Google Scholar 

  126. Baselga J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14(3):737–744

    PubMed  CAS  Google Scholar 

  127. Cobleigh MA et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648

    PubMed  CAS  Google Scholar 

  128. Lundin J et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100(3):768–773

    Article  PubMed  CAS  Google Scholar 

  129. Maloney DG et al (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84(8):2457–2466

    PubMed  CAS  Google Scholar 

  130. McLaughlin P et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833

    PubMed  CAS  Google Scholar 

  131. Miller RA et al (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306(9):517–522

    Article  PubMed  CAS  Google Scholar 

  132. Yang JC et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434

    Article  PubMed  CAS  Google Scholar 

  133. Thakur A, Lum LG (2010) Cancer therapy with bispecific antibodies: clinical experience. Curr Opin Mol Ther 12(3):340–349

    PubMed  CAS  Google Scholar 

  134. Asano R et al (2010) Application of the Fc fusion format to generate tag-free bi-specific diabodies. FEBS J 277(2):477–487

    Article  PubMed  CAS  Google Scholar 

  135. Dreier T et al (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100(6):690–697

    Article  PubMed  CAS  Google Scholar 

  136. Kufer P, Lutterbuse R, Baeuerle PA (2004) A revival of bispecific antibodies. Trends Biotechnol 22(5):238–244

    Article  PubMed  CAS  Google Scholar 

  137. Lindhofer H et al (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 155(1):219–225

    PubMed  CAS  Google Scholar 

  138. Lazar GA et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103(11):4005–4010

    Article  PubMed  CAS  Google Scholar 

  139. Goldenberg DM et al (2008) Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 49(1):158–163

    Article  PubMed  CAS  Google Scholar 

  140. Grosse-Hovest L et al (2003) A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol 33(5):1334–1340

    Article  PubMed  CAS  Google Scholar 

  141. Titus JA et al (1987) Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol 139(9):3153–3158

    PubMed  CAS  Google Scholar 

  142. Perez P et al (1986) Specific lysis of human tumor cells by T cells coated with anti-T3 cross-linked to anti-tumor antibody. J Immunol 137(7):2069–2072

    PubMed  CAS  Google Scholar 

  143. Raso V, Griffin T (1981) Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells. Cancer Res 41(6):2073–2078

    PubMed  CAS  Google Scholar 

  144. Segal DM et al (1988) Targeted cytotoxic cells as a novel form of cancer immunotherapy. Mol Immunol 25(11):1099–1103

    Article  PubMed  CAS  Google Scholar 

  145. Bargou R et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891):974–977

    Article  PubMed  CAS  Google Scholar 

  146. TRION Pharma, G.m.b.H. (2009) EU approval for Removab: First trifunctional antibody hits market. Press Release, April 23

    Google Scholar 

  147. Dasgupta A, Dash R, Das SK et al (2011) Emerging strategies for the early detection and prevention of head and neck squamous cell cancer. J Cell Physiol 227:467–473

    Article  CAS  Google Scholar 

  148. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22

    Article  PubMed  CAS  Google Scholar 

  149. Baxevanis CN, Perez SA, Papamichail M (2009) Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 58(3):317–324

    Article  PubMed  Google Scholar 

  150. Bridge JA, Bowen JM, Smith RB (2010) The small round blue cell tumors of the sinonasal area. Head Neck Pathol 4(1):84–93

    Article  PubMed  Google Scholar 

  151. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    Article  PubMed  Google Scholar 

  152. Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335(1):271–281

    Article  PubMed  CAS  Google Scholar 

  153. Morikawa K et al (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871

    PubMed  CAS  Google Scholar 

  154. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12(2):89–96

    Article  PubMed  Google Scholar 

  155. Howe A et al (1998) Integrin signaling and cell growth control. Curr Opin Cell Biol 10(2):220–231

    Article  PubMed  CAS  Google Scholar 

  156. Johnsen M et al (1998) Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10(5):667–671

    Article  PubMed  CAS  Google Scholar 

  157. Karadag A, Fedarko NS, Fisher LW (2005) Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res 65(24):11545–11552

    Article  PubMed  CAS  Google Scholar 

  158. Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643–651

    Article  PubMed  CAS  Google Scholar 

  159. Hobbs SK et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612

    Article  PubMed  CAS  Google Scholar 

  160. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  PubMed  CAS  Google Scholar 

  161. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  162. Li JL, Harris AL (2007) The potential of new tumor endothelium-specific markers for the development of antivascular therapy. Cancer Cell 11:478–481

    Article  PubMed  CAS  Google Scholar 

  163. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5(6):436–446

    Article  PubMed  CAS  Google Scholar 

  164. Schliemann C, Neri D (2007) Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta 1776(2):175–192

    PubMed  CAS  Google Scholar 

  165. Epenetos AA et al (1986) Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res 46(6):3183–3191

    PubMed  CAS  Google Scholar 

  166. Khawli LA, Miller GK, Epstein AL (1994) Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors. Cancer 73(3 Suppl):824–831

    Article  PubMed  CAS  Google Scholar 

  167. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  PubMed  CAS  Google Scholar 

  168. Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10

    PubMed  CAS  Google Scholar 

  169. Langer R (2001) Drug delivery. Drugs on target. Science 293(5527):58–59

    Article  PubMed  CAS  Google Scholar 

  170. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  171. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  PubMed  CAS  Google Scholar 

  172. Tanaka T et al (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63

    Article  PubMed  CAS  Google Scholar 

  173. Sparreboom A et al (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11(11):4136–4143

    Article  PubMed  CAS  Google Scholar 

  174. Gradishar WJ (2005) Albumin-bound nanoparticle paclitaxel. Clin Adv Hematol Oncol 3(5):348–349

    PubMed  Google Scholar 

  175. Campos S (2003) Liposomal anthracyclines: adjuvant and neoadjuvant therapy for breast cancer. Oncologist 8(Suppl 2):10–16

    Article  PubMed  CAS  Google Scholar 

  176. Lyass O et al (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89(5):1037–1047

    Article  PubMed  CAS  Google Scholar 

  177. Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  PubMed  CAS  Google Scholar 

  178. Chow EK et al (2008) Copolymeric nanofilm platform for controlled and localized therapeutic delivery. ACS Nano 2(1):33–40

    Article  PubMed  CAS  Google Scholar 

  179. Deming TJ (2002) Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv Drug Deliv Rev 54(8):1145–1155

    Article  PubMed  CAS  Google Scholar 

  180. Kam NW et al (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605

    Article  PubMed  CAS  Google Scholar 

  181. Kim Y et al (2005) Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 16(7):S484–S491

    Article  PubMed  CAS  Google Scholar 

  182. Schrand AM et al (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7

    Article  PubMed  CAS  Google Scholar 

  183. Huang H et al (2008) Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2(2):203–212

    Article  PubMed  CAS  Google Scholar 

  184. Liu KK, Cheng LC, Chang CC et al (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:325102

    Article  CAS  Google Scholar 

  185. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev 70(7):607

    Article  CAS  Google Scholar 

  186. Ushizawa K, Sato Y, Mitsumori T et al (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351(1–2):105–108

    Article  CAS  Google Scholar 

  187. Shimkunas RA et al (2009) Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29):5720–5728

    Article  PubMed  CAS  Google Scholar 

  188. Huang LC, Chang HC (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14):5879–5884

    Article  PubMed  CAS  Google Scholar 

  189. Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131(13):4594–4595

    Article  PubMed  CAS  Google Scholar 

  190. Huang H et al (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7(11):3305–3314

    Article  PubMed  CAS  Google Scholar 

  191. Chen M et al (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3(7):2016–2022

    Article  PubMed  CAS  Google Scholar 

  192. Zhang XQ et al (2009) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3(9):2609–2616

    Article  PubMed  CAS  Google Scholar 

  193. Chow EK et al (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):73ra21

    Article  PubMed  Google Scholar 

  194. Jang SJ et al (2001) Multiple oral squamous epithelial lesions: are they genetically related? Oncogene 20(18):2235–2242

    Article  PubMed  CAS  Google Scholar 

  195. Wang X et al (2006) Intratumor genomic heterogeneity correlates with histological grade of advanced oral squamous cell carcinoma. Oral Oncol 42(7):740–744

    Article  PubMed  CAS  Google Scholar 

  196. el-Naggar AK et al (1997) Intratumoral genetic heterogeneity in primary head and neck squamous carcinoma using microsatellite markers. Diagn Mol Pathol 6(6):305–308

    Article  PubMed  CAS  Google Scholar 

  197. Jin C et al (2002) Karyotypic heterogeneity and clonal evolution in squamous cell carcinomas of the head and neck. Cancer Genet Cytogenet 132(2):85–96

    Article  PubMed  CAS  Google Scholar 

  198. Choi HR et al (2003) Sarcomatoid carcinoma of the head and neck: molecular evidence for evolution and progression from conventional squamous cell carcinomas. Am J Surg Pathol 27(9):1216–1220

    Article  PubMed  Google Scholar 

  199. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  PubMed  CAS  Google Scholar 

  200. Clarke MF et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  201. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  202. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3(6):444–451

    Article  PubMed  CAS  Google Scholar 

  203. Huntly BJ, Gilliland DG (2005) Cancer biology: summing up cancer stem cells. Nature 435(7046):1169–1170

    Article  PubMed  CAS  Google Scholar 

  204. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  205. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  PubMed  CAS  Google Scholar 

  206. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  207. Charafe-Jauffret E et al (2008) Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75(2):75–84

    Article  PubMed  Google Scholar 

  208. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6(19):2332–2338

    Article  PubMed  CAS  Google Scholar 

  209. Wicha MS (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 10(2):105

    Article  PubMed  Google Scholar 

  210. Chiou SH et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095

    Article  PubMed  CAS  Google Scholar 

  211. Wei XD et al (2009) In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head Neck 31(1):94–101

    Article  PubMed  CAS  Google Scholar 

  212. Janes SM, Watt FM (2006) New roles for integrins in squamous-cell carcinoma. Nat Rev Cancer 6(3):175–183

    Article  PubMed  CAS  Google Scholar 

  213. Song J et al (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One 5(7):e11456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

For the generous contributions and guidance of Mr. David Brandon of the Theoretical and Computational Biophysics Group/Visual Molecular Dynamics (VMD) at the University of Illinois in Champaign-Urbana, relative to 3-D graphics and biomolecular image creation and design. We also acknowledge Dr. Falk Nimmerjahn, Department of Biology, University of Erlangen-Nuremburg, Erlangen, Germany for his generosity in supplying the original images of antibody and immune system interactions, and to © 2010 John Wiley & Son A/S ∙ Immunological Reviews 236/2010 for providing copyright permission for use of those same images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Radosevich Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paradise, W.A., Radosevich, J.A. (2013). Biological Treatments (Antibodies). In: Radosevich, J. (eds) Head & Neck Cancer: Current Perspectives, Advances, and Challenges. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5827-8_29

Download citation

Publish with us

Policies and ethics