Skip to main content

The Chemistry of Thiol Oxidation and Detection

  • Chapter
  • First Online:
Oxidative Stress and Redox Regulation

Abstract

The thiol functional group of the amino acid cysteine can undergo a wide array of oxidative modifications and perform a countless number of physiological functions. In addition to forming covalent cross-links that stabilize protein structure and functioning as a powerful nucleophile in many enzyme active sites, cysteine appears to be the principal actor in redox signaling, functioning as a regulatory reversible molecular switch. It is increasingly appreciated that the thiol group of cysteine in subset of proteins undergoes oxidative modification in response to changes in the intracellular redox environment. To understand these complex but critical biological phenomena, the chemistry of the thiol functionality and related oxidation products must also be taken into consideration. Selective methods to monitor and quantify discrete cysteine modifications will be central to understanding their regulatory and pathophysiologic function. Accordingly, this chapter focuses on the chemical feature of thiol oxidation and on selective methods for detecting oxidants and individual cysteine chemotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T (2011) Development of a highly sensitive fluorescent probe for hydrogen peroxide. J Am Chem Soc 133:10629–10637

    CAS  PubMed  Google Scholar 

  • Abraham RT, Benson LM, Jardine I (1983) Synthesis and pH-dependent stability of purine-6-sulfenic acid, a putative reactive metabolite of 6-thiopurine. J Med Chem 26:1523–1526

    CAS  PubMed  Google Scholar 

  • Albrich JM, McCarthy CA, Hurst JK (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci USA 78:210–214

    CAS  PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    CAS  PubMed  Google Scholar 

  • Allison WS (1976) Formation and reactions of sulfenic acids in proteins. Acc Chem Res 9:293–299

    CAS  Google Scholar 

  • Allison WS, Benitez LV, Johnson CL (1973) The formation of a protein sulfenamide during the inactivation of the acyl phosphatase activity of oxidized glyceraldehyde-3-phosphate dehydrogenase by benzylamine. Biochem Biophys Res Commun 52:1403–1409

    CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:s18–s25

    Google Scholar 

  • Arisawa M, Yamaguchi M (2008) Transition-metal-catalyzed synthesis of organosulfur compounds. Pure Appl Chem 80:993–1003

    CAS  Google Scholar 

  • Ashby MT (2008) Inorganic chemistry of defensive peroxidases in the human oral cavity. J Dent Res 87:900–914

    CAS  PubMed  Google Scholar 

  • Ashby MT, Aneetha H (2004) Reactive sulfur species: aqueous chemistry of sulfenyl thiocyanates. J Am Chem Soc 126:10216–10217

    CAS  PubMed  Google Scholar 

  • Babbs CF, Gale MJ (1987) Colorimetric assay for methanesulfinic acid in biological samples. Anal Biochem 163:67–73

    CAS  PubMed  Google Scholar 

  • Bach RB, Ayala PY, Schlegel HB (1996) A reassessment of the bond dissociation energies of peroxides. An ab initio study. J Am Chem Soc 118:12758–12765

    CAS  Google Scholar 

  • Baidya M, Kobayashi S, Mayr H (2010) Nucleophilicity and nucleofugality of phenylsulfinate (PhSO2 −): a key to understanding its ambident reactivity. J Am Chem Soc 132:4796–4805

    CAS  PubMed  Google Scholar 

  • Bearden SE, Beard Jr RS, Pfau JC (2010) Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. Am J Physiol Heart Circ Physiol 299:H1568–H1576

    CAS  PubMed  Google Scholar 

  • Bechtold E, Reisz JA, Klomsiri C, Tsang AW, Wright MW, Poole LB, Furdui CM, King SB (2010) Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem Biol 5:405–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Benitez LV, Allison WS (1974) The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J Biol Chem 249:6234–6243

    CAS  PubMed  Google Scholar 

  • Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44:651

    CAS  PubMed  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    CAS  PubMed  Google Scholar 

  • Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284:6476–6485

    CAS  PubMed  Google Scholar 

  • Block E, O’Conner J (1974) The chemistry of alkyl thiosulfinate esters. VI. Preparation and spectral studies. J Am Chem Soc 96:3921–3929

    CAS  Google Scholar 

  • Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972

    CAS  PubMed  Google Scholar 

  • Burkhard RK, Sellers DE, DeCou F, Lambert JL (1959) The pKa’s of aromatic sulfinic acids. J Org Chem 24:767–769

    CAS  Google Scholar 

  • Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Möller MN, Folkes LK, García-Bereguiaín MA, Gutiérrez-Merino C, Wardman P, Denicola A, Radi R, Alvarez B (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50:196–205

    CAS  PubMed  Google Scholar 

  • Cary SPL, Winger JA, Derbyshire ER, Marletta MA (2006) Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 31:231–239

    CAS  PubMed  Google Scholar 

  • Caulfield JL, Wishnok JS, Tannenbaum SR (1998) Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem 273:12689–12695

    CAS  PubMed  Google Scholar 

  • Chalker JM, Bernardes GJL, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    CAS  PubMed  Google Scholar 

  • Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernández-González M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666–1676

    CAS  Google Scholar 

  • Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang YC, Huang CN, Lin CH, Chang HC, Wu CC (2010) Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. Proteomics 10:2961–2971

    CAS  PubMed  Google Scholar 

  • Chapman ALP, Skaff O, Senthilmohan R, Kettle AJ, Davies MJ (2009) Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Biochem J 417:773–781

    CAS  PubMed  Google Scholar 

  • Chatterji T, Keerthi K, Gates KS (2005) Generation of reactive oxygen species by a persulfide (BnSSH). Bioorg Med Chem Lett 15:3921–3924

    CAS  PubMed  Google Scholar 

  • Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    CAS  PubMed  Google Scholar 

  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human Cystathionine gamma-Lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 248:11601–11612

    Google Scholar 

  • Claiborne A, Miller H, Parsonage D, Ross RP (1993) Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 7:1483–1490

    CAS  PubMed  Google Scholar 

  • Cohen EA, Pickett HM (1981) The dipole moment of hydrogen peroxide. J Mol Spectrosc 87: 582–585

    CAS  Google Scholar 

  • Copley SD, Novak WRP, Babbitt PC (2004) Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43:13981–13995

    CAS  PubMed  Google Scholar 

  • Craine L, Raban M (1989) The chemistry of sulfenamides. Chem Rev 89:689–712

    CAS  Google Scholar 

  • Crankshaw MW, Grant GA (1996) Modification at cysteine. Current protocols in protein science. Wiley, New York, 15.1.1

    Google Scholar 

  • Dai J, Zhang Y, Wang J, Li X, Lu Z, Cai Y, Qian X (2005) Identification of degradation products formed during performic oxidation of peptides and proteins by high-performance liquid chromatography with matrix-assisted laser desorption/ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom 19:1130–1138

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2003) Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. Free Radic Biol Med 35:1185–1193

    CAS  PubMed  Google Scholar 

  • Darchen A, Moinet CJ (1976) Arenesulphinic acids. Nitroso protecting reagents applicable to some nitrosoarenes. J Chem Soc Chem Commun 20:820a–820a. doi:10.1039/C3976000820A

    Google Scholar 

  • Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1199–1234

    CAS  PubMed  Google Scholar 

  • Davis FA, Jenkins LA, Billmers RL (1986) Chemistry of sulfenic acids. 7. Reason for the high reactivity of sulfenic acids. Stabilization by intramolecular hydrogen bonding and electronegativity effects. J Org Chem 51:1033–1040

    CAS  Google Scholar 

  • Demasi M, Silva GM, Netto LES (2003) 20S Proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J Biol Chem 278:679–685

    CAS  PubMed  Google Scholar 

  • den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11–15

    Google Scholar 

  • Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350

    CAS  PubMed  Google Scholar 

  • Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642

    CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    CAS  Google Scholar 

  • Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ (2011) Nox2 Redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7:106–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dicks AP, Williams DL (1996) Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem Biol 8:655–659

    Google Scholar 

  • Ellis HR, Poole LB (1997) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the aphc component of alkyl hydroperoxide reductase. Biochemistry 36:15013–15018

    CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Elsey DJ, Fowkes RC, Baxter GF (2010) Regulation of cardiovascular cell function by hydrogen sulfide (H2S) cell biochemistry and function. Cell Biochem Funct 28:95–106

    CAS  PubMed  Google Scholar 

  • Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA (2009) Conformational changes in redox pairs of protein structures. Protein Sci 18:1745–1765

    CAS  PubMed  Google Scholar 

  • Fernandes PA, Ramos MJ (2004) Theoretical insights into the mechanism for thiol = disulfide exchange. Chemistry 10:257–266

    CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    CAS  PubMed  Google Scholar 

  • Forman HJ, Fridovich I (1973) Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys 158:396–400

    CAS  PubMed  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 99:3505–3510

    CAS  PubMed  Google Scholar 

  • Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    CAS  PubMed  Google Scholar 

  • Fukai T, Masuko U-F (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1603

    CAS  PubMed  Google Scholar 

  • Gamblin DP, Garnier P, van Kasteren S, Oldham NJ, Fairbanks AJ, Davis BG (2004) Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation-a new strategy in post- translational modification. Angew Chem Int Ed 43:828–833

    CAS  Google Scholar 

  • Giles GI, Tasker KM, Collins C, Giles NM, O’rourke E, Jacob C (2002) Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides. Biochem J 364(Pt 2):579–585

    CAS  PubMed  Google Scholar 

  • Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    CAS  PubMed  Google Scholar 

  • Goldstein S, Czapski G (1996) Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates. J Am Chem Soc 118:3419–3425

    CAS  Google Scholar 

  • Goto K, Holler M, Okazak R (1997) Synthesis, structure, and reactions of a sulfenic acid bearing a novel bowl-type substituent: the first synthesis of a stable sulfenic acid by direct oxidation of a thiol. J Am Chem Soc 119:1460–1461

    CAS  Google Scholar 

  • Goto K, Shimada K, Nagahama M, Okazaki R, Kawashima T (2003) Reaction of stable sulfenic and selenenic acids containing a bowl-type steric protection group with a phosphine. Elucidation of the mechanism of reduction of sulfenic and selenenic acids. Chem Lett 32:1080–1081

    CAS  Google Scholar 

  • Haake M (1972) Zur desoxygenierung von tritylthionitrit. Tetrahedron Lett 13:33–39

    Google Scholar 

  • Hansen RE, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci USA 106:422–427

    CAS  PubMed  Google Scholar 

  • Harpp DN, Ash DK, Smith RA (1979) Organic sulfur chemistry. 33. Chemistry of sulfenic sulfonic thioanhydrides. Solvent-dependent sulfur extrusion. J Org Chem 44:4135–4140

    CAS  Google Scholar 

  • Hawkins CL (2009) The role of hypothiocyanous acid (HOSCN) in biological systems. Free Radic Res 43:1147–1158

    CAS  PubMed  Google Scholar 

  • Heckel A, Pfleiderer W (1983) Lumazinesulfenates – a new class of stable sulfenic acids. Tetrahedron Lett 24:5047–5050

    CAS  Google Scholar 

  • Held JM, Danielson SR, Behring JB, Atsriku C, Britton DJ, Puckett RL, Schilling B, Campisi J, Benz CC, Gibson BW (2010) Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol Cell Proteomics 9:1400–1410

    CAS  PubMed  Google Scholar 

  • Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 42:585–600

    CAS  PubMed  Google Scholar 

  • Hogg DR, Robinson A (1979) The ambident nucleophilicity of sulphenate anions. J Chem Soc Perkin Trans 1:1125–1128

    Google Scholar 

  • Holmes AJ, Williams DLH (2000) Reaction of ascorbic acid with snitrosothiols: clear evidence for two distinct reaction pathways. J Chem Soc Perkin Trans 2:1639–1644

    Google Scholar 

  • Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719

    CAS  PubMed  Google Scholar 

  • Huang B, Chen C (2006) An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med 41:562–567

    CAS  PubMed  Google Scholar 

  • Huang KP, Huang FL, Shetty PK, Yergey AL (2007) Modification of protein by disulfide S-monoxide and disulfide S-dioxide: distinctive effects on PKC. Biochemistry 46:1961–1971

    CAS  PubMed  Google Scholar 

  • Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LES, Alvarez B (2009) Thiol and Sulfenic Acid Oxidation of AhpE, the One-Cysteine Peroxiredoxin from Mycobacterium tuberculosis: Kinetics, Acidity Constants, and Conformational Dynamics. Biochemistry 48:9416–9426

    CAS  PubMed  Google Scholar 

  • Ilbert M, Horst J, Ahrens S, Winter J, Graf PC, Lilie H, Jakob U (2007) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14:556–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob C, Ba LA (2011) Open season for hunting and trapping post-translational cysteine modifications in proteins and enzymes. Chembiochem 12:841–844

    CAS  PubMed  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    CAS  PubMed  Google Scholar 

  • Jencks WP, Carriulo JC (1960) Reactivity of nucleophilic reagents towards esters. J Am Chem Soc 82:1778–1786

    CAS  Google Scholar 

  • Jensen KS, Hansen RE, Winther JR (2009) Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid Redox Signal 11:1047–1058

    CAS  PubMed  Google Scholar 

  • Jönsson TJ, Johnson LC, Lowther WT (2008) Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451:98–101

    PubMed Central  PubMed  Google Scholar 

  • Jourd’heuil D, Jourd’heuil FL, Feelisch M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278:15720–15726

    PubMed  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285: 21903–21907

    CAS  PubMed  Google Scholar 

  • Kamiya T, Teraji T, Saito Y, Hasimoto M, Nakaguchi O, Oka T (1973) Studies on β-lactam antibiotics. I. A novel conversion of penicillins into cephalosporins. Tetrahedron Lett 14: 3001–3004

    Google Scholar 

  • Kashiba-Iwatsuki M, Kitoh K, Kasahara E, Yu H, Nisikawa M, Matsuo M, Inoue M (1997) Ascorbic acid and reducing agents regulate the fates and functions of S-nitrosothiols. J Biochem 122:1208–1214

    CAS  PubMed  Google Scholar 

  • Kenyon GL, Bruice TW (1997) Novel sulfhydryl reagents. Methods Enzymol 47:407–430

    Google Scholar 

  • Keszler A, Zhang Y, Hogg N (2010) Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48:55–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khamis G, Stoevaa S, Aleksieva D (2010) Reactivity of sodium arenesulfinates in the substitution reaction to γ-functionalized allyl bromides. J Phys Org Chem 23:461–467

    CAS  Google Scholar 

  • Kharasch N, Potempa SJ, Wehrmeister HL (1946) The sulfenic acids and their derivatives. Chem Rev 39:269

    CAS  PubMed  Google Scholar 

  • Kingsbury CA, Cram DJ (1960) Studies in stereochemistry. XXXII. Mechanism of elimination of sulfoxides. J Am Chem Soc 82:1810–1819

    CAS  Google Scholar 

  • Kirsch M, Buscher AM, Aker S, Schulz R, de Groot H (2009) New insights into the S-nitrosothiol-ascorbate reaction. The formation of nitroxyl. Org Biomol Chem 7:1954–1962

    CAS  PubMed  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    CAS  PubMed  Google Scholar 

  • Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antioxid Redox Signal 14:1065–1077

    CAS  PubMed  Google Scholar 

  • Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc 133:5680–5682

    CAS  PubMed  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    CAS  PubMed  Google Scholar 

  • Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4:ra86

    PubMed Central  PubMed  Google Scholar 

  • Kuivila HG, Armour AG (1957) Electrophilic displacement reactions. IX. Effects of substituents on rates of reactions between hydrogen peroxide and benzeneboronic acid. J Am Chem Soc 79:5659–5662

    CAS  Google Scholar 

  • Kutala VK, Villamena FA, Ilangovan G, Maspoch D, Roques N, Veciana J, Rovira C, Kuppusamy P (2008) Reactivity of superoxide anion radical with a perchlorotriphenylmethyl (trityl) radical. J Phys Chem B 112:158–167

    CAS  PubMed  Google Scholar 

  • LaButti J, Chowdhury G, Reilly TJ, Gates KS (2007) Redox regulation of protein tyrosine phosphatase 1B (PTP1B) by Peroxymonophosphate (=O3POOH). J Am Chem Soc 129:5320–5321

    PubMed Central  PubMed  Google Scholar 

  • Lee JW, Soonsanga S, Helmann JD (2007) A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104:8743–8748

    CAS  PubMed  Google Scholar 

  • Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cell. ACS Chem Biol 4:783–799

    CAS  PubMed  Google Scholar 

  • Leonard SE, Garcia FJ, Goodsell DS, Carroll KS (2011) Redox-based probes for protein tyrosine phosphatases. Angew Chem Int Ed 50:4423–4427

    CAS  Google Scholar 

  • Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    CAS  PubMed  Google Scholar 

  • Li S, Wang H, Xian M, Whorton R (2012) Identification of protein nitrosothiols using phosphine-mediated selective reduction. Nitric Oxide 26:20–26

    PubMed Central  PubMed  Google Scholar 

  • Lim ML, Lippard SJ (2007) Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res 40:41–51

    CAS  PubMed  Google Scholar 

  • Lim JC, Choi HI, Park YS, Nam HW, Woo HA, Kwon KS, Kim YS, Rhee SG, Kim K, Chae HZ (2008) Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J Biol Chem 283:28873–28880

    CAS  PubMed  Google Scholar 

  • Lim JC, You Z, Kim G, Levine RL (2011) Methionine sulfoxide reductase a is a stereospecific methionine oxidase. Proc Natl Acad Sci 108:10472–10477

    CAS  PubMed  Google Scholar 

  • Lin Y-I, Lang SA Jr (1980) Selective reduction of nitro-heterocycles with sodium sulfide in aqueous p-dioxane. J Heterocycl Chem 17:1273–1275

    CAS  Google Scholar 

  • Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240

    CAS  PubMed  Google Scholar 

  • Lippert AR, New EJ, Chang CJ (2011) Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 133:10078–10080

    CAS  PubMed  Google Scholar 

  • Little G, Brocklehurst K (1972) Kinetics of the reversible reaction of papain with 5,5′-dithiobis-(2-nitrobenzoate) dianion: evidence for nucleophilic reactivity in the un-ionized thiol group of cysteine-25 and for general acid catalysis by histidine-159 of the reaction of the 5-mercapto-2-nitrobenzoate dianion with the papain-5-mercapto-2-nitrobenzoate mixed disulphide. Biochem J 128:475–477

    CAS  PubMed  Google Scholar 

  • Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed Engl 50: 10327–10329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd MM, Van Reyk DM, Davies MJ, Hawkins CL (2008) Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochem J 414:271–280

    CAS  PubMed  Google Scholar 

  • Lo Conte M, Carroll KS (2012) Chemoselective ligation of sulfinic acids with aryl-nitroso compounds (2012) Angew Chem Inter Ed 51:6502–6505

    Google Scholar 

  • Luo D, Smith SW, Anderson BD (2004) Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pharm Sci 94:304–316

    Google Scholar 

  • Maker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36:589–593

    CAS  PubMed  Google Scholar 

  • Maller C, Schröder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14:49–60

    CAS  PubMed  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Bereta J, Stelmaszynska T (1995) Taurine chioramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J Leukco Biol 58:667–674

    CAS  Google Scholar 

  • Marla SS, Lee J, Groves JT (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci USA 94:14243–14248

    CAS  PubMed  Google Scholar 

  • Masri MS, Friedman M (1988) Protein reactions with methyl and ethyl vinyl sulfones. J Protein Chem 7:49–54

    CAS  PubMed  Google Scholar 

  • Mathai JC, Missner A, Kügler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638

    CAS  PubMed  Google Scholar 

  • McGrath AJ, Garrett GE, Valgimigli L, Pratt DA (2010) The redox chemistry of sulfenic acids. J Am Chem Soc 132:16759–16761

    CAS  PubMed  Google Scholar 

  • McLachlin DT, Chait BT (2003) Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem 75:6826–6836

    CAS  PubMed  Google Scholar 

  • Midwinter RG, Cheah F-C, Moskovitz J, Vissers MC, Winterbourn CC (2006) IκB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-κB activity by glycine chloramine through methionine oxidation. Biochem J 396:71–78

    CAS  PubMed  Google Scholar 

  • Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686

    CAS  PubMed  Google Scholar 

  • Miron T, Shin I, Feigenblat G, Weiner L, Mirelman D, Wilchek M, Rabinkov A (2002) A spectrophotometric assay for allicin, alliin, and alliinase (alliin lyase) with a chromogenic thiol: reaction of 4-mercaptopyridine with thiosulfinates. Anal Biochem 307:76–83

    CAS  PubMed  Google Scholar 

  • Monteiro G, Horta BB, Pimenta DC, Augusto O, Netto LES (2007) Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci 104:4886–4891

    CAS  PubMed  Google Scholar 

  • Moran EE, Timerghazin QK, Kwong E, English AM (2011) Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release. J Phys Chem B 115:3112–3126

    CAS  PubMed  Google Scholar 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski MW, Moncada S (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 91(14):6702–6706

    CAS  PubMed  Google Scholar 

  • Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    PubMed Central  PubMed  Google Scholar 

  • Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy P, Ashby MT (2007a) Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 129:14082–14091

    CAS  PubMed  Google Scholar 

  • Nagy P, Ashby MT (2007b) Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester. Chem Res Toxicol 20:1364–1372

    CAS  PubMed  Google Scholar 

  • Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543

    CAS  PubMed  Google Scholar 

  • Nagy P, Beal JL, Ashby MT (2006) Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid. Chem Res Toxicol 19:587–593

    CAS  PubMed  Google Scholar 

  • Nagy P, Lemma K, Ashby MT (2007) Reactive sulfur species: kinetics and mechanisms of the reaction of cysteine thiosulfinate ester with cysteine to give cysteine sulfenic acid. J Org Chem 72:8838–8846

    CAS  PubMed  Google Scholar 

  • Nagy P, Jameson GN, Winterbourn CC (2009) Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chem Res Toxicol 22:1833–1840

    CAS  PubMed  Google Scholar 

  • Nagy P, Karton A, Betz A, Peskin AV, Pace P, O’Reilly RJ, Hampton MB, Radom L, Winterbourn CC (2011) Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide. A kinetic and computational study. J Biol Chem 286(20):18048–18055

    CAS  PubMed  Google Scholar 

  • Nakamura N (1983) A stable sulfenic acid, 9-triptycenesulfenic acid: its isolation and characterization. J Am Chem Soc 105:7172–7173

    CAS  Google Scholar 

  • Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460

    CAS  PubMed  Google Scholar 

  • Nielsen RW, Tachibana C, Hansen NE, Winther JR (2011) Trisulfides in proteins. Antioxid Redox Signal 15:67–75

    CAS  PubMed  Google Scholar 

  • Nti-Addae KW, Laurence JS, Skinner AL, Stella VJ (2011) Reversion of sulfenamide prodrugs in the presence of free thiol-containing proteins. J Pharm Sci 100:3023–3027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogata Y, Sawaki Y, Isono M (1970) Kinetics of the addition of substituted benzenesulfinic acids to p-benzoquinone. Tetrahedron 26:731–736

    CAS  Google Scholar 

  • Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag–a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Prot 3:82–92

    CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pang L-J, Wang D, Zhou J, Zhang L-H, Ye X-S (2009) Synthesis of neamine-derived pseudodisaccharides by stereo- and regio-selective functional group transformations. Org Biomol Chem 7:4252–4266

    CAS  PubMed  Google Scholar 

  • Patt J, Patt M (2002) Reaction of [18F] 4- fluorobenzenediazonium cations with cysteine or the cysteinyl group: preparation of 18F-labeled S-aryl-cysteine and a radiolabeled peptide. J Label Compd Radiopharm 45:1229–1238

    CAS  Google Scholar 

  • Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    CAS  PubMed  Google Scholar 

  • Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62

    CAS  PubMed  Google Scholar 

  • Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2012) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57–64

    CAS  Google Scholar 

  • Peng T, Yang D (2010) HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. Org Lett 12:4932–4935

    CAS  PubMed  Google Scholar 

  • Percival MD, Ouellet M, Campagnolo C, Claveau D, Li C (1999) Inhibition of cathepsin K by nitric oxide donors: evidence for the formation of mixed disulfides and a sulfenic acid. Biochemistry 38:13574–13583

    CAS  PubMed  Google Scholar 

  • Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347

    CAS  PubMed  Google Scholar 

  • Poole B, Zeng B-B, Knaggs SA, Yakubu M, King SB (2005) Synthesis of chemical probes to Map sulfenic acid modifications on proteins. Bioconjug Chem 16:1624–1628

    CAS  PubMed  Google Scholar 

  • Poudrel JM, Cole ER (2001) Interchange reactions of aromatic thiosulfinates. Phosphorus Sulfur Silicon Relat Elem 175:79–86

    CAS  Google Scholar 

  • Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79:2325–2338

    CAS  Google Scholar 

  • Qian Y, Karpus J, Kabil O, Zhang S-Y, Zhu H-L, Banerjee R, Zhao J, He C (2011a) Selective fluorescent probes for live-cell monitoring of sulphide. Nat Commun 2. doi:10.1038/ncomms1506

  • Qian J, Klomsiri C, Wright MW, King SB, Tsang AW, Poole LB, Furdui CM (2011b) Simple synthesis of 1,3-cyclopentanedione derived probes for labeling sulfenic acid proteins. Chem Commun 47:9203–9205

    CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    CAS  PubMed  Google Scholar 

  • Raftery MJ, Yang Z, Valenzuela SM, Geczy CL (2001) Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem 276:33393–33401

    CAS  PubMed  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12:746–754

    CAS  PubMed  Google Scholar 

  • Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid Redox Signal 15:781–794

    CAS  PubMed  Google Scholar 

  • Ritchie CD, Saltiel JD, Lewis ES (1961) The reaction of diazonium salts with nucleophiles. VIII. The formation of diazosulfones and the application of linear free energy equations to diazonium salt reactions. J Am Chem Soc 83:4601–4605

    CAS  Google Scholar 

  • Roos G, Messens J (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51:314–326

    CAS  PubMed  Google Scholar 

  • Salmeen A, Andersen JN, Myers MP, Meng TC, Hink JA, Tonks NK, Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    CAS  PubMed  Google Scholar 

  • Saurin AT, Neubert H, Brennan JP, Eaton P (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci 101:17982–17987

    CAS  PubMed  Google Scholar 

  • Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    CAS  PubMed  Google Scholar 

  • Schank K, Bügler S, Folz H, Schott N (2007) Thioreductones and derivatives. Helvetica Chimica Acta 90:1606–1649

    CAS  Google Scholar 

  • Seo YH, Carroll KS (2009) Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc Natl Acad Sci USA 106:16163–16168

    CAS  PubMed  Google Scholar 

  • Seo YH, Carroll KS (2011) Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew Chem Int Ed 50:1342–1345

    CAS  Google Scholar 

  • Shetty V, Neubert TA (2009) Characterization of novel oxidation products of cysteine in an active site motif peptide of PTP1B. J Am Soc Mass Spectrom 20:1540–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  • Shiau TP, Erlanson DA, Gordon EM (2006) Selective reduction of peptide isothiazolidin-3-ones. Org Lett 8:5697–5699

    CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Keerthi K, Gates KS (2005) A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity. J Am Chem Soc 127:10830–10831

    CAS  PubMed  Google Scholar 

  • Spalteholz H, Wenske K, Arnhold J (2005) Interaction of hypohalous acids and heme peroxidases with unsaturated phosphatidylcholines. Biofactors 24:67–76

    CAS  PubMed  Google Scholar 

  • Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25:392–403

    CAS  PubMed  Google Scholar 

  • Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39:11121–11128

    CAS  PubMed  Google Scholar 

  • Sun ZN, Liu FQ, Chen Y, Tam PK, Yang D (2008) A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 10:2171–2174

    CAS  PubMed  Google Scholar 

  • Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    CAS  PubMed  Google Scholar 

  • Szajewski RP, Whitesides GM (1980) Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized gluthathione. J Am Chem Soc 102:2011–2026

    CAS  Google Scholar 

  • Tajc SG, Tolbert BS, Basavappa R, Miller BL (2004) Direct determination of thiol pKa by isothermal titration microcalorimetry. J Am Chem Soc 126:10508–10509

    CAS  PubMed  Google Scholar 

  • Tang SS, Chang GGJ (1996) Kinetic characterization of the endogenous glutathione transferase activity of octopus lens S-crystallin. Biochemistry 119:1182–1188

    CAS  Google Scholar 

  • Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 32:520–528

    CAS  PubMed  Google Scholar 

  • Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 319:1–9

    CAS  PubMed  Google Scholar 

  • Trost BM (1983) Selectivity: a key to synthetic efficiency. Science 219:245–250

    CAS  PubMed  Google Scholar 

  • Tsikas D, Sandmann J, Rossa S, Gutzki FM, Frölich JC (1999) Investigations of S-transnitrosylation reactions between low- and high-molecular-weight S-nitroso compounds and their thiols by high-performance liquid chromatography and gas chromatography–mass spectrometry. Anal Biochem 270:231–241

    CAS  PubMed  Google Scholar 

  • Turell L, Botti H, Carballal S, Ferrer-Sueta G, Souza JM, Durán R, Freeman BA, Radi R, Alvarez B (2008) Reactivity of sulfenic acid in human serum albumin. Biochemistry 47:358–367

    CAS  PubMed  Google Scholar 

  • Uppu RM, Pryor WA (1999) Nitrosation of 1,2-phenylenediamine by peroxynitrite/ CO2: evidence for a free radical mechanism. J Am Chem Soc 121:9738–9739

    CAS  Google Scholar 

  • Van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327:487–492

    PubMed  Google Scholar 

  • Van der Vliet A, Hoen PA, Wong PS, Bast A, Cross CE (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273:30255–30262

    PubMed  Google Scholar 

  • Van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    PubMed  Google Scholar 

  • Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12:1061–1064

    CAS  PubMed  Google Scholar 

  • Wang H, Xian M (2008) Fast reductive ligation of S-nitrosothiols. Angew Chem Int Ed Engl 47:6598–6601

    CAS  PubMed  Google Scholar 

  • Wang H, Xian M (2011) Chemical methods to detect S-nitrosation. Curr Opin Chem Biol 15:32–37

    PubMed Central  PubMed  Google Scholar 

  • Wang P-F, McLeish MJ, Kneen MM, Lee G, Kenyon GL (2001) An unusually low pKa for Cys-282 in the active site of human muscle creatine kinase. Biochemistry 40:11698–11705

    CAS  PubMed  Google Scholar 

  • Weerapana E, Simon GM, Cravatt BF (2008) Disparate proteome reactivity profiles of carbon electrophiles. Nat Chem Biol 4:405–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    CAS  PubMed  Google Scholar 

  • Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG (2003) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361–47364

    CAS  PubMed  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    CAS  PubMed  Google Scholar 

  • Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12:53–91

    CAS  PubMed  Google Scholar 

  • Yang D, Tang YC, Chen J, Wang XC, Bartberger MD, Houk KN, Olson L (1999) Ketone-catalyzed decomposition of peroxynitrite via dioxirane intermediates. J Am Chem Soc 121:11976–11983

    CAS  Google Scholar 

  • Yang D, Wong M-K, Yan Z (2000) Regioselective intramolecular oxidation of phenols and anisoles by dioxiranes generated in situ. J Org Chem 65:4179–4184

    CAS  PubMed  Google Scholar 

  • Yang D, Wang H-L, Sun Z-N, Chung N-W, Shen J-G (2006) A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J Am Chem Soc 128:6004–6005

    CAS  PubMed  Google Scholar 

  • Yang ZYK, Cho HJ, Lee J, Shin I, Tae J (2009) A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings. Org Lett 11:859–861

    CAS  PubMed  Google Scholar 

  • You KS, Benitez LV, McConachie WA, Allison WS (1975) The conversion of glyceraldehyde-3-phosphate dehydrogenase to an acylphosphatase by trinitroglycerin and inactivation of this activity by azide and ascorbate. Biochem Biophys Acta 384:317–330

    CAS  Google Scholar 

  • Zhang J, Li S, Zhang D, Wang H, Whorton AR, Xian M (2010) Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org Lett 12:4208–4211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng H, Shang G-H, Yang S-Y, Gao X, Xu J-G (2008) Fluorogenic and chromogenic rhodamine spirolactam based probe for nitric oxide by spiro ring opening reaction. Org Lett 10:2357–2360

    CAS  PubMed  Google Scholar 

  • Zhou H, Singh H, Parsons ZD, Lewis SM, Bhattacharya S, Seiner SD, LaButti JN, Reilly TJ, Tanner JJ, Gates KS (2011) The biological buffer bicarbonate/CO2 potentiates H2O2-mediated inactivation of protein tyrosine phosphatases. J Am Chem Soc 133:15803–15805

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate S. Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Conte, M.L., Carroll, K.S. (2013). The Chemistry of Thiol Oxidation and Detection. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_1

Download citation

Publish with us

Policies and ethics