Skip to main content

Fish Fins and Rays as Inspiration for Materials Engineering and Robotics

  • Chapter
  • First Online:
Biological Materials of Marine Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 4))

  • 1811 Accesses

Abstract

Marine fish show unique properties: they can move in both water and air. These properties are determined by numerous factors like body and skin shape, fins and tails, rays and ray-like structures, and muscles. The diversity, structure and function of fish fins and rays, including an analysis of the specific biological materials they are made of, are discussed in this chapter. Special attention is payed to biomimetics and bioinspiration for fish robotics and devices. This chapter also aims to explore the possibilities for fields such as fish fin regeneration and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimenko MA, Marí-Beffa M, Becerra J et al (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226(2):190–201. Copyright © 2003 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • Alben S, Madden PG, Lauder GV (2007) The mechanics of active fin-shape control in ray-finned fishes. J R Soc Interface 4(13):243–256. Copyright © 2007, The Royal Society

    Google Scholar 

  • Alexander R McN (1974) Functional design in fishes. B.I. Publications, Bombay

    Google Scholar 

  • Alexander RM (1983) The history of fish mechanics. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York

    Google Scholar 

  • Alvarez MC, Otis J, Amores A et al (1991) Short-term cell culture technique for obtaining chromosomes in marine and freshwater fish. J Fish Biol 39:817–824

    Google Scholar 

  • Ann Pabst D (2000) To bend a dolphin: convergence of force transmission designs in cetaceans and scombrid fishes. Am Zool 40(1):146–155 by permission of Oxford University Press

    Google Scholar 

  • Aron J (2012) Robotic fish shoal sniffs out pollution in harbours. New scientist: environment. Published on-line http://www.newscientist.com/article/dn21836-robotic-fish-shoal-sniffs-out-pollution-in-harbours.html. Accessed 15 May 2014. © Copyright Reed Business Information Ltd

  • Arumugam V, Sanjeevi R (1987) Effect of strain rate on the mode of fracture in elastoidin. J Mater Sci 22:2691–2694

    Google Scholar 

  • Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mechatron 15:603–614

    Google Scholar 

  • Avaron F, Hoffman L, Guay D et al (2006) Characterization of two new zebrafish members of the hedgehog family: a typical expression of the zebrafish Indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn 235:478–489

    Google Scholar 

  • Bainbridge R (1963) Caudal fin and body movement in the propulsion of some fish. J Exp Biol 40:23–56

    Google Scholar 

  • Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles – reality, potential and challenges, vol PM98. SPIE Press, Bellingham

    Google Scholar 

  • Bartol IK, Gharib M, Weihs D et al (2003) Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). J Exp Biol 206:725–744

    Google Scholar 

  • Bartol IK, Gharib M, Webb PW et al (2005) Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. J Exp Biol 208:327–344

    Google Scholar 

  • Bartol IK, Gordon MS, Webb P et al (2008) Evidence of self-correcting spiral flows in swimming boxfishes. Bioinspir Biomim 3:014001. doi:10.1088/1748-3182/3/1/014001. © IOP Publishing. Reproduced with permission. All rights reserved

    Google Scholar 

  • Becerra J, Montes GS, Bexiga SR et al (1983) Structure of the tail fin in teleosts. Cell Tissue Res 230:127–137

    Google Scholar 

  • Becerra J, Junqueira LC, Bechara IJ et al (1996) Regeneration of fin rays in teleosts: a histochemical, radioautographic, and ultrastructural study. Arch Histol Cytol 59:15–35

    Google Scholar 

  • Bejar J, Borrego JJ, Alvarez MC (1997) A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata). Aquaculture 150:143–153

    Google Scholar 

  • Böckelmann PK, Bechara IJ (2009) The regeneration of the tail fin actinotrichia of carp (Cyprinus carpio, Linnaeus, 1758) under the action of naproxen. Braz J Biol 69(4):1165–1172

    Google Scholar 

  • Böckelmann PK, Bechara IJ (2010) Influence of indomethacin on the regenerative process of the tail fin of teleost: morphometric and ultrastructural analysis. Braz J Biol 70(3)(suppl)):889–897

    Google Scholar 

  • Breder CM (1926) The locomotion of fishes. Zoological 4:159–256

    Google Scholar 

  • Breder CM Jr (1930) On the structural specialization of flying fishes from the standpoint of aerodynamics. Copeia 1930:114–121

    Google Scholar 

  • Chandross RJ (1982) Structure and packing of dry elastoidin: a collagen phase change. Coll Relat Res 2(4):331–348

    Google Scholar 

  • Chandross RJ, Bear RS (1979) Comparison of mammalian collagen and elasmobranch elastoidin fiber structures, based on electron density profiles. J Mol Biol 130(3):215–219

    Google Scholar 

  • Chi SC, Hu WW, Lo BJ (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper. Epinephelus coioides: a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22:173–182

    Google Scholar 

  • Clark RB, Cowey JB (1958) Factors controlling the change of shape of certain nemertean and turbellarian worms. J Exp Biol 35:731–748

    Google Scholar 

  • Compagno LJV (1999) Checklist of living elasmobranchs. In: Hamlett WC (ed) Sharks, skates, and rays: the biology of elasmobranch fishes. John Hopkins University Press, Maryland

    Google Scholar 

  • Crossland C (1911) The flight of Exocoetus. Nat Lond 86:279–280

    Google Scholar 

  • Cuervo R, Hernández-Martínez R, Chimal-Monroy J et al (2012) Full regeneration of the tribasal Polypterus fin. PNAS 109(10):3838–3843

    Google Scholar 

  • Curet OM, Patankar NA, Lauder GV et al (2011a) Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy. J R Soc Interface 8(60):1041–1050

    Google Scholar 

  • Curet OM, Patankar NA, Lauder GV et al (2011b) Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir Biomim 6(2):026004. doi:10.1088/1748-3182/6/2/026004. Copyright © 2011 IOP Publishing Ltd. Reprinted with permission

    Google Scholar 

  • Currie S (1999) Reverse engineering of lamprey-based undulatory AUV. In: Biomimetic underwater robot program progress report Y01Q1-3

    Google Scholar 

  • Damodaran M, Sivaraman C, Dhavalikar RS (1956) Amino acid composition of elastoidin. Biochem J 62(4):621–625

    Google Scholar 

  • Dane PJ, Tucker JB (1985) Modulation of epidermal cell shaping and extracellular matrix during caudal fin morphogenesis in the zebra fish Brachydanio rerio. J Embryol Exp Morphol 87:145–161

    Google Scholar 

  • Dong C, Weng S, Li W et al (2012) Characterization of a new cell line from caudal fin of koi, Cyprinus carpio koi, and first isolation of cyprinid herpesvirus 3 in China. Virus Res 161(2):140–149

    Google Scholar 

  • Durán et al (2011) Reprinted from Durán I, Marí-Beffa M, Santamaría JA et al (2011) Actinotrichia collagens and their role in fin formation. Dev Biol 354(1):160–72. Copyright © 2011, with permission from Elsevier

    Google Scholar 

  • Esposito et al (2012) Republished with permission of Company of Biologists Ltd., from Esposito CJ, Tangorra JL, Flammang BE et al (2012) A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. J Exp Biol 215(Pt 1):56–67, copyright (2012) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Fertl D, Landry AM Jr (1999) Sharksucker (Echeneis naucrates) on a bottlenose dolphin (Tursiops truncatus) and a review of other cetacean-remora associations. Mar Mamm Sci 15:859–863

    Google Scholar 

  • Fish FE (1990) Wing design and scaling of flying fish with regard to flight performance. J Zool 221:391–403. Copyright © 2010 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • Fish FE (1992) On a fin and a prayer. Scholars 3(1):4–7

    Google Scholar 

  • Fish FE (1999) Energetics of swimming and flying in formation. Comm Theor Biol 5:283–304

    Google Scholar 

  • Fish FE (2010) Reproduced with permission of Science Publishers from Fish FE (2010) Chapter 4. Swimming strategies for energy economy. In: Domenici P, Kapoor BG (eds) Fish locomotion an eco-ethological perspective, pp 90–122 Science Publishers, Enfield, p 102. Permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Fish FE, Haj-Hariri H, Smits AJ et al (2012) Biomimetic swimmer inspired by the manta ray, Chapter 17. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. CRC Press, Boca Rotan

    Google Scholar 

  • Garnier S (2011) From ants to robots and back: how robotics can contribute to the study of collective animal behavior. In: Meng Y, Jin Y (eds) Bio-inspired self-organizing robotic systems. Springer, Berlin/Heidelberg, pp 105–120

    Google Scholar 

  • Garrault AF (1936) Développment des fibres d’elastoidine (actinotrichia) chez les salmonides. Arch Anat Microsc Morphol Esp 32:105–137

    Google Scholar 

  • Géraudie J, Landis WJ (1982) The fine structure of the developing pelvic fin dermal skeleton in the trout Salmo gairdneri. Am J Anat 163(2):141–156. Copyright © 1982 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • Geraudie J, Meunier FJ (1980) Elastoidin actinotrichia in Coelacanth fins: a comparison with teleosts. Tissue Cell 12(4):637–645

    Google Scholar 

  • Geraudie J, Meunier FJ (1982) Comparative fine structure of the Osteichthyan dermotrichia. Anat Rec 202(3):325–328. Copyright © 1982 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • Geraudie J, Meunier FJ (1984) Reproduced from Geraudie J, Meunier FJ (1984) Structure and comparative morphology of camptotrichia of lungfish fins. Tissue Cell 16(2):217–236. Copyright © 1984, with permission from Elsevier

    Google Scholar 

  • Géraudie J, Singer M (1992) The fish fin regenerated. In: Taban CH, Boilly B (eds) Keys for regeneration. Karger, Basel

    Google Scholar 

  • Goodrich ES (1904) On the dermal fin-rays of fishes living and extinct. Q J Microsc Sci 47:465–522

    Google Scholar 

  • Gordon MS, Hove JR, Webb PW et al (2001) Boxfishes as unusually well controlled autonomous underwater vehicles. Physiol Biochem Zool 73:663–671

    Google Scholar 

  • Gosline WA (1971) Functional morphology and classification of teleostean fishes. University of Hawaii Press, Honolulu

    Google Scholar 

  • Goto T, Nishida K, Nakaya K (1999) Internal morphology and function of paired fins in the epaulette shark, Hemiscyllium ocellatum. Ichthyol Res 46:281–287

    Google Scholar 

  • Gottlieb JR et al (2010) Reprinted from Gottlieb JR, Tangorra JL, Esposito CJ et al (2010) A biologically derived pectoral fin for yaw turn manoeuvres. Appl Bionics Biomech 7(1):41–55. Copyright (2010) with permission from IOS Press

    Google Scholar 

  • Gray J (1953) How animals move. Cambridge University Press, Cambridge

    Google Scholar 

  • Gregory PE, Howard-Peebles PN, Ellender RD, Martin BJ (1980) Analysis of a marine fish cell line from a male sheepshead. J Hered 71(3):209–211

    Google Scholar 

  • Gross J, Dumsha B (1958) Elastoidin: a two component member of the collagen class. Biochim Biophys Acta 28(2):268–270

    Google Scholar 

  • Guerrero-Ruis M, Urbán JR (2000) First report of remoras on killer whales (Orcinus orca) in the Gulf of California, Mexico. Aquat Mamm 26(2):148–150

    Google Scholar 

  • Hale ME et al (2006) Republished with permission of Company of Biologists Ltd., from Hale ME, Day RD, Thorsen DH et al (2006) Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. J Exp Biol 209:3708–3718, copyright (2006) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Han JE, Choresca CH Jr, Koo OJ et al (2011) Establishment of glass catfish (Kryptopterus bicirrhis) fin-derived cells. Cell Biol Int Rep (2010) 18(1):e00008. doi:10.1042/CBR20110002

    Google Scholar 

  • Harrison RJ (1893) Ueber die Entwicklung der nicht knoerpelig vorgebildeten Skeletteile in den Flossen der Teleostier. Arch Mikrosk Anat 42:248–278

    Google Scholar 

  • Hayashi H, Nishimoto A, Oshima N et al (2007) Expression of the estrogen receptor alpha gene in the anal fin of Japanese medaka, Oryzias latipes, by environmental concentrations of bisphenol A. J Toxicol Sci 32(1):91–96. Copyright © 2007 The Japanese Society of Toxicology

    Google Scholar 

  • Houssay F (1912) Forme, puissance et stabilité des poissons. Herman, Paris

    Google Scholar 

  • Hove JR, O’Bryan LM, Gordon MS et al (2001) Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics. J Exp Biol 204:1459–1471

    Google Scholar 

  • Hu T et al (2009) Reprinted from Hu T, Shen L, Lin L, Xu H (2009) Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mech Mach Theory 44(3):633–645. Copyright (2009), with permission from Elsevier

    Google Scholar 

  • Huang CC, Wang TCB-H, Lin BH et al (2009) Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins. Dev Biol 332:360–370

    Google Scholar 

  • Hukins DW, Woodhead-Galloway J, Knight DP (1976) Molecular tilting in dried elastoidin and its implications for the structures of other collagen fibrils. Biochem Biophys Res Commun 73(4):1049–1055

    Google Scholar 

  • Imajoh M, Ikawa T, Oshima S (2007) Characterization of a new fibroblast cell line from a tail fin of red sea bream, Pagrus major, and phylogenetic relationships of a recent RSIV isolate in Japan. Virus Res 126(1–2):45–52

    Google Scholar 

  • Johanson Z, Burrow C, Warren A et al (2005) Homology of fin lepidotrichia in osteichthyan fishes. Lethaia 38:27–36. Copyright © 2007, John Wiley and Sons. Reproduced with permission

    Google Scholar 

  • Ju B, Pristyazhnyuk I, Ladygina T et al (2003) Development and gene expression of nuclear transplants generated by transplantation of cultured cell nuclei into non-enucleated eggs in the medaka Oryzias latipes. Dev Growth Differ 45:167–174

    Google Scholar 

  • Kang MS, Oh MJ, Kim YJ, Jung J et al (2003) Establishment and characterization of two cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 26:657–665

    Google Scholar 

  • Kato N, Liu H, Morikawa H (2005) Biology-inspired precision maneuvering of underwater vehicles. Int J Offshore Polar Eng 15:81–87

    Google Scholar 

  • Katz SL (2002) Design of heterothermic muscle in fish. J Exp Biol 205:2251–2266

    Google Scholar 

  • Kawakami A (2010) Stem cell system in tissue regeneration in fish. Dev Growth Differ 52(1):77–87

    Google Scholar 

  • Kemp NE (1977) Banding pattern and fibrillogenesis of ceratotrichia in shark fins. J Morphol 154:187–204

    Google Scholar 

  • Kim B, Kim DH, Jung J et al (2005) A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater Struct 14:1579–1585

    Google Scholar 

  • Kim SH, Shin K, Hashi S et al (2012) Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator. Bioinspir Biomim 7(3):036007. doi:10.1088/1748-3182/7/3/036007. Copyright © 2012 IOP Publishing. Reprinted with permission

    Google Scholar 

  • Kimura S, Kubota M (1966) Studies on elastoidin. I. Some chemical and physical properties of elastoidin and its components. J Biochem 60(6):615–621

    Google Scholar 

  • Kimura S, Kubota M (1969) Tyrosine derivatives in a structural protein, elastoidin. J Biochem 65(1):141–143

    Google Scholar 

  • Kimura S et al (1986) Reproduced from Kimura S, Uematsu Y, Miyauchi Y (1986) Shark (Prionace glauca) elastoidin: characterization of its collagen as [alpha 1(E)]3 homotrimers. Comp Biochem Physiol B 84(3):305–308. Copyright © 1986, with permission from Elsevier

    Google Scholar 

  • Kodati P (2006) Biomimetic micro underwater vehicle with ostraciiform locomotion: system design, analysis and experiments. Master’s thesis, University of Delaware, Newark

    Google Scholar 

  • Koester DM, Spirito CP (2003) Punting: an unusual mode of locomotion in the little skate, Leucoraja erinacea (Chondrichthyes: Rajidae). Copeia 3:553–561

    Google Scholar 

  • Koob TJ, Long JH Jr (2000) The vertebrate body axis: evolution and mechanical function. Am Zool 40(1):1–018, by permission of Oxford University Press

    Google Scholar 

  • Kopman V, Porfiri M (2011) A miniature and low-cost robotic fish for ethorobotics research and engineering education I: bioinspired design ASME dynamic systems and control conference, Arlington, pp 209–216

    Google Scholar 

  • Krukenberg C (1885) Ãœber die chemische beschaffenheit der sog. hornfäden von mustelus und über die zusammensetzung der keratinösen hüllen um die eier von Scyllium stellate. Mittheilungen Zool Stat Neapel 6:286–296

    Google Scholar 

  • Ku CC, Lu CH, Wang CS (2010) Establishment and characterization of a fibroblast cell line derived from the dorsal fin of red sea bream, Pagrus major (Temminck & Schlegel). J Fish Dis 33(3):187–196

    Google Scholar 

  • Lagler KF, Bardach JE, Miller RR et al (1977) Ichthyology, 2nd edn. Wiley, New York

    Google Scholar 

  • Lai YS, John JA, Lin CH (2003) Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido- and nodaviruses. J Fish Dis 26(1):31–42

    Google Scholar 

  • Lakra WS, Swaminathan TR, Rathore G et al (2010) Development and characterization of three new diploid cell lines from Labeo rohita (Ham.). Biotechnol Prog 26(4):1008–1013

    Google Scholar 

  • Latimer-Needham CH (1951) Flying-fish aerodynamics. Flight 26:535–536

    Google Scholar 

  • Lauder GV (1989) Caudal fin locomotion in ray-finned fishes: historical and functional analyses. Am Zool 29(1):85–102, by permission of Oxford University Press

    Google Scholar 

  • Lauder GV (2006) Locomotion. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 3–46

    Google Scholar 

  • Lauder GV, Drucker EG (2004) Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE J Ocean Eng 29:556–571

    Google Scholar 

  • Lauder GV, Madden PGA (2006) Learning from fish: kinematics and experimental hydrodynamics for roboticists. Int J Autom Comput 4:325–335

    Google Scholar 

  • Lauder GV et al (2007) Republished with permission of Company of Biologists Ltd., from Lauder GV, Anderson EJ, Tangorra J, Madden PG (2007) Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J Exp Biol 210(Pt 16):2767–2780. Copyright (2007) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Lauder GV, Madden PGA, Tangorra JL et al (2011) Bioinspiration from fish for smart material design and function. Smart Mater Struct 20:094014. doi:10.1088/0964-1726/20/9/094014. Copyright © 2011 IOP Publishing. Reprinted with permission. All rights reserved

    Google Scholar 

  • Lauder GV, Flammang B, Alben S (2012) Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr Comp Biol 52(5):576–587. doi:10.1093/icb/ics096 by permission of Oxford University Press

    Google Scholar 

  • Liang J, Zou D, Wang S, Wang Y (2005) Trial voyage of SPC-II fish robot. J Beijing Univ Aeronaut Astronaut 31(7):709–713

    Google Scholar 

  • Lingham-Soliar T (2005a) Dorsal fin in the white shark, Carcharodon carcharias: a dynamic stabilizer for fast swimming. J Morphol 263(1):1–11. Copyright © 2004 Wiley-Liss, Inc. Reprinted with permission

    Google Scholar 

  • Lingham-Soliar T (2005b) Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming. J Morphol 264:233–252. Copyright © 2005 Wiley-Liss, Inc. Reprinted with permission

    Google Scholar 

  • Lingham-Soliar T (2005c) With kind permission from Springer Science+Business Media: Lingham-Soliar T (2005c) Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology. Naturwissenschaften 92(5):231–236. Copyright © 2005, Springer-Verlag

    Google Scholar 

  • Liu J, Hu H (2006) Biologically inspired behaviour design for autonomous robotic fish. Int J Autom Comput 3(4):336–347

    Google Scholar 

  • Liu TM, Yu XM, Ye YZ et al (2002) Factors affecting the efficiency of somatic cell nuclear transplantation in the fish embryo. J Exp Zool 293:719–725

    Google Scholar 

  • Low (2009) Reproduced from Low KH (2009) Modelling and parametric study of modular undulating fin rays for fish robots. Mech Mach Theory 44(3):615–632, Copyright © 2009, with permission from Elsevier

    Google Scholar 

  • Lucifora LO, Vassallo AI (2002) Walking in skates (Chondrichthyes. Rajidae): anatomy, behaviour and analogies to tetrapod locomotion. Biol J Linn Soc 77:35–41

    Google Scholar 

  • Macesic LJ, Kajiura SM (2010) Comparative punting kinematics and pelvic fin musculature of benthic batoids. J Morphol 271(10):1219–1228. Copyright © 2010 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • MacIver MA, Sharabash NM, Nelson ME (2001) Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. J Exp Biol 204:543–557

    Google Scholar 

  • Marí-Beffa M et al (1989) With kind permission from Springer Science+Business Media: Marí-Beffa M, Carmona MC, Becerra J (1989) Elastoidin turn-over during tail fin regeneration in teleosts. A morphometric and radioautographic study. Anat Embryol (Berl) 180(5):465–70. Copyright © 1989, Springer-Verlag

    Google Scholar 

  • Marí-Beffa M, Mateos I, Palmqvist P et al (1996) Cell to cell interactions during teleosts fin regeneration. Int J Dev Biol Suppl 1:179S–180S

    Google Scholar 

  • Marras S, Porfiri M (2012) Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J R Soc Interface 9(73):1856–1868. doi:10.1098/rsif.2012.0084 by permission of the Royal Society

    Google Scholar 

  • Mattheijssens J, Marcel JP, Bosschaerts W et al (2012) Oscillating foils for ship propulsion. In: 9th National Congress on Theoretical and Applied Mechanics, Brussels, 9-10-11 May 2012

    Google Scholar 

  • Mauger et al (2006) Reproduced from Mauger P-E, Le Bail P-Y, Labbé C (2006) Cryobanking of fish somatic cells: optimizations of fin explant culture and fin cell cryopreservation. Comp Biochem Physiol B: Biochem Mol Biol 144(1):29–37. Copyright 2006, with permission from Elsevier

    Google Scholar 

  • McGavin S, Pyper AS (1964) An electron microscope study of elastoidin. Biochim Biophys Acta 79:600–605

    Google Scholar 

  • Mittal R (2004) Computational modeling in biohydrodynamics: trends, challenges, and recent advances. IEEE J Ocean Eng 29:595–604

    Google Scholar 

  • Montes GS, Becerra J, Toledo OM et al (1982) Fine structure and histochemistry of the tail fin ray in teleosts. Histochemistry 75:363–376

    Google Scholar 

  • Mothersill C, Lyng F, Lyons M et al (1995) Growth and differentiation of epidermal cells from the rainbow trout established as explants and maintained in various media. J Fish Biol 46:1011–1025

    Google Scholar 

  • Müller AH (1985) Lehrbuch der Paläozoologie. Teil l. 2. Auflage. Band 3, VEB Custav Fischer Verlag Jena, 655 pp

    Google Scholar 

  • Murciano C et al (2007) Reproduced from Murciano C, Pérez-Claros J, Smith A et al (2007) Position dependence of hemiray morphogenesis during tail fin regeneration in Danio rerio. Dev Biol 312(1):272–283. Copyright © 2007, with permission from Elsevier

    Google Scholar 

  • Nabrit SM (1929) The role of the rays in the regeneration in the tail-fins of fishes (in Fundulus and goldfish). Biol Bull 56:235–266

    Google Scholar 

  • Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 49(2):145–154

    Google Scholar 

  • Nelson JS (1994) Fishes of the world, 3rd edn. Wiley, New York

    Google Scholar 

  • O’Toole B (2002) Phylogeny of the species of the superfamily Echeneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae, and Coryphaenidae), with an interpretation of echeneid hitchhiking behaviour. Can J Zool 80:596–623

    Google Scholar 

  • Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795

    Google Scholar 

  • Park H, Choi H (2010) Republished with permission of Company of Biologists Ltd., from Park H, Choi H (2010) Aerodynamic characteristics of flying fish in gliding flight. J Exp Biol 213:3269–3279. Copyright (2010) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Polverino G, Abaid N, Kopman V, Macrì S, Porfiri M (2012) Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals. Bioinspir Biomim 7(3):036019. doi:10.1088/1748-3182/7/3/036019

    Google Scholar 

  • Prasanna I, Lakra WS, Ogale SN et al (2000) Cell culture from fin explant of endangered golden masheer, Tor putitora (Hamilton). Curr Sci 79:93–95

    Google Scholar 

  • Pridmore PA (1995) Submerged walking in the epaulette shark Hemiscillium ocellatum (Hemiscyllidae) and its implications for locomotion in rhipidistian fishes and early tetrapods. Zool Anal Complex Syst 98:278–297

    Google Scholar 

  • Rajaram A et al (1981) With kind permission from Springer Science+Business Media: Rajaram A, Sanjeevi R, Ramanathan N (1981) The tensile properties and mode of fracture of elastoidin. J Biosci 3(3):303–309. Copyright © 1981, Indian Academy of Sciences

    Google Scholar 

  • Ramachandran LK (1962) Elastoidin–a mixture of three proteins. Biochem Biophys Res Commun 6:443–448

    Google Scholar 

  • Ratho T, Misra T (1970) Estimation of parameters of elastoidin by low-angle X-ray method. Colloid Polym Sci 239:574–577

    Google Scholar 

  • Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. J Exp Biol 204:379–394

    Google Scholar 

  • Santamaría JA, Becerra J (1991) Tail fin regeneration in teleosts: cell-extracellular matrix interaction in blastemal differentiation. J Anat 176:9–21

    Google Scholar 

  • Sastry LV, Ramachandran LK (1965) The protein components of elastoidin. Biochim Biophys Acta 97:281–287

    Google Scholar 

  • Sazima I, Grossman A (2006) Turtle riders: remoras on marine turtles in southwest Atlantic. Neotropical Ichthyol 4:123–126

    Google Scholar 

  • Schneider VA, Granato M (2007) Genomic structure and embryonic expression of zebrafish lysyl hydroxylase 1 and lysyl hydroxylase 2. Matrix Biol 26:12–19

    Google Scholar 

  • Schulte CJ, Allen C, England SJ et al (2011) Evx1 is required for joint formation in zebrafish fin dermoskeleton. Dev Dyn 240(5):1240–1248. Copyright © 2011 Wiley-Liss, Inc. Reproduced with permission

    Google Scholar 

  • Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24:237–252

    Google Scholar 

  • Shadwick RE, Lauder GV (eds) (2006) Fish physiology vol 23: fish biomechanics. Academic, San Diego

    Google Scholar 

  • Shahinpoor M (1992) Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater Struct 1:91–94

    Google Scholar 

  • Shima A, Nikaido O, Shinohara S et al (1980) Continued in vitro growth of fibroblast-like cells (RBCF-1) derived from the caudal fin of the fish, Carassius auratus. Exp Gerontol 15:305–314

    Google Scholar 

  • Shirgaonkar AA et al (2008) Republished with permission of Company of Biologists Ltd., from Shirgaonkar AA, Curet OM, Patankar NA et al (2008) The hydrodynamics of ribbon-fin propulsion during impulsive motion. J Exp Biol 211:3490–3503. Copyright (2008) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Sitorus PE et al (2009) Reprinted from Sitorus PE, Nazaruddin YY, Leksono E et al (2009) Design and implementation of paired pectoral fins locomotion of labriform fish applied to a fish robot. J Bionic Eng 6(1):37–45. Copyright (2009), with permission from Elsevier)

    Google Scholar 

  • Smith A, Avaron F, Guay D et al (2006) Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol 299:438–454

    Google Scholar 

  • Snyder JB, Nelson ME, Burdick JW et al (2007) Omnidirectional sensory and motor volumes in an electric fish. PLoS Biol 5:2671–2683

    Google Scholar 

  • Standen EM (2008) Republished with permission of Company of Biologists Ltd., from Standen EM (2008) Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2931–2942. copyright (2008) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Standen EM, Lauder GV (2005) Republished with permission of Company of Biologists Ltd., from Standen EM, Lauder GV (2005) Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J Exp Biol 208(Pt 14):2753–2763. Copyright (2005) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Standen EM, Lauder GV (2007) Republished with permission of Company of Biologists Ltd., from Standen EM and Lauder GV (2007) Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210(Pt 2):325–339, copyright (2007) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Steffensen JF, Lomholt JP (1983) Energetic cost of active branchial ventilation in the sharksucker, Echeneis naucrates. J Exp Biol 103:185–192

    Google Scholar 

  • Summers A, Long J (2006) Skin and bones, sinew and gristle: the mechanical behavior of fish skeletal tissues. In: Shadwick RE, Lauder GV (eds) Fish physiology vol 23: fish biomechanics. Academic, San Diego

    Google Scholar 

  • Suzuki T, Haga Y, Takeuchi T et al (2003) Differentiation of chondrocytes and scleroblasts during dorsal fin skeletogenesis in flounder larvae. Dev Growth Differ 45(5–6):435–448. Copyright © 2004, John Wiley and Sons. Reprinted with permission

    Google Scholar 

  • Swaminathan TR, Lakra WS, Gopalakrishnan A et al (2010) Development and characterization of a new epithelial cell line PSF from caudal fin of Green chromide, Etroplus suratensis (Bloch, 1790). In Vitro Cell Dev Biol Anim 46(8):647–656

    Google Scholar 

  • Taft NK, Taft BN (2012) Republished with permission of Company of Biologists Ltd., from Taft NK, Taft BN (2012) Functional implications of morphological specializations among the pectoral fin rays of the benthic longhorn sculpin. J Exp Biol 215(Pt 15):2703–2710. Copyright (2012) permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Tan X, Kim D, Usher N et al (2006) An autonomous robotic fish for mobile sensing. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems October 9–15, 2006, Beijing, pp 5424–5429. doi:10.1109/IROS.2006.282110. © 2006 IEEE. Reprinted, with permission

  • Tangorra J, Anquetil P, Fofonoff T et al (2007a) The application of conducting polymers to a biorobotic fin propulsor. Bioinspir Biomim 2:S6–S17. Copyright © 2007 IOP Publishing. Reprinted with permission. All rights reserved

    Google Scholar 

  • Tangorra JL, Davidson SN, Hunter I et al (2007b) The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J Ocean Eng 32(3):533–550. © 2007 IEEE. Reprinted, with permission

    Google Scholar 

  • Tangorra JL et al (2010) Republished with permission of Company of Biologists Ltd., from Tangorra JL, Lauder GV, Hunter IW, Mittal R, Madden PG, Bozkurttas M (2010) The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J Exp Biol 213(Pt 23):4043–4054. Copyright (2010); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Tangorra J, Phelan C, Esposito C et al (2011) Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes. Integr Comp Biol 51(1):176–189, by permission of Oxford University Press

    Google Scholar 

  • Thorsen DH, Westneat MW (2005) Diversity of pectoral fin structure and function in fishes with labriform propulsion. J Morphol 263(2):133–150. Copyright © 2004 Wiley-Liss, Inc. Reprinted with permission

    Google Scholar 

  • Triantafyllou MS, Triantafyllou GS (1995) An efficient swimming machine. Sci Am 272(3):62–70

    Google Scholar 

  • Triantafyllou MS, Techet AH, Zhu Q et al (2002) Vorticity control in fish-like propulsion and maneuvering. Integr Comp Biol 42:1026–1031

    Google Scholar 

  • Tsuchiya Y, Nomura T (1953) Chemical nature of the shark fin fiber. Tohoku J Agric Res 4(1):43–53

    Google Scholar 

  • van den Boogaart JGM, Muller M, Osse JWM (2012) Structure and function of the median finfold in larval teleosts. J Exp Biol 215:2359–2368

    Google Scholar 

  • Wainwright SA (1983) To bend a fish. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York

    Google Scholar 

  • Wainwright PC, Bellwood DR, Westneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fish 65:47–62

    Google Scholar 

  • Walker JA (2000) Does a rigid body limit maneuverability? J Exp Biol 203:3391–3396

    Google Scholar 

  • Walker JA, Westneat MW (1997) Motor patterns of Labriform locomotion: kinematic and electromyographic analysis of pectoral fin swimming in the labrid fish Gomphosus varius. J Exp Biol 200:1881–1893

    Google Scholar 

  • Walker JA, Westneat MW (2000) Mechanical performance of aquatic rowing and flying. Proc R Soc Lond B 267:1875–1881

    Google Scholar 

  • Walker JA, Westneat MW (2002) Performance limits of labriform propulsion and correlates with fin shape and motion. J Exp Biol 205:177–187

    Google Scholar 

  • Wang G, LaPatra S, Zeng L et al (2003) Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Methods Cell Sci 25:211–220

    Google Scholar 

  • Ward AB (2002) Kinematics of the pectoral fins in batfishes (Ogcocephalidae) during aquatic walking. Integr Comp Biol 42:1331–1331

    Google Scholar 

  • Webb PW (1988) Steady swimming kinematics of tiger musky, an esociform accelerator, and rainbow trout, a generalist cruiser. J Exp Biol 138:51–69

    Google Scholar 

  • Westneat MW, Hoese W, Pell CA et al (1993) The horizontal septum: mechanics of force transfer in locomotion of scombrid fishes (Scombridae, Perciformes). J Morphol 217:183–204

    Google Scholar 

  • Westneat M, Thorsen D, Walker J et al (2004) Structure, function, and neural control of pectoral fins in fishes. IEEE J Ocean Eng 29:674–677

    Google Scholar 

  • Wilbur C, Vorus W, Cao Y, Currie S (2002) A lamprey-based undulatory vehicle. In: Ayers J, Davis JL, Rudolph A (eds) Neurotechnology for biomimetic robots. MIT Press, Cambridge, MA, pp 285–296. Published by The MIT Press

    Google Scholar 

  • Wilga CD, Lauder GV (2001) Functional morphology of the pectoral fins in bamboo sharks. Chiloscyllium plagiosum: benthic vs. pelagic station-holding. J Morphol 249:195–209

    Google Scholar 

  • Willey A (1890) On the development of the atrial chamber of amphioxus. Proc R Soc Lond 48:80–89

    Google Scholar 

  • Wood A (1982) Early pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifis Aphyosemion scheeli. Anat Rec 204:349–356

    Google Scholar 

  • Wood A, Thorogood P (1984) An analysis of in vivo cell migration during teleost fin morphogenesis. J Cell Sci 66:205–222

    Google Scholar 

  • Woodhead-Galloway J, Knight DP (1977) Some observations on the fine structure of elastoidin. Proc R Soc Lond B Biol Sci 195(1120):355–364

    Google Scholar 

  • Woodhead-Galloway J et al (1978) Reprinted from Woodhead-Galloway J, Hukins DWL, Knight DP, Machin PA, Weiss JB (1978) Molecular packing in elastoidin spicules. J Mol Biol 118(4):567–578. Copyright © 1978, with permission from Elsevier

    Google Scholar 

  • Yang SB, Han XY, Zhang DB et al (2008) Design and development of a kind of new pectoral oscillation robot fish. Robotics 30:508–515

    Google Scholar 

  • Yang SB, Qiu J, Han XY (2009) Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish. J Bionic Eng 6:174–179

    Google Scholar 

  • Zhang J et al (2010) Reprinted by permission from Macmillan Publishers Ltd: Zhang J, Wagh P, Guay D et al (2010) Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466(7303):234–237. Copyright © 2010, Rights Managed by Nature Publishing Group

    Google Scholar 

  • Zhou C, Low KH (2010) Better endurance and load capacity: an improved design of manta ray robot (RoMan-II). J Bionic Eng 7(Suppl):S137–S144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ehrlich, H. (2015). Fish Fins and Rays as Inspiration for Materials Engineering and Robotics. In: Biological Materials of Marine Origin. Biologically-Inspired Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5730-1_7

Download citation

Publish with us

Policies and ethics