Skip to main content

Software Development for Quantitative Proteomics Using Stable Isotope Labeling

  • Chapter
  • First Online:
Bioinformatics of Human Proteomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 3))

  • 2530 Accesses

Abstract

Stable isotope labeling (SIL) coupled with liquid chromatography and high-resolution tandem mass spectrometry (MS) are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Developments of more effective programs for the relative peptide/protein abundance measurements are essential for quantitative proteomic analysis. In this chapter, we present a quantification program, termed UNiquant, for analyzing quantitative proteomic data using SIL. The common steps in a quantitative proteomic software, such as MS data preprocessing, peptide identification, peptide quantification, and protein quantification, were dissected in this chapter, using UNiquant as an example. UNiquant was used to analyze the SILAC-labeled proteome mixtures with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10). The pros and cons of the quantification results of UNiquant from two different MS acquisition modes, data-dependent acquisition and data-independent acquisition, were also evaluated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakalarski CE, Elias JE, Villen J, Haas W, Gerber SA, Everley PA, Gygi SP. The impact of peptide abundance and dynamic range on stable-isotope-based quantitative proteomic analyses. J Proteome Res. 2008;7:4756–65.

    Article  PubMed  CAS  Google Scholar 

  • Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JP. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom. 2002;13:792–803.

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010;11:427–39.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Statist Assoc. 1979;74:829–36.

    Article  Google Scholar 

  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

    Article  PubMed  CAS  Google Scholar 

  • Ding SJ, Wang Y, Jacobs JM, Qian WJ, Yang F, Tolmachev AV, Du X, Wang W, Moore RJ, Monroe ME, Purvine SO, Waters K, Heibeck TH, Adkins JN, Camp 2nd DG, Klemke RL, Smith RD. Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dual-step (18)O labeling coupled with immobilized metal-ion affinity chromatography. J Proteome Res. 2008;7:4215–24.

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol. 2010;604:55–71.

    Article  PubMed  CAS  Google Scholar 

  • Eng JK, Mccormack AL, Yates JR. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectr. 1994;5:976–89.

    Article  CAS  Google Scholar 

  • Fang R, Elias DA, Monroe ME, Shen Y, McIntosh M, Wang P, Goddard CD, Callister SJ, Moore RJ, Gorby YA, Adkins JN, Fredrickson JK, Lipton MS, Smith RD. Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol Cell Proteomics. 2006;5:714–25.

    PubMed  CAS  Google Scholar 

  • Finney GL, Blackler AR, Hoopmann MR, Canterbury JD, Wu CC, MacCoss MJ. Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution muLC-MS data. Anal Chem. 2008;80:961–71.

    Article  PubMed  CAS  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH. Open mass spectrometry search algorithm. J Proteome Res. 2004;3:958–64.

    Article  PubMed  CAS  Google Scholar 

  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods. 2010a;7:383–5.

    Article  PubMed  CAS  Google Scholar 

  • Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics. 2010b;9:2252–61.

    Article  PubMed  CAS  Google Scholar 

  • Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009;10:617–27.

    Article  PubMed  CAS  Google Scholar 

  • Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol. 2001;19:946–51.

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Tolmachev AV, Shen Y, Liu M, Huang L, Zhang Z, Anderson GA, Smith RD, Chan WC, Hinrichs SH, Fu K, Ding SJ. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling. J Proteome Res. 2011a;10:1228–37.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Liu M, Nold MJ, Tian C, Fu K, Zheng J, Geromanos SJ, Ding SJ. Software for quantitative proteomic analysis using stable isotope labeling and data independent acquisition. Anal Chem. 2011b;83:6971–9.

    Article  PubMed  CAS  Google Scholar 

  • Koomen JM, Haura EB, Bepler G, Sutphen R, Remily-Wood ER, Benson K, Hussein M, Hazlehurst LA, Yeatman TJ, Hildreth LT, Sellers TA, Jacobsen PB, Fenstermacher DA, Dalton WS. Proteomic contributions to personalized cancer care. Mol Cell Proteomics. 2008;7:1780–94.

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Zhang H, Ranish JA, Aebersold R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem. 2003;75:6648–57.

    Article  PubMed  CAS  Google Scholar 

  • Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009;9:1696–719.

    Article  PubMed  CAS  Google Scholar 

  • Liao Z, Wan Y, Thomas SN, Yang AJ. IsoQuant: a software tool for stable isotope labeling by amino acids in cell culture-based mass spectrometry quantitation. Anal Chem. 2012;84:4535–43.

    Article  PubMed  CAS  Google Scholar 

  • Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006;7:952–8.

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Kelleher NL. Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A. 2008;105:18132–8.

    Article  PubMed  CAS  Google Scholar 

  • Mo F, Mo Q, Chen Y, Goodlett DR, Hood L, Omenn GS, Li S, Lin B. WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis. BMC Bioinformatics. 2010;11:219.

    Article  PubMed  Google Scholar 

  • Olsen JV, Mann M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci U S A. 2004;101:13417–22.

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;1:252–62.

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL. ProRata: a quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation. Anal Chem. 2006;78:7121–31.

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Venable JD, Xu T, Yates 3rd JR. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods. 2008;5:319–22.

    PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    Article  PubMed  CAS  Google Scholar 

  • Qian WJ, Petritis BO, Kaushal A, Finnerty CC, Jeschke MG, Monroe ME, Moore RJ, Schepmoes AA, Xiao W, Moldawer LL, Davis RW, Tompkins RG, Herndon DN, Camp DG, Smith RD. Plasma proteome response to severe burn injury revealed by (18)O-labeled “universal” reference-based quantitative proteomics. J Proteome Res. 2010;9:4779–89.

    Article  PubMed  CAS  Google Scholar 

  • Ramos AA, Yang H, Rosen LE, Yao X. Tandem parallel fragmentation of peptides for mass spectrometry. Anal Chem. 2006;78:6391–7.

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005;77:2187–200.

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ. Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics. 2006a;5:589–607.

    PubMed  CAS  Google Scholar 

  • Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006b;5:144–56.

    PubMed  CAS  Google Scholar 

  • Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 2004;1:39–45.

    Article  PubMed  CAS  Google Scholar 

  • Vissers JP, Pons S, Hulin A, Tissier R, Berdeaux A, Connolly JB, Langridge JI, Geromanos SJ, Ghaleh B. The use of proteome similarity for the qualitative and quantitative profiling of reperfused myocardium. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:1317–26.

    Article  PubMed  CAS  Google Scholar 

  • Williams JD, Flanagan M, Lopez L, Fischer S, Miller LA. Using accurate mass electrospray ionization-time-of-flight mass spectrometry with in-source collision-induced dissociation to sequence peptide mixtures. J Chromatogr A. 2003;1020:11–26.

    Article  PubMed  CAS  Google Scholar 

  • Wilm M. Quantitative proteomics in biological research. Proteomics. 2009;9:4590–605.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jian Ding Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, X., Ding, SJ. (2013). Software Development for Quantitative Proteomics Using Stable Isotope Labeling. In: Wang, X. (eds) Bioinformatics of Human Proteomics. Translational Bioinformatics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5811-7_12

Download citation

Publish with us

Policies and ethics