Skip to main content

Prokaryotic Redox Switches

  • Chapter
  • First Online:

Abstract

Reduction-oxidation (redox) reactions are ubiquitous in metabolism. In microbial systems, individual cells monitor the internal and external environment with a diverse array of regulatory redox sensors that control the expression of appropriate adaptive responses. These sensors detect the presence of redox active molecules in the environment as well as those produced by metabolic processes within the cell. Molecular oxygen is the prototypic oxidant, and sensors of O2 help coordinate the switch between anaerobic and aerobic lifestyles. The overall redox balance of the cell can be sensed by proteins monitoring the ratio of oxidized and reduced cofactors, such as low molecular weight thiols, the NADH pool, or membrane-associated quinones. Reactive oxygen and nitrogen species, produced endogenously or present in the environment, are also important signal molecules that can be readily sensed by their redox activity. This suite of sensor proteins is as diverse as their activating signals. Some sensors contain redox active metal centers that may include mononuclear iron, iron-sulfur clusters, and heme cofactors. Other redox switches rely on the facile oxidation and reduction of bound flavin cofactors or cysteine thiolates to effect changes in protein activity. Finally, some regulators assess redox-related signals by reversibly binding to molecules that signal redox status. A survey of these diverse mechanisms provides insights into the manifold pathways that enable cells to adapt to a range of environmental conditions that collectively comprise redox stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam MS, Garg SK, Agrawal P (2007) Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 63:1414–1431

    CAS  PubMed  Google Scholar 

  • Alam MS, Garg SK, Agrawal P (2009) Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 276:76–93

    CAS  PubMed  Google Scholar 

  • Alen C, Sonenshein AL (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci USA 96:10412–10417

    CAS  PubMed  Google Scholar 

  • Anjem A, Imlay JA (2012) Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J Biol Chem 287(19):15544–15556

    CAS  PubMed  Google Scholar 

  • Anjem A, Varghese S, Imlay JA (2009) Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antelmann H, Helmann JD (2011) Thiol-based redox switches and gene regulation. Antioxid Redox Signal 14:1049–1063

    CAS  PubMed  Google Scholar 

  • Aono S (2012) Novel bacterial gas sensor proteins with transition metal-containing prosthetic groups as active sites. Antioxid Redox Signal 16(7):678–686

    CAS  PubMed  Google Scholar 

  • Aslund F, Zheng M, Beckwith J, Storz G (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–6165

    CAS  PubMed  Google Scholar 

  • Bae JB, Park JH, Hahn MY, Kim MS, Roe JH (2004) Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J Mol Biol 335:425–435

    CAS  PubMed  Google Scholar 

  • Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE (2007) Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189:4046–4052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker DF, Zhu W, Moxley MA (2011) Flavin redox switching of protein functions. Antioxid Redox Signal 14:1079–1091

    CAS  PubMed  Google Scholar 

  • Bekker M, Alexeeva S, Laan W, Sawers G, De Mattos JT, Hellingwerf K (2010) The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 192:746–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Wollenberg M, Bill E, Mansilla MC, de Mendoza D, Seidler A, Schwenn JD (2004) Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J Biol Chem 279:7850–7855

    CAS  PubMed  Google Scholar 

  • Bigelow DJ, Squier TC (2011) Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. Mol Biosyst 7:2101–2109

    CAS  PubMed  Google Scholar 

  • Bodenmiller DM, Spiro S (2006) The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188:874–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonam D, Lehman L, Roberts GP, Ludden PW (1989) Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. J Bacteriol 171:3102–3107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brekasis D, Paget MS (2003) A novel sensor of NADH/NAD + redox poise in Streptomyces coelicolor A3(2). EMBO J 22:4856–4865

    CAS  PubMed  Google Scholar 

  • Bush M, Ghosh T, Tucker N, Zhang X, Dixon R (2011) Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification. Biochem Soc Trans 39:289–293

    CAS  PubMed  Google Scholar 

  • Chao JD, Papavinasasundaram KG, Zheng X, Chavez-Steenbock A, Wang X, Lee GQ, Av-Gay Y (2010) Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J Biol Chem 285:29239–29246

    CAS  PubMed  Google Scholar 

  • Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS (2011) Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 39:7400–7414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen PR, Brugarolas P, He C (2011) Redox signaling in human pathogens. Antioxid Redox Signal 14:1107–1118

    CAS  PubMed  Google Scholar 

  • Chi BK, Gronau K, Mader U, Hessling B, Becher D, Antelmann H (2011) S-Bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 10:M111.009506

    PubMed  Google Scholar 

  • Cho HY, Cho HJ, Kim MH, Kang BS (2011) Blockage of the channel to heme by the E87 side chain in the GAF domain of Mycobacterium tuberculosis DosS confers the unique sensitivity of DosS to oxygen. FEBS Lett 585:1873–1878

    CAS  PubMed  Google Scholar 

  • Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113

    CAS  PubMed  Google Scholar 

  • Crack JC, Jervis AJ, Gaskell AA, White GF, Green J, Thomson AJ, le Brun NE (2008) Signal perception by FNR: the role of the iron-sulfur cluster. Biochem Soc Trans 36:1144–1148

    CAS  PubMed  Google Scholar 

  • Crack JC, den Hengst CD, Jakimowicz P, Subramanian S, Johnson MK, Buttner MJ, Thomson AJ, le Brun NE (2009) Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48:12252–12264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crack JC, Smith LJ, Stapleton MR, Peck J, Watmough NJ, Buttner MJ, Buxton RS, Green J, Oganesyan VS, Thomson AJ, le Brun NE (2011) Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J Am Chem Soc 133:1112–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE (2012) Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 17(9):1215–1231

    CAS  PubMed  Google Scholar 

  • D’Autreaux B, Horner O, Oddou JL, Jeandey C, Gambarelli S, Berthomieu C, Latour JM, Michaud-Soret I (2004) Spectroscopic description of the two nitrosyl-iron complexes responsible for Fur inhibition by nitric oxide. J Am Chem Soc 126:6005–6016

    PubMed  Google Scholar 

  • Delgado MJ, Bueno E, Mesa S, Bedmar EJ, Richardson DJ (2012) Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 16(8):819–852

    PubMed  Google Scholar 

  • den Hengst CD, Buttner MJ (2008) Redox control in actinobacteria. Biochim Biophys Acta 1780:1201–1216

    Google Scholar 

  • Dibden DP, Green J (2005) In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states. Microbiology 151:4063–4070

    CAS  PubMed  Google Scholar 

  • Dietrich LE, Kiley PJ (2011) A shared mechanism of SoxR activation by redox-cycling compounds. Mol Microbiol 79:1119–1122

    CAS  PubMed  Google Scholar 

  • Duan X, Yang J, Ren B, Tan G, Ding H (2009) Reactivity of nitric oxide with the [4Fe-4S] cluster of dihydroxyacid dehydratase from Escherichia coli. Biochem J 417:783–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte V, Latour JM (2010) PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. Mol Biosyst 6:316–323

    CAS  PubMed  Google Scholar 

  • Dufour YS, Kiley PJ, Donohue TJ (2010) Reconstruction of the core and extended regulons of global transcription factors. PLOS Genet 6:e1001027

    PubMed Central  PubMed  Google Scholar 

  • Dunham CM, Dioum EM, Tuckerman JR, Gonzalez G, Scott WG, Gilles-Gonzalez MA (2003) A distal arginine in oxygen-sensing heme-PAS domains is essential to ligand binding, signal transduction, and structure. Biochemistry 42:7701–7708

    CAS  PubMed  Google Scholar 

  • Eiamphungporn W, Soonsanga S, Lee JW, Helmann JD (2009) Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 37:1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elsen S, Swem LR, Swem DL, Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fass E, Groisman EA (2009) Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12:199–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flatley J, Barrett J, Pullan ST, Hughes MN, Green J, Poole RK (2005) Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280:10065–10072

    CAS  PubMed  Google Scholar 

  • Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376

    CAS  PubMed  Google Scholar 

  • Fontecave M (2006) Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2:171–174

    CAS  PubMed  Google Scholar 

  • Frausto Da Silva J, Williams R (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Fuangthong M, Helmann JD (2002) The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci USA 99(10):6690–6695

    CAS  PubMed  Google Scholar 

  • Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD (2001) OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183:4134–4141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuangthong M, Herbig AF, Bsat N, Helmann JD (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Georgellis D, Kwon O, Lin EC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314–2316

    CAS  PubMed  Google Scholar 

  • Gerasimova A, Kazakov AE, Arkin AP, Dubchak I, Gelfand MS (2011) Comparative genomics of the dormancy regulons in mycobacteria. J Bacteriol 193:3446–3452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giardina G, Castiglione N, Caruso M, Cutruzzola F, Rinaldo S (2011) The Pseudomonas aeruginosa DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. Biochem Soc Trans 39:294–298

    CAS  PubMed  Google Scholar 

  • Giedroc DP (2009) Hydrogen peroxide sensing in Bacillus subtilis: it is all about the (metallo)regulator. Mol Microbiol 73:1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22

    CAS  PubMed  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G, Perutz MF, Kiger L, Marden MC, Poyart C (1994) Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry 33:8067–8073

    CAS  PubMed  Google Scholar 

  • Grandoni JA, Switzer RL, Makaroff CA, Zalkin H (1989) Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo. J Biol Chem 264:6058–6064

    CAS  PubMed  Google Scholar 

  • Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954–966

    CAS  PubMed  Google Scholar 

  • Green J, Crack JC, Thomson AJ, Lebrun NE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12:145–151

    CAS  PubMed  Google Scholar 

  • Gruner I, Fradrich C, Bottger LH, Trautwein AX, Jahn D, Hartig E (2011) Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J Biol Chem 286:2017–2021

    CAS  PubMed  Google Scholar 

  • Gu M, Imlay JA (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79:1136–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102:13855–13860

    CAS  PubMed  Google Scholar 

  • Gyan S, Shiohira Y, Sato I, Takeuchi M, Sato T (2006) Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 188:7062–7071

    CAS  PubMed Central  PubMed  Google Scholar 

  • He C, Hus JC, Sun LJ, Zhou P, Norman DP, Dotsch V, Wei H, Gross JD, Lane WS, Wagner G, Verdine GL (2005) A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. Mol Cell 20:117–129

    CAS  PubMed  Google Scholar 

  • Helmann JD (2010) Metal-dependent and metal-responsive regulatory systems. In: Spiro S, Dixon R (eds) Sensory mechanisms in bacteria: molecular aspects of signal recognition. Caister Academic Press, Portland

    Google Scholar 

  • Helmann JD (2011) Bacillithiol, a new player in bacterial redox homeostasis. Antioxid Redox Signal 15:123–133

    CAS  PubMed  Google Scholar 

  • Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry JT, Crosson S (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859

    CAS  PubMed  Google Scholar 

  • Herrou J, Crosson S (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9:713–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohle TH, O’Brian MR (2009) The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol Microbiol 72:399–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohle TH, O’Brian MR (2010) Transcriptional control of the Bradyrhizobium japonicum irr gene requires repression by fur and antirepression by Irr. J Biol Chem 285:26074–26080

    CAS  PubMed  Google Scholar 

  • Honaker RW, Leistikow RL, Bartek IL, Voskuil MI (2009) Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun 77:3258–3263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI (2010) DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 192:6447–6455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hondorp ER, Matthews RG (2004) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLOS Biol 2:e336

    PubMed Central  PubMed  Google Scholar 

  • Hondorp ER, Matthews RG (2009) Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. J Bacteriol 191:3407–3410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong M, Fuangthong M, Helmann JD, Brennan RG (2005) Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20:131–141

    CAS  PubMed  Google Scholar 

  • Hou S, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam M (2000) Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540–544

    CAS  PubMed  Google Scholar 

  • Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M (2001) Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria. Proc Natl Acad Sci USA 98:9353–9358

    CAS  PubMed  Google Scholar 

  • Husain M, Jones-Carson J, Song M, McCollister BD, Bourret TJ, Vazquez-Torres A (2010) Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proc Natl Acad Sci USA 107:14396–14401

    CAS  PubMed  Google Scholar 

  • Ilbert M, Horst J, Ahrens S, Winter J, Graf PC, Lilie H, Jakob U (2007) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14:556–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    CAS  PubMed  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082

    PubMed  Google Scholar 

  • Isabella VM, Lapek JD Jr, Kennedy EM, Clark VL (2009) Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol Microbiol 71:227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquamet L, Traore DA, Ferrer JL, Proux O, Testemale D, Hazemann JL, Nazarenko E, El Ghazouani A, Caux-Thang C, Duarte V, Latour JM (2009) Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73:20–31

    CAS  PubMed  Google Scholar 

  • Jakimowicz P, Cheesman MR, Bishai WR, Chater KF, Thomson AJ, Buttner MJ (2005) Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J Biol Chem 280:8309–8315

    CAS  PubMed  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JC (1999) Chaperone activity with a redox switch. Cell 96:341–352

    CAS  PubMed  Google Scholar 

  • Jang S, Imlay JA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448–1467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    CAS  PubMed  Google Scholar 

  • Johnston AW, Todd JD, Curson AR, Lei S, Nikolaidou-Katsaridou N, Gelfand MS, Rodionov DA (2007) Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 20:501–511

    CAS  PubMed  Google Scholar 

  • Kallifidas D, Thomas D, Doughty P, Paget MS (2010) The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. Microbiology 156:1661–1672

    CAS  PubMed  Google Scholar 

  • Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH (1999) RsrA, an anti-sigma factor regulated by redox change. EMBO J 18:4292–4298

    CAS  PubMed  Google Scholar 

  • Kehres DG, Janakiraman A, Slauch JM, Maguire ME (2002) Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+). J Bacteriol 184:3151–3158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MJ, Park KJ, Ko IJ, Kim YM, Oh JI (2010) Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J Bacteriol 192:4868–4875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antioxid Redox Signal 14:1065–1077

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Tanaka A, Takahashi H, Igarashi J, Ishitsuka Y, Yokota N, Shimizu T (2010) Catalysis and oxygen binding of Ec DOS: a haem-based oxygen-sensor enzyme from Escherichia coli. J Biochem 148:693–703

    CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    CAS  PubMed  Google Scholar 

  • Kommineni S, Garg SK, Chan CM, Zuber P (2011) YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J Bacteriol 193:2133–2140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krapp AR, Humbert MV, Carrillo N (2011) The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology 157:957–965

    CAS  PubMed  Google Scholar 

  • Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48:4666–4676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL (2000) Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7:876–880

    CAS  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2006a) Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 281(33):23567–23578

    CAS  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2006b) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    CAS  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the fur family of metalloregulators. Biometals 20:485–499

    CAS  PubMed  Google Scholar 

  • Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE (2004a) Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179–1185

    CAS  PubMed  Google Scholar 

  • Lee JH, Yeo WS, Roe JH (2004b) Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51:1745–1755

    CAS  PubMed  Google Scholar 

  • Lee JW, Soonsanga S, Helmann JD (2007) A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104:8743–8748

    CAS  PubMed  Google Scholar 

  • Lee KC, Yeo WS, Roe JH (2008) Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190:8244–8247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonard SE, Carroll KS (2011) Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology. Curr Opin Chem Biol 15:88–102

    CAS  PubMed  Google Scholar 

  • Li W, Bottrill AR, Bibb MJ, Buttner MJ, Paget MS, Kleanthous C (2003) The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J Mol Biol 333:461–472

    CAS  PubMed  Google Scholar 

  • Lindahl M, Mata-Cabana A, Kieselbach T (2011) The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 14:2581–2642

    CAS  PubMed  Google Scholar 

  • Little R, Salinas P, Slavny P, Clarke TA, Dixon R (2011) Substitutions in the redox-sensing PAS domain of the NifL regulatory protein define an inter-subunit pathway for redox signal transmission. Mol Microbiol 82:222–235

    CAS  PubMed  Google Scholar 

  • Losi A, Gartner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72

    CAS  PubMed  Google Scholar 

  • Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29:3094–3107

    CAS  PubMed  Google Scholar 

  • Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R (2004) The NifL-NifA System: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601–610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marvin KA, Kerby RL, Youn H, Roberts GP, Burstyn JN (2008) The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch. Biochemistry 47:9016–9028

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin KJ, Strain-Damerell CM, Xie K, Brekasis D, Soares AS, Paget MS, Kielkopf CL (2010) Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell 38:563–575

    CAS  PubMed  Google Scholar 

  • Mettert EL, Outten FW, Wanta B, Kiley PJ (2008) The impact of O2 on the Fe-S cluster biogenesis requirements of Escherichia coli FNR. J Mol Biol 384:798–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129

    CAS  PubMed  Google Scholar 

  • Moore CM, Nakano MM, Wang T, Ye RW, Helmann JD (2004) Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J Bacteriol 186:4655–4664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore LJ, Mettert EL, Kiley PJ (2006) Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem 281:33268–33275

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Zheng M, Bedzyk LA, Larossa RA, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101:745–750

    CAS  PubMed  Google Scholar 

  • Nakano S, Kuster-Schock E, Grossman AD, Zuber P (2003a) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci USA 100:13603–13608

    CAS  PubMed  Google Scholar 

  • Nakano S, Nakano MM, Zhang Y, Leelakriangsak M, Zuber P (2003b) A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci USA 100:4233–4238

    CAS  PubMed  Google Scholar 

  • Nakano MM, Lin A, Zuber CS, Newberry KJ, Brennan RG, Zuber P (2010) Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLOS One 5:e8664

    PubMed Central  PubMed  Google Scholar 

  • Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, Gardner KH (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci USA 108:9449–9454

    CAS  PubMed  Google Scholar 

  • Nesbit AD, Giel JL, Rose JC, Kiley PJ (2009) Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 387:28–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newberry KJ, Nakano S, Zuber P, Brennan RG (2005) Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci USA 102:15839–15844

    CAS  PubMed  Google Scholar 

  • Newberry KJ, Fuangthong M, Panmanee W, Mongkolsuk S, Brennan RG (2007) Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR. Mol Cell 28:652–664

    CAS  PubMed  Google Scholar 

  • Newton GL, Fahey RC (2008) Regulation of mycothiol metabolism by sigma(R) and the thiol redox sensor anti-sigma factor RsrA. Mol Microbiol 68:805–809

    CAS  PubMed  Google Scholar 

  • Olea C Jr, Kuriyan J, Marletta MA (2010) Modulating heme redox potential through protein-induced porphyrin distortion. J Am Chem Soc 132:12794–12795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz De Orue Lucana D, Groves MR (2009) The three-component signalling system HbpS-SenS-SenR as an example of a redox sensing pathway in bacteria. Amino Acids 37:479–486

    CAS  PubMed  Google Scholar 

  • Ortiz De Orue Lucana D, Troller M, Schrempf H (2003) Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol Genet Genomics 268:618–627

    CAS  PubMed  Google Scholar 

  • Ortiz De Orue Lucana D, Roscher M, Honigmann A, Schwarz J (2010) Iron-mediated oxidation induces conformational changes within the redox-sensing protein HbpS. J Biol Chem 285:28086–28096

    CAS  PubMed  Google Scholar 

  • Ortiz De Orue Lucana D, Wedderhoff I, Groves MR (2012) ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys Redox centres and iron-based oxidative stress. J Signal Transduct 2012:605905

    PubMed Central  PubMed  Google Scholar 

  • Outten FW, Theil EC (2009) Iron-based redox switches in biology. Antioxid Redox Signal 11:1029–1046

    CAS  PubMed  Google Scholar 

  • Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872

    CAS  PubMed  Google Scholar 

  • Pagels M, Fuchs S, Pane-Farre J, Kohler C, Menschner L, Hecker M, McNamarra PJ, Bauer MC, von Wachenfeldt C, Liebeke M, Lalk M, Sander G, von Eiff C, Proctor RA, Engelmann S (2010) Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Mol Microbiol 76:1142–1161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paget MS, Kang JG, Roe JH, Buttner MJ (1998) sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J 17:5776–5782

    CAS  PubMed  Google Scholar 

  • Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol Microbiol 42:1007–1020

    CAS  PubMed  Google Scholar 

  • Palm G, Chi BK, Waack P, Gronau K, Becher DR, Albrecht D, Hinrichs W, Read RJ, Antelmann H (2012) Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 40(9):4178–4192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S (2009) NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 73:680–694

    CAS  PubMed  Google Scholar 

  • Pellicena P, Karow DS, Boon EM, Marletta MA, Kuriyan J (2004) Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc Natl Acad Sci USA 101:12854–12859

    CAS  PubMed  Google Scholar 

  • Poor CB, Chen PR, Duguid E, Rice PA, He C (2009) Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 284:23517–23524

    CAS  PubMed  Google Scholar 

  • Pruteanu M, Baker TA (2009) Proteolysis in the SOS response and metal homeostasis in Escherichia coli. Res Microbiol 160:677–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pullan ST, Gidley MD, Jones RA, Barrett J, Stevanin TM, Read RC, Green J, Poole RK (2007) Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 189:1845–1855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puri S, Hohle TH, O’Brian MR (2010) Control of bacterial iron homeostasis by manganese. Proc Natl Acad Sci USA 107:10691–10695

    CAS  PubMed  Google Scholar 

  • Py B, Moreau PL, Barras F (2011) Fe-S clusters, fragile sentinels of the cell. Curr Opin Microbiol 14:218–223

    CAS  PubMed  Google Scholar 

  • Qi Z, O’Brian MR (2002) Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell 9:155–162

    CAS  PubMed  Google Scholar 

  • Reents H, Gruner I, Harmening U, Bottger LH, Layer G, Heathcote P, Trautwein AX, Jahn D, Hartig E (2006) Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol Microbiol 60:1432–1445

    CAS  PubMed  Google Scholar 

  • Rinaldo S, Castiglione N, Giardina G, Caruso M, Arcovito A, Della Longa S, D’Angelo P, Cutruzzola F (2012) Unusual heme binding properties of the dissimilative nitrate respiration regulator (Dnr), a bacterial nitric oxide sensor. Antioxid Redox Signal 17(9):1178–1189

    CAS  PubMed  Google Scholar 

  • Roberts GP, Kerby RL, Youn H, Conrad M (2005) CooA, a paradigm for gas sensing regulatory proteins. J Inorg Biochem 99:280–292

    CAS  PubMed  Google Scholar 

  • Rolfe MD, ter Beek A, Graham AI, Trotter EW, Asif HM, Sanguinetti G, de Mattos JT, Poole RK, Green J (2011) Transcript profiling and inference of Escherichia coli K-12 ArcA activity across the range of physiologically relevant oxygen concentrations. J Biol Chem 286:10147–10154

    CAS  PubMed  Google Scholar 

  • Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, Fu X (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci USA 106:18686–18691

    CAS  PubMed  Google Scholar 

  • Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    CAS  PubMed  Google Scholar 

  • Rudolph G, Hennecke H, Fischer HM (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648

    CAS  PubMed  Google Scholar 

  • Sasakura Y, Yoshimura-Suzuki T, Kurokawa H, Shimizu T (2006) Structure-function relationships of EcDOS, a heme-regulated phosphodiesterase from Escherichia coli. Acc Chem Res 39:37–43

    CAS  PubMed  Google Scholar 

  • Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3:323–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shingler V (2011) Signal sensory systems that impact sigma -dependent transcription. FEMS Microbiol Rev 35:425–440

    CAS  PubMed  Google Scholar 

  • Sickmier EA, Brekasis D, Paranawithana S, Bonanno JB, Paget MS, Burley SK, Kielkopf CL (2005) X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure 13:43–54

    CAS  PubMed  Google Scholar 

  • Siedenburg G, Groves MR, Ortiz De Orue Lucana D (2011) Novel redox-sensing modules: accessory proteins- and nucleic acids-mediated signalling. Antioxid Redox Signal 16(7):668–677

    Google Scholar 

  • Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR Jr, Steyn AJ (2007) Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 104:11562–11567

    CAS  PubMed  Google Scholar 

  • Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ (2009) Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLOS Pathog 5:e1000545

    PubMed Central  PubMed  Google Scholar 

  • Singleton C, White GF, Todd JD, Marritt SJ, Cheesman MR, Johnston AW, le Brun NE (2010) Heme-responsive DNA binding by the global iron regulator Irr from Rhizobium leguminosarum. J Biol Chem 285:16023–16031

    CAS  PubMed  Google Scholar 

  • Small SK, Puri S, O’Brian MR (2009) Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other Alpha-proteobacteria. Biometals 22:89–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sobota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci USA 108:5402–5407

    CAS  PubMed  Google Scholar 

  • Soonsanga S, Lee JW, Helmann JD (2008a) Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor. J Bacteriol 190:5738–5745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soonsanga S, Lee JW, Helmann JD (2008b) Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR. Mol Microbiol 68:978–986

    CAS  PubMed  Google Scholar 

  • Spiro T (2008) A twist on heme signaling. ACS Chem Biol 3:673–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    CAS  PubMed  Google Scholar 

  • Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194

    CAS  PubMed  Google Scholar 

  • Sukchawalit R, Loprasert S, Atichartpongkul S, Mongkolsuk S (2001) Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J Bacteriol 183:4405–4412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Switzer RL (1989) Non-redox roles for iron-sulfur clusters in enzymes. Biofactors 2:77–86

    CAS  PubMed  Google Scholar 

  • Tang Y, Guest JR (1999) Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145:3069–3079

    CAS  PubMed  Google Scholar 

  • Tang Y, Quail MA, Artymiuk PJ, Guest JR, Green J (2002) Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology 148:1027–1037

    CAS  PubMed  Google Scholar 

  • Tang Y, Guest JR, Artymiuk PJ, Read RC, Green J (2004) Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51:1817–1826

    CAS  PubMed  Google Scholar 

  • Tang Y, Guest JR, Artymiuk PJ, Green J (2005) Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 56:1149–1158

    CAS  PubMed  Google Scholar 

  • Taylor BL (2007) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65:1415–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909

    CAS  PubMed  Google Scholar 

  • Traore DA, El Ghazouani A, Jacquamet L, Borel F, Ferrer JL, Lascoux D, Ravanat JL, Jaquinod M, Blondin G, Caux-Thang C, Duarte V, Latour JM (2009) Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5:53–59

    CAS  PubMed  Google Scholar 

  • Tsai AL, Berka V, Martin E, Olson JS (2012) A “sliding-scale rule” for selectivity between NO, CO and O2 by heme protein sensors. Biochemistry 51:172–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tucker NP, Hicks MG, Clarke TA, Crack JC, Chandra G, le Brun NE, Dixon R, Hutchings MI (2008) The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLOS One 3:e3623

    PubMed Central  PubMed  Google Scholar 

  • Tucker NP, le Brun NE, Dixon R, Hutchings MI (2010) There’s NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol 18:149–156

    CAS  PubMed  Google Scholar 

  • Tuckerman JR, Gonzalez G, Sousa EH, Wan X, Saito JA, Alam M, Gilles-Gonzalez MA (2009) An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48:9764–9774

    CAS  PubMed  Google Scholar 

  • Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA (2011) Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol 407:633–639

    CAS  PubMed  Google Scholar 

  • Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varghese S, Wu A, Park S, Imlay KR, Imlay JA (2007) Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol Microbiol 64:822–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, von Wachenfeldt C (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478

    CAS  PubMed  Google Scholar 

  • Wang Y, Dufour YS, Carlson HK, Donohue TJ, Marletta MA, Ruby EG (2010) H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc Natl Acad Sci USA 107:8375–8380

    CAS  PubMed  Google Scholar 

  • Watanabe S, Kita A, Kobayashi K, Miki K (2008) Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci USA 105:4121–4126

    CAS  PubMed  Google Scholar 

  • Watts KJ, Johnson MS, Taylor BL (2011) Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain. J Bacteriol 193:4095–4103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M (2008) Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 68:538–546

    CAS  PubMed  Google Scholar 

  • Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ (2002) E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. Nat Struct Biol 9:447–452

    CAS  PubMed  Google Scholar 

  • Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392

    CAS  PubMed  Google Scholar 

  • Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U (2008) Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Bauer CE (2010) RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool. MBio 1(5):e00272-10–e00272-18

    PubMed Central  PubMed  Google Scholar 

  • Yan A, Kiley PJ (2009) Techniques to isolate O2-sensitive proteins: [4Fe-4S]-FNR as an example. Methods Enzymol 463:787–805

    CAS  PubMed  Google Scholar 

  • Yang J, Panek HR, O’Brian MR (2006a) Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum. Mol Microbiol 60:209–218

    CAS  PubMed  Google Scholar 

  • Yang J, Sangwan I, O’Brian MR (2006b) The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo. Mol Genet Genomics 276:555–564

    CAS  PubMed  Google Scholar 

  • Yeo WS, Lee JH, Lee KC, Roe JH (2006) IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 61:206–218

    CAS  PubMed  Google Scholar 

  • Yoshimura H, Yoshioka S, Kobayashi K, Ohta T, Uchida T, Kubo M, Kitagawa T, Aono S (2006) Specific hydrogen-bonding networks responsible for selective O2 sensing of the oxygen sensor protein HemAT from Bacillus subtilis. Biochemistry 45:8301–8307

    CAS  PubMed  Google Scholar 

  • Yukl ET, Elbaz MA, Nakano MM, Moenne-Loccoz P (2008) Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster (dagger). Biochemistry 47:13084–13092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yukl ET, Ioanoviciu A, Sivaramakrishnan S, Nakano MM, Ortiz De Montellano PR, Moenne-Loccoz P (2011) Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis. Biochemistry 50:1023–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zdanowski K, Doughty P, Jakimowicz P, O’Hara L, Buttner MJ, Paget MS, Kleanthous C (2006) Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. Biochemistry 45:8294–8300

    CAS  PubMed  Google Scholar 

  • Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber P (2009) Management of oxidative stress in Bacillus. Annu Rev Microbiol 63:575–597

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr. J.P. Shapleigh for helpful comments. Work in the Helmann laboratory on metal ion homeostasis is supported by a grant from the National Institutes of Health (GM-059323) and studies of redox biology are supported by a grant from the National Science Foundation (MCB-1020481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Helmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Helmann, J.D. (2013). Prokaryotic Redox Switches. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_9

Download citation

Publish with us

Policies and ethics