Skip to main content

Nucleolar Protein Anchoring and Translocation

  • Chapter
  • First Online:

Abstract

Proteins anchor to the nucleolus because of a retardation of their movement by transient binding to nucleolar constituents. It is achieved due to a targeting signal present in the anchored protein that interacts with target constituents in the nucleolus. Critical targets are rDNA, pre-rRNA and key proteins that usually appear early during formation of the nucleolus. Residents of the nucleolus form a net of interactions that includes hub proteins serving as platforms for binding other ones. In several cases anchoring is regulated by posttranslational modifications (e.g. nucleophosmin), GTP binding (nucleostemin), enzymatic activity (DNA topoisomerase I), stress conditions (Hsc70) or cellular pH (von Hippel-Lindau tumor suppressor). Several proteins use more than one mechanism to anchor to the nucleolus (e.g. DNA topoisomerase I).

Impairment of basic nucleolar processes like pre-rRNA synthesis or processing by DNA damage or inhibitors leads to translocation of numerous proteins and in effect to nucleolar reorganization. Ordered translocations of nucleolar proteins occur during disassembly and reassembly of the nucleolus in the course of mitosis. A specific sequence of translocations activated in a chain of events (that initially removes DNA topoisomerase I from the nucleoli) is observed in cells treated with camptothecin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cdk:

Cyclin dependent kinase

CPT:

Camptothecin

DFC:

Dense fibrillar component

DRB:

5,6-dichloro-1-β-D-ribofuranosylbenzimidazole

FC:

Fibrillar center

GAR:

Glycine- and arginine-rich

GC:

Granular component

HMG:

High mobility group

IR:

Ionizing radiation

MNNG:

N-methyl-N’-nitro-N-nitrosoguanidine

mTOR:

Mammalian target of rapamycin kinase

NLS:

Nuclear localization signal

NoDSH+ :

Nucleolar detention signal regulated by H+

NoLS:

Nucleolar localization signal

NOR:

Nucleolar organization region

Pol I (II, III):

RNA polymerase I (II, III)

PTM:

Posttranslational modifications

rDNA:

Ribosomal DNA

RNP:

Ribonucleoprotein

RP:

Ribosomal protein

RRM:

RNA-recognition motif

snoRNA:

Small nucleolar RNA

SSU:

Small subunit

Topo I:

DNAtopoisomerase I

TTF:

Transcription termination factor

UBF:

Upstream binding factor

VHL:

Von Hippel-Lindau tumor suppressor

WRN:

Werner Syndrome protein

References

  • Al-Baker EA, Boyle J, Harry R, Kill IR (2004) A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation. Exp Cell Res 292:179–186

    Article  PubMed  CAS  Google Scholar 

  • Amin MA, Matsunaga S, Uchiyama S, Fukui K (2008) Depletion of nucleophosmin leads to distortion of nucleolar and nuclear structures in HeLa cells. Biochem J 415:345–351

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Andersen JS, Lam YW, Leung AKL, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Arabi A, Siqin Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, Larsson LG, Wright APH (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  PubMed  CAS  Google Scholar 

  • Azzam R, Chen SL, Shou W, Mah AS, Alexandru G, Nasmyth K, Annan RS, Carr SA, Deshaies RJ (2004) Phosphorylation by cyclin B–Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305:516–519

    Article  PubMed  CAS  Google Scholar 

  • Bański P, Mahboubi H, Kodiha M, Shrivastava S, Kanagaratham C, Stochaj U (2010) Nucleolar targeting of the chaperone Hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. J Biol Chem 285:21858–21867

    Article  PubMed  CAS  Google Scholar 

  • Bártová E, Harničarová Horáková A, Uhlířová R, Raška I, Galiová G, Orlova D, Kozubek S (2010) Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 58:391–403

    Article  PubMed  CAS  Google Scholar 

  • Batista LF, Kaina B, Meneghini R, Menck CF (2009) How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681:197–208

    Article  PubMed  CAS  Google Scholar 

  • Bauer PI, Chen HJ, Kenesi E, Kenessey I, Buki KG, Kirsten E, Hakam A, Hwang JI, Kun E (2001) Molecular interactions between poly(ADP-ribose) polymerase (PARP I) and topoisomerase I (Topo I): identification of topology of binding. FEBS Lett 506:239–242

    Article  PubMed  CAS  Google Scholar 

  • Baumli S, Endicott JA, Johnson LN (2010) Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem Biol 17:931–936

    Article  PubMed  CAS  Google Scholar 

  • Becherel OJ, Gueven N, Birrell GW, Schreiber V, Suraweera A, Jakob B, Taucher-Scholz G, Lavin MF (2006) Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription. Hum Mol Genet 15:2239–2249

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O (2011) Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2:103–108

    Article  PubMed  Google Scholar 

  • Bharti AK, Olson MO, Kufe DW, Rubin EH (1996) Identification of a nucleolin binding site in human topoisomerase I. J Biol Chem 271:1993–1997

    Article  PubMed  CAS  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, Ahmad Y, Gierliński M, Charrière F, Lamont D, Scott M, Barton G, Lamond AI (2011a) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. doi:10.1074/mcp.M111.011429

  • Boisvert FM, Ahmad Y, Lamond AI (2011b) The dynamic proteome of the nucleolus. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Bond VC, Wold B (1993) Nucleolar localization of myc transcripts. Mol Cell Biol 13:3221–3230

    PubMed  CAS  Google Scholar 

  • Bouvet P, Diaz JJ, Kindbeiter K, Madjar JJ, Amalric F (1998) Nucleolin interacts with several ribosomal proteins through its RGG domain. J Biol Chem 273:19025–19029

    Article  PubMed  CAS  Google Scholar 

  • Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108:4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter CA, Lin AH, Tanizawa A, Pommier YG, Cheng YC, Kaufmann SH (1996) RNA synthesis inhibitors alter the subnuclear distribution of DNA topoisomerase I. Cancer Res 56:1674–1681

    PubMed  CAS  Google Scholar 

  • Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Hölzel M, Eick D (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425

    Article  PubMed  CAS  Google Scholar 

  • Chang MS, Sasaki H, Campbell MS, Kraeft SK, Sutherland R, Yang CY, Liu Y, Auclair D, Hao L, Sonoda H, Ferland LH, Chen LB (1999) HRad17 colocalizes with NHP2L1 in the nucleolus and redistributes after UV irradiation. J Biol Chem 274:36544–36549

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S (2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J Cell Biol 168:41–54

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Fields KM, Ren J, Kufe D, Bohr VA (2003) Werner Syndrome protein phosphorylation by Abl tyrosine kinase regulates its activity and distribution. Mol Cell Biol 23:6385–6395

    Article  PubMed  CAS  Google Scholar 

  • Christensen MO, Barthelmes HU, Boege F, Mielke C (2002a) The N-terminal domain anchors human topoisomerase I at fibrillar centers of nucleoli and nucleolar organizer regions of mitotic chromosomes. J Biol Chem 277:35932–35938

    Article  PubMed  CAS  Google Scholar 

  • Christensen MO, Barthelmes HU, Feineis S, Knudsen BR, Andersen AH AH, F B, Mielke C (2002b) Changes in mobility account for camptothecin-induced subnuclear relocation of topoisomerase I. J Biol Chem 277:15661–15665

    Article  PubMed  CAS  Google Scholar 

  • Christensen MO, Krokowski RM, Barthelmes HU, Hock R, Boege F, Mielke C (2004) Distinct effects of topoisomerase I and RNA polymerase I inhibitors suggest a dual mechanism of nucleolar/nucleoplasmic partitioning of topoisomerase I. J Biol Chem 279:21873–21882

    Article  PubMed  CAS  Google Scholar 

  • Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64:881–885

    PubMed  CAS  Google Scholar 

  • Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–1516

    Article  PubMed  CAS  Google Scholar 

  • Cong R, Das S, Bouvet P (2011) The multiple properties and functions of nucleolin. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Czubaty A, Girstun A, Kowalska-Loth B, Trzcinska AM, Purta E, Winczura A, Grajkowski W, Staron K (2005) Proteomic analysis of complexes formed by human topoisomerase I. Biochim Biophys Acta 1749:133–141

    Article  PubMed  CAS  Google Scholar 

  • Dambara A, Morinaga T, Fukuda N, Yamakawa Y, Kato T, Enomoto A, Asai N, Murakumo Y, Matsuo S, Takahashi M (2007) Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation. Exp Cell Res 313:3755–3766

    Article  PubMed  CAS  Google Scholar 

  • Daniely Y, Dimitrova DD, Borowiec JA (2002) Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol 22:6014–6022

    Article  PubMed  CAS  Google Scholar 

  • Dejmek J, Iglehart JD, Lazaro JB (2009) DNA-dependent protein kinase (DNA-PK)-dependent cisplatin-induced loss of nucleolar facilitator of chromatin transcription (FACT) and regulation of cisplatin sensitivity by DNA-PK and FACT. Mol Cancer Res 7:581–591

    Article  PubMed  CAS  Google Scholar 

  • Dobbelstein M, Shenk T (1995) In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol 69:8027–8034

    PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T, Olson MOJ (2000) The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol 150:433–446

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets the roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  PubMed  CAS  Google Scholar 

  • Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  PubMed  CAS  Google Scholar 

  • Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB (2000) The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169–1182

    Article  PubMed  CAS  Google Scholar 

  • Ekman D, Light S, Björklund AK, Elofsson A (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7:R45

    Article  PubMed  CAS  Google Scholar 

  • Elam C, Hesson L, Vos MD, Eckfeld K, Ellis CA, Bell A, Krex D, Birrer MJ, Latif F, Clark GJ (2005) RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor potential. Cancer Res 65:3117–3125

    PubMed  CAS  Google Scholar 

  • Emmott E, Hiscox JA (2009) Nucleolar targeting: the hub of the matter. EMBO Rep 103:231–238

    Article  CAS  Google Scholar 

  • Enomoto T, Lindstrom MS, Jin A, Ke H, Zhang Y (2006) Essential role of the B23/NPM core domain in regulating ARF binding and B23 stability. J Biol Chem 281:18463–18472

    Article  PubMed  CAS  Google Scholar 

  • Etheridge KT, Banik SSR, Armbruster BN, Zhu Y, Terns RM, Terns MP, Counter CM (2002) The nucleolar localization domain of the catalytic subunit of human telomerase. J Biol Chem 277:24764–24770

    Article  PubMed  CAS  Google Scholar 

  • Farin K, Di Segni A, Mor A, Pinkas-Kramarski R (2009) Structure-function analysis of nucleolin and ErbB receptors interactions. PLoS One 4:e6128

    Article  PubMed  CAS  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  PubMed  CAS  Google Scholar 

  • Fatica A, Galardi S, Altieri F, Bozzoni I (2000) Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA 6:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Suzuki S, Kanno M, Sugiyama H, Takahashi H, Tanaka J (2006) Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25. Exp Cell Res 312:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Garcia MC, Williams J, Johnson K, Olden K, Roberts JD (2011) Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA. FEBS Lett 585:618–622

    Article  PubMed  CAS  Google Scholar 

  • Gébrane-Younès J, Fomproix N, Hernandez-Verdun D (1997) When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 110:2429–2440

    PubMed  Google Scholar 

  • Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Lucas L, Klein C, Menager M, Bonnet N, Ploton D (1995) Three-dimensional co-location of RNA polymerase I and DNA during interphase and mitosis by confocal microscopy. J Cell Sci 108:115–125

    PubMed  CAS  Google Scholar 

  • Ginisty H, Serin G, Ghisolfi-Nieto L, Roger B, Libante V, Amalric F, Bouvet P (2000) Interaction of nucleolin with an evolutionarily conserved pre-ribosomal RNA sequence is required for the assembly of the primary processing complex. J Biol Chem 275:18845–18850

    Article  PubMed  CAS  Google Scholar 

  • Ginisty H, Amalric F, Bouvet P (2001) Two different combinations of RNA-binding domains determine the RNA binding specificity of nucleolin. J Biol Chem 276:14338–14343

    PubMed  CAS  Google Scholar 

  • Girstun A, Kowalska-Loth K, Czubaty A, Klocek M, Staron K (2008) Fragment responsible for translocation in the N-terminal domain of human topoisomerase I. Biochem Biophys Res Commun 366:250–257

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Fowler J, Katoku-Kikyo N, Haroldson J, Wudel J, Kikyo N (2003) Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat Cell Biol 5:205–210

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Wudel J, Nelson D, Katoku-Kikyo N, Reed P, Tamada H, Kikyo N (2006) Requirement of the protein B23 for nucleolar disassembly induced by the FRGY2a family proteins. J Biol Chem 281:8153–8160

    Article  PubMed  CAS  Google Scholar 

  • González V, Guo K, Hurley L, Sun D (2009) Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 284:23622–23635

    Article  PubMed  CAS  Google Scholar 

  • Goyal P, Pandey D, Siess W (2006) Phosphorylation-dependent regulation of unique nuclear and nucleolar localization signals of LIM kinase 2 in endothelial cells. J Biol Chem 281:25223–25230

    Article  PubMed  CAS  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318

    Article  PubMed  CAS  Google Scholar 

  • Grob A, Colleran C, McStay B (2011) UBF an essential player in maintenance of active NORs and nucleolar formation. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Gunawardena SR, Ruis BL, Meyer JA, Kapoor M, Conklin KF (2008) NOM1 targets protein phosphatase I to the nucleolus. J Biol Chem 283:398–404

    Article  PubMed  CAS  Google Scholar 

  • Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka M (1990) Discovery of the nucleolar targeting signal. Bioessays 12:143–148

    Article  PubMed  CAS  Google Scholar 

  • Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    Article  PubMed  CAS  Google Scholar 

  • He F, DiMario P (2011) Structure and function of Nopp 140 and treacle. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381

    Article  PubMed  CAS  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2011a) Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2:189–194

    Article  PubMed  Google Scholar 

  • Hernandez-Verdun D (2011b) Structural organization of the nucleolus as a consequence of the dynamics of ribosome biogenesis. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1:415–431

    Article  PubMed  CAS  Google Scholar 

  • Hingorani K, Szebeni A, Olson MOJ (2000) Mapping the functional domains of nucleolar protein B23. J Biol Chem 275:24451–24457

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka M, Ueshima S, Murano K, Nagata K, Okuwaki M (2010) Regulation of nucleolar chromatin by B23/nucleophosmin jointly depends upon its RNA binding activity and transcription factor UBF. Mol Cell Biol 30:4952–4964

    Article  PubMed  CAS  Google Scholar 

  • Horke S, Reumann K, Schweizer M, Will H, Heise T (2004) Nuclear trafficking of La protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J Biol Chem 279:26563–26570

    Article  PubMed  CAS  Google Scholar 

  • Houmani JL, Ruf IK (2009) Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22. PLoS One 4:e5306

    Article  PubMed  CAS  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  • Huang S (2002) Building an efficient factory: where is pre-rRNA synthesized in the nucleolus? J Cell Biol 157:739–741

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Itahana K, Zhang Y, Mitchell BS (2009) Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin. Cancer Res 69:3004–3012

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Whang P, Chodaparambil JV, Pollyea DA, Kusler B, Xu L, Felsher DW, Mitchell BS (2011) Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J Biol Chem 286:11035–11046

    Article  PubMed  CAS  Google Scholar 

  • Inder KL, Hill MM, Hancock JF (2010) Nucleophosmin and nucleolin regulate K-Ras signaling. Commun Integr Biol 3:188–190

    Article  PubMed  Google Scholar 

  • Intine RV, Dundr M, Vassilev A, Schwartz E, Zhao Y, Zhao Y, Depamphilis ML, Maraia RJ (2004) Nonphosphorylated human La antigen interacts with nucleolin at nucleolar sites involved in rRNA biogenesis. Mol Cell Biol 24:10894–10904

    Article  PubMed  CAS  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MR, Pederson T (1998) Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 95:7981–7986

    Article  PubMed  CAS  Google Scholar 

  • Jellbauer S, Jansen RP (2008) A putative function of the nucleolus in the assembly or maturation of specialized messenger ribonucleoprotein complexes. RNA Biol 5:225–229

    PubMed  CAS  Google Scholar 

  • Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234

    Article  PubMed  CAS  Google Scholar 

  • Juge F, Fernando C, Fic W, Tazi J (2010) The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet 6:e1001124

    Article  PubMed  CAS  Google Scholar 

  • Kalmárová M, Kováčik L, Popov A, Testillano SP, Smirnov E (2008) Asymmetrical distribution of the transcriptionally competent NORs in mitosis. J Struct Biol 163:40–44

    Article  PubMed  CAS  Google Scholar 

  • Kalt I, Borodianskiy-Shteinberg T, Schachor A, Sarid R (2010) GLTSCR2/PICT-1, a putative tumor suppressor gene product, induces the nucleolar targeting of the Kaposi’s sarcoma-associated herpesvirus KS-Bcl-2 protein. J Virol 84:2935–2945

    Article  PubMed  CAS  Google Scholar 

  • Karmakar P, Bohr VA (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126:1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Kermekchiev M, Workman JL, Pikaard CS (1997) Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol Cell Biol 17:5833–5842

    PubMed  CAS  Google Scholar 

  • Khurts S, Masutomi K, Delgermaa L, Arai K, Oishi N, Mizuno H, Hayashi N, Hahn WC, Murakami S (2004) Nucleolin interacts with telomerase. J Biol Chem 279:51508–51515

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, MacFarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JWS, Michael Taliansky M (2007) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104:11115–11120

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Grummt I (1999) Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc Natl Acad Sci U S A 96:6096–6101

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Cheutin T, O’Donohue MF, Rothblum L, Kaplan H, Beorchia A, Lucas L, Héliot L, Ploton D (1998) The three-dimensional study of chromosomes and upstream binding factor-immunolabeled nucleolar organizer regions demonstrates their nonrandom spatial arrangement during mitosis. Mol Biol Cell 9:3147–3159

    PubMed  CAS  Google Scholar 

  • Koberna K, Malínský J, Pliss A, Masata M, Vecerova J, Fialová M, Bednár J, Raska I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157:743–748

    Article  PubMed  CAS  Google Scholar 

  • Korgaonkar C, Hagen H, Tompkins V, Frazier AA, Allamargot A, Quelle FW, Quelle DE (2005) Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25:1258–1271

    Article  PubMed  CAS  Google Scholar 

  • Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, Jung JU, Angelidis C (2009) Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 14:391–406

    Article  PubMed  CAS  Google Scholar 

  • Krüger T, Scheer U (2010) p53 localizes to intranucleolar regions distinct from the ribosome production compartments. J Cell Sci 123:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Krüger T, Zentgraf H, Scheer U (2007) Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol 177:573–578

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Vente A, Dorée M, Grummt I (1998) Mitotic phosphorylation of the TBP-containing factor SL1 represses ribosomal gene transcription. J Mol Biol 284:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475

    Article  PubMed  CAS  Google Scholar 

  • Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  Google Scholar 

  • Lamaye F, Galliot S, Alibardi L, Lafontaine DL, Thiry M (2011) Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia. J Struct Biol 174:352–359

    Article  PubMed  CAS  Google Scholar 

  • Lechertier T, Sirri V, Hernandez-Verdun D, Roussel P (2007) A B23-interacting sequence as a tool to visualize protein interactions in a cellular context. J Cell Sci 120:265–275

    Article  PubMed  CAS  Google Scholar 

  • Lechertier T, Grob A, Hernandez-Verdun D, Roussel P (2009) Fibrillarin and Nop56 interact before beining co-assembled in box C/D snoRNPs. Exp Cell Res 315:928–942

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Smith BA, Bandyopadhyay K, Gjerset RA (2005) DNA damage disrupts the p14ARFB23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res 65:9834–9842

    Article  PubMed  CAS  Google Scholar 

  • Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J, Moss T (2010) The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell 38:539–550

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Andersen JS, Mann M, Lamond AI (2003) Bioinformatic analysis of the nucleolus. Biochem J 376:553–569

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI (2004) Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Tollervey D (2000) Like attracts like: getting RNA processing together in the nucleus. Science 288:1385–1389

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Busch RK, Valdez BC, Busch H (1996) C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Tomlinson RL, Terns RM, Terns MP (2010) Telomerase trafficking and assembly in Xenopus oocytes. J Cell Sci 123:2464–2472

    Article  PubMed  CAS  Google Scholar 

  • Lin CI, Yeh NH (2009) Treacle recruits RNA polymerase I complex to the nucleolus that is independent of UBF. Biochem Biophys Res Commun 386:396–401

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Jin R, Zhang B, Chen H, Bai YX, Yang PX, Han SW, Xie YH, Huang PT, Huang C, Huang JJ (2008) Nucleolar localization of TERT is unrelated to telomerase function in human cells. J Cell Sci 121:2169–2176

    Article  PubMed  CAS  Google Scholar 

  • Lindström MS (2011) NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int. doi:10.1155/2011/195209

  • Lindström MS, Zhang Y (2008) Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem 283:15568–15576

    Article  PubMed  CAS  Google Scholar 

  • Lo SJ, Lee CC, Lai HJ (2006) The nucleolus: reviewing oldies to have new understandings. Cell Res 16:530–538

    Article  PubMed  CAS  Google Scholar 

  • Losasso C, Cretaio E, Palle K, Pattarello L, Bjornsti MA, Benedetti P (2007) Alterations in linker flexibility suppress DNA topoisomerase I mutant-induced cell lethality. J Biol Chem 282:9855–9864

    Article  PubMed  CAS  Google Scholar 

  • Losfeld ME, Leroy A, Coddeville B, Carpentier M, Mazurier J, Legrand D (2011) N-glycosylation influences the structure and self-association abilities of recombinant nucleolin. FEBS J 278:2552–2564

    Article  PubMed  CAS  Google Scholar 

  • Louvet E, Junera HR, Le Panse S, Hernandez-Verdun D (2005) Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 304:457–470

    Article  PubMed  CAS  Google Scholar 

  • Louvet E, Junera HR, Berthuy I, Hernandez-Verdun D (2006) Compartmentation of the nucleolar processing proteins in the granular component is a CK2‐driven process. Mol Biol Cell 17:2537–2546

    Article  PubMed  CAS  Google Scholar 

  • Lukowiak AA, Narayanan A, Li ZH, Terns RM, Terns MP (2001) The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7:1833–1844

    PubMed  CAS  Google Scholar 

  • Ma H, Pederson T (2008) Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells. Mol Biol Cell 19:2870–2875

    Article  PubMed  CAS  Google Scholar 

  • Mais C, Wright JE, Prieto JL, Raggett SL, McStay B (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Mehl IR, Muller MT (2002) Subnuclear distribution of topoisomerase I is linked to ongoing transcription and p53 status. Proc Natl Acad Sci U S A 99:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Martindill DMJ, Risebro CA, Smart N, MdelM F-V, Rosario CO, Swallow CJ, Dennis JW, Riley PR (2007) Nucleolar release of Hand1 acts as a molecular switch to determine cell fate. Nat Cell Biol 9:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Mason SW, Sander EE, Grummt I (1997) Identification of a transcript release activity acting on ternary transcription complexes containing murine RNA polymerase I. EMBO J 16:163–172

    Article  PubMed  CAS  Google Scholar 

  • Matafora V, D’Amato A, Mori S, Blasi F, Bachi A (2009) Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 8:2243–2255

    Article  PubMed  CAS  Google Scholar 

  • Matragkou C, Papachristou H, Karetsou Z, Papadopoulos G, Papamarcaki T, Vizirianakis IS, Tsiftsoglou AS, Choli-Papadopoulou T (2009) On the intracellular trafficking of mouse S5 ribosomal protein from cytoplasm to nucleoli. J Mol Biol 392:1192–1204

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4:1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Bierhoff H, Grummt I (2005) The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev 19:933–941

    Article  PubMed  CAS  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  PubMed  CAS  Google Scholar 

  • Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S (2004a) HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6:642–647

    Article  PubMed  CAS  Google Scholar 

  • Mekhail K, Khacho M, Gunaratnam L, Lee S (2004b) Oxygen sensing by H+: implications for HIF and hypoxic cell memory. Cell Cycle 3:1027–1029

    Article  PubMed  CAS  Google Scholar 

  • Mekhail K, Rivero-Lopez L, Al-Masri A, Brandon C, Khacho M, Lee S (2007) Identification of a common subnuclear localization signal. Mol Biol Cell 18:3966–3977

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Yasumoto H, Tsai RYL (2006) Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm. J Cell Sci 119:5124–5136

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Zhu Q, Tsai RYL (2007) Nucleolar trafficking of nucleostemin family proteins: common versus protein-specific mechanisms. Mol Cell Biol 27:8670–8682

    Article  PubMed  CAS  Google Scholar 

  • Meraner J, Lechner M, Loidl A, Goralik-Schramel M, Voit R, Grummt I, Loidl P (2006) Acetylation of UBF changes during the cell cycle and regulates the interaction of UBF with RNA polymerase I. Nucleic Acids Res 34:1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Meulmeester E, Melchior F (2008) SUMO. Nature 452:709–711

    Article  PubMed  CAS  Google Scholar 

  • Michalec B, Krokowski D, Grela P, Wawiórka L, Sawa-Makarska J, Grankowski N, Tchórzewski M (2010) Subcellular localization of ribosomal P0-like protein MRT4 is determined by its N-terminal domain. Int J Biochem Cell Biol 42:736–748

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2001a) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2001b) The concept of self-organization in cellular architecture. J Cell Biol 155:181–185

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2005) Going in GTP cycles in the nucleolus. J Cell Biol 168:177–178

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2008) Physiological importance of RNA and protein mobility in the cell nucleus. Histochem Cell Biol 129:5–11

    Article  PubMed  CAS  Google Scholar 

  • Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711:61–72

    Article  PubMed  CAS  Google Scholar 

  • Mo YY, Yu Y, Shen Z, Beck WT (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277:2958–2964

    Article  PubMed  CAS  Google Scholar 

  • Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics. doi:10.1074/mcp.M111.009241

  • Moroianu J, Riordan JF (1994) Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 203:1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Muro E, Gébrane-Younès J, Jobart-Malfait A, Louvet E, Roussel P, Hernandez-Verdun D (2010) The traffic of proteins between nucleolar organizer regions and prenucleolar bodies governs the assembly of the nucleolus at exit of mitosis. Nucleolus 1:202–211

    Article  Google Scholar 

  • Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M (2004) NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 15:5712–5723

    Article  PubMed  CAS  Google Scholar 

  • Negi SS, Olson MO (2006) Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J Cell Sci 119:3676–3685

    Article  PubMed  CAS  Google Scholar 

  • Németh A, Längst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156

    Article  PubMed  CAS  Google Scholar 

  • Nicol SM, Causevic M, Prescott AR, Fuller-Pace FV (2000) The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res 257:272–280

    Article  PubMed  CAS  Google Scholar 

  • Niedick I, Froese N, Oumard A, Mueller PP, Nourbakhsh M, Hauser H, Köster M (2004) Nucleolar localization and mobility analysis of the NF-κB repressing factor NRF. J Cell Sci 117:3447–3458

    Article  PubMed  CAS  Google Scholar 

  • Nierras CR, Liebman SW, Warner JR (1997) Does Saccharomyces need an organized nucleolus? Chromosoma 105:441–451

    Google Scholar 

  • Nishimura Y, Ohkubo T, Furuichi Y, Umekawa H (2002) Tryptophans 286 and 288 in the C-terminal region of protein B23.1 are important for its nucleolar localization. Biosci Biotechnol Biochem 66:2239–2242

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan AC, Sullivan GJ, McStay B (2002) UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22:657–668

    Article  PubMed  CAS  Google Scholar 

  • Okuwaki M (2008) The structure and functions of NPM1/Nucleophosmin/B23, a multifunctional nucleolar acidic protein. J Biochem 143:441–448

    Article  PubMed  CAS  Google Scholar 

  • Okuwaki M, Tsujimoto M, Nagata K (2002) The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 13:2016–2030

    Article  PubMed  CAS  Google Scholar 

  • Olson MOJ, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Panse SL, Masson C, Héliot L, Chassery JM, Junéra HR, Hernandez-Verdun D (1999) 3-D organization of ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 112:2145–2154

    PubMed  Google Scholar 

  • Pederson T, Tsai RYL (2009) In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184:771–776

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Baccon J, Charroux B, Dreyfuss G (2001) The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 11:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–605

    Article  PubMed  CAS  Google Scholar 

  • Politz JCR, Hogan EM, Pederson T (2009) MicroRNAs with a nucleolar location. RNA 15:1705–1715

    Article  PubMed  CAS  Google Scholar 

  • Pommier Y, Marchand C (2005) Interfacial inhibitors of protein-nucleic acid interactions. Curr Med Chem Anticancer Agents 5:421–429

    Article  PubMed  CAS  Google Scholar 

  • Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  PubMed  CAS  Google Scholar 

  • Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson RB, McArthur GA, Hannan RD (2004) MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J 23:3325–3335

    Article  PubMed  CAS  Google Scholar 

  • Rakitina DV, Taliansky M, Brown JWS, Kalinina NO (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 39:8869–8880

    Article  PubMed  CAS  Google Scholar 

  • Rallabhandi P, Hashimoto K, Mo YY, Beck WT, Moitra PK, D’Arpa P (2002) Sumoylation of topoisomerase I is involved in its partitioning between nucleoli and nucleoplasm and its clearing from nucleoli in response to camptothecin. J Biol Chem 277:40020–40026

    Article  PubMed  CAS  Google Scholar 

  • Rass U, Ahel I, West SC (2007) Actions of aprataxin in multiple DNA repair pathways. J Biol Chem 282:9469–9474

    Article  PubMed  CAS  Google Scholar 

  • Romanova L, Kellner S, Katoku-Kikyo N, Kikyo N (2009) Novel role of nucleostemin in the maintenance of nucleolar architecture and integrity of small nucleolar ribonucleoproteins and the telomerase complex. J Biol Chem 284:26685–26694

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    Article  PubMed  CAS  Google Scholar 

  • Roussel P, André C, Masson C, Géraud G, Hernandez-Verdun D (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell-cycle. J Cell Sci 104:327–337

    PubMed  CAS  Google Scholar 

  • Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    Article  PubMed  CAS  Google Scholar 

  • Russo G, Ricciardelli G, Pietropaolo C (1997) Different domains cooperate to target the human ribosomal L7a protein to the nucleus and to the nucleoli. J Biol Chem 272:5229–5235

    Article  PubMed  CAS  Google Scholar 

  • Russo I, Oksman A, Goldberg DE (2009) Fatty acid acylation regulates trafficking of the unusual Plasmodium falciparum calpain to the nucleolus. Mol Microbiol 72:229–245

    Article  PubMed  CAS  Google Scholar 

  • Sagou K, Uema M, Kawaguchi Y (2010) Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. J Virol 84:2110–2121

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y, Ogata H, Fukuda M, Ohta T (2004) Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279:30919–30922

    Article  PubMed  CAS  Google Scholar 

  • Savino TM, Bastos R, Jansen E, Hernandez-Verdun D (1999) The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 112:1889–1900

    PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Zachmann MS, Nigg EA (1993) Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 105:799–806

    PubMed  CAS  Google Scholar 

  • Scott M, Boisvert FM, Vieyra D, Johnston RN, Bazett-Jones DP, Riabowol K (2001) UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res 29:2052–2058

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi T, Hayano T, Yanagida M, Takahashi N, Nishimoto T (2006) NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47. Nucleic Acids Res 34:4593–4608

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Murillas R, Zhang H, Kuehn MR (2010) N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 123:1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B (2009) NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 315:1653–1667

    Article  PubMed  CAS  Google Scholar 

  • Shin HS, Jang CY, Kim HD, Kim TS, Kim S, Kim J (2009) Arginine methylation of ribosomal protein S3 affects ribosome assembly. Biochem Biophys Res Commun 385:273–278

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Shida H, Nam SH, Nosaka T, Maki M, Hatanaka M (1988) Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 55:197–209

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 112:3259–3268

    PubMed  CAS  Google Scholar 

  • Sirri V, Hernandez-Verdun D, Roussel P (2002) Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 156:969–981

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima U, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  PubMed  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378

    Article  PubMed  CAS  Google Scholar 

  • Speil J, Kubitscheck U (2010) Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. Biochim Biophys Acta 1803:396–404

    Article  PubMed  CAS  Google Scholar 

  • Stark LA, Dunlop MG (2005) Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol Cell Biol 25:5985–6004

    Article  PubMed  CAS  Google Scholar 

  • Stavreva DA, Kawasaki M, Dundr M, Koberna K, Müller WG, Tsujimura-Takahashi T, Komatsu W, Hayano T, Isobe T, Raska I, Misteli T, Takahashi N, McNally JG (2006) Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol 26:5131–5145

    Article  PubMed  CAS  Google Scholar 

  • Strang BL, Boulant S, Coen DM (2010) Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 84:1771–1784

    Article  PubMed  CAS  Google Scholar 

  • Subba Rao MRK, Kumari G, Balasundaram D, Sankaranarayanan R, Mahalingam S (2006) A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. J Mol Biol 364:637–654

    Article  CAS  Google Scholar 

  • Suja JA, Gébrane-Younès J, Géraud G, Hernandez-Verdun D (1997) Relative distribution of rDNA and proteins of the RNA polymerase I transcription machinery at chromosomal NORs. Chromosoma 105:459–469

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP (2009) Regulation of nucleolar signalling to p53through NEDDylation of L11. EMBO Rep 10:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Tajrishi MM, Tuteja R, Tuteja N (2011) Nucleolin. The most abundant multifunctional phosphoprotein of nucleolus. Commun Int Biol 4:267–275

    Article  CAS  Google Scholar 

  • Takahashi Y, Strunnikov A (2008) In vivo modeling of polysumoylation uncovers targeting of topoisomerase II to the nucleolus via optimal level of SUMO modification. Chromosoma 117:189–198

    Article  PubMed  CAS  Google Scholar 

  • Thiry M, Lafontaine DL (2005) Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15:194–199

    Article  PubMed  CAS  Google Scholar 

  • Thiry M, Lamaye F, Lafontaine DL (2011) The nucleolus: when 2 became 3. Nucleus 2:289–293

    Article  PubMed  Google Scholar 

  • Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, Dunlop MG, Stark LA (2010) Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 70:139–149

    Article  PubMed  CAS  Google Scholar 

  • Trzcińska-Daneluti AM, Górecki A, Czubaty A, Kowalska-Loth B, Girstun A, Murawska M, Lesyng B, Staron K (2007) RRM proteins interacting with the cap region of topoisomerase I. J Mol Biol 369:1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Tsai RYL, McKay RDG (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168:179–184

    Article  PubMed  CAS  Google Scholar 

  • Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF (2003) Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22:6045–6056

    Article  PubMed  CAS  Google Scholar 

  • Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Turner AJ, Knox AA, Prieto JL, McStay B, Watkins NJ (2009) A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol Cell Biol 29:3007–3017

    Article  PubMed  CAS  Google Scholar 

  • Ugrinova I, Monier K, Ivaldi C, Thiry M, Storck S, Mongelard F, Bouvet P (2007) Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol 8:66

    Article  PubMed  CAS  Google Scholar 

  • Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H (1994) Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269:23776–23783

    PubMed  CAS  Google Scholar 

  • Valdez BC, Henning D, So RB, Dixon J, Dixon MJ (2004) The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A 101:10709–10714

    Article  PubMed  CAS  Google Scholar 

  • Viiri KM, Korkeamäki H, Kukkonen MK, Nieminen LK, Lindfors K, Peterson P, Mäki M, Kainulainen H, Lohi O (2006) SAP30L interacts with members of the Sin3A corepressor complex and targets Sin3A to the nucleolus. Nucleic Acids Res 34:3288–3298

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Grummt I (2001) Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc Natl Acad Sci U S A 98:13631–13636

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Hoffmann M, Grummt I (1999) Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 18:1891–1899

    Article  PubMed  CAS  Google Scholar 

  • Watkins NJ, Dickmanns A, Lührmann R (2002) Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 22:8342–8352

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Kuo ML, Bothner B, Digiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ (2000) Cooperative signals governing ARF-Mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20:2517–2528

    Article  PubMed  CAS  Google Scholar 

  • Westman BJ, Lamond AI (2011) A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus 2:30–37

    Article  PubMed  Google Scholar 

  • Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E, Lamond AI (2010) A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Mol Cell 39:618–631

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Maiguel DA, Carrier F (2002) Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Res 30:2251–2260

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Hsu CT, Ting CY, Liu LF, Hwang J (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281:8264–8274

    Article  PubMed  CAS  Google Scholar 

  • Yip SP, Siu PM, Leung PHM, Zhao Y, Yung BYM (2011) The multifunctional nucleolar protein nucleophosmin/NPM/B23 and the nucleoplasmin family of proteins. In: Olson MOJ (ed) The nucleolus, vol 15, Protein reviews. Springer, New York

    Google Scholar 

  • Yogev O, Saadon K, Anzi S, Inoue K, Shaulian E (2008) DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway. Cancer Res 68:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Yoo D, Wootton SK, Li G, Song C, Rowland RR (2003) Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin. J Virol 77:12173–12183

    Article  PubMed  CAS  Google Scholar 

  • Yoo JE, Oh BK, Park YN (2009) Human PinX1 mediates TRF1 accumulation in nucleolus and enhances TRF1 binding to telomeres. J Mol Biol 388:928–940

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Maggi LB Jr, Brady SN, Apicelli AJ, Dai MS, Lu H, Weber JD (2006) Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 26:3798–37809

    Article  PubMed  CAS  Google Scholar 

  • Yung TMC, Sato S, Satoh MS (2004) Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem 279:39686–39696

    Article  PubMed  CAS  Google Scholar 

  • Zentner GE, Hurd EA, Schnetz MP, Lusy Handoko L, Wang C, Wang Z, Wei C, Tesar PJ, Hatzoglou M, Martin DM, Scacheri PC (2010) CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet 19:3491–3501

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yang Y, Wu J (2009) B23 interacts with PES1 and is involved in nucleolar localization of PES1. Acta Biochim Biophys Sin 41:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Schmitz KM, Mayer C, Yuan X, Akhtar A, Grummt I (2009) Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNAdependent silencing. Nat Cell Biol 11:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Doçi CL, Lingen MW (2010) Identification and functional analysis of NOL7 nuclear and nucleolar localization signals. BMC Cell Biol 11:74

    Article  PubMed  CAS  Google Scholar 

  • Zhuang F, Yen P, Zhao J, Nguyen M, Jiang M, Liu YH (2008) Dynamic intracellular distribution of Eaf2 and its potential involvement in UV-Induced DNA damage response. DNA Cell Biol 27:649–656

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Staroń .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staroń, K., Girstun, A. (2013). Nucleolar Protein Anchoring and Translocation. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_10

Download citation

Publish with us

Policies and ethics