Skip to main content

Biocomposites and Mineralized Tissues

  • Chapter
  • First Online:
  • 1841 Accesses

Part of the book series: Biologically-Inspired Systems ((BISY,volume 4))

Abstract

Bones represent a family of biological materials with complex, hierarchically organized architecture. These diverse mineralized structures are excellently adapted to the variety of mechanical functions and stresses (Weiner et al. 1999; Beniash 2011). According to modern point of view, “bone is specific to vertebrates, and originated as mineralization around the basal membrane of the throat or skin, giving rise to tooth-like structures and protective shields in animals with a soft cartilage-like endoskeleton” (Obradovic-Wagner and Aspenberg 2011). In his excellent monograph, John Long (1995) described the origin and diversity of bone structures which I will now briefly summarize. Bone can be examined as the calcified tissue that supports the skeleton, external or internal, of vertebrates and shows a broad variety of mechanical adaptations at nano- and microscales (Currey 1984, 2002; Weiner and Wagner 1998; Fratzl et al. 2004). A functionally important mechanical property of bones is stiffness, both in the whole element sense and in the material sense (Horton and Summers 2009). Main components of bone include hydroxylapatite (HAP) (as inorganic part), nanofibrillar collagen fibres that support the in vivo development of mineralised bone, and corresponding vascular tissue that supplies blood to the living cell components of bone. Since publication by Kölliker (1859), the presence of cellular and acellular types in the bone of early vertebrates is well established. In spite of that the structures of these bone types are similar, the principal difference between them are the spaces in cellular bone for the osteocytes, which occur throughout this hard tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel JH, Ellis RA (1966) Histochemical and electron microscopic observations on the salt secreting glands of marine turtles. Am J Anat 118:337–357

    Google Scholar 

  • Abler WL (1992) The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18:161–183

    Google Scholar 

  • Abzhanov et al (2007) Reproduced with permission Development 134: Abzhanov A, Rodda SJ, McMahon AP and Tabin CJ (2007) Regulation of skeletogenic differentiation in cranial dermal bone. Development 134:3133–3144

    Google Scholar 

  • Acuña–Mesén RA (1984) La ultraestructura superficial de la cascara del huevo de la tortuga marina Lepidochelys olivacea Eschscholtz. Brenesia 22:299–308

    Google Scholar 

  • Acuña–Mesén RA (1989) Anatomia microscopica de la cascara del huevo de la tortuga Carey Eretmochelys imbricata. Brenesia 31:33–41

    Google Scholar 

  • Al–Bahry SN, Mahmoud IY, Al–Amri IS et al (2009) Ultrastructural features and elemental distribution in eggshell during pre and post hatching periods in the green turtle, Chelonia mydas at Ras Al–Hadd, Oman. Tissue Cell 41:214–221

    Google Scholar 

  • Al–Bahry SN, Mahmoud IY, Melghit K et al (2011) Analysis of elemental composition of the eggshell before and after incubation in the loggerhead turtle (Caretta caretta) in Oman. Microsc Microanal 17(3):452–60. Copyright © 2011, Microscopy Society of America. Reprinted with permission

    Google Scholar 

  • Alerstam T, Hogstedt G (1983) The role of the geomagnetic field in the development of birds’ compass sense. Nature 306:463–465

    Google Scholar 

  • Alibardi L (2010a) Cornification in the claw of the amphibian Xenopus laevis and comparison with claws in amniotes. Ital J Zool 179:399–409

    Google Scholar 

  • Alibardi L (2010b) Cornification of the beak of Rana dalmatina tadpoles suggests the presence of basic keratin associated proteins. Zool Stud 49:51–63

    Google Scholar 

  • Alibardi L, Segalla A (2011) The process of cornification in the horny teeth of the lamprey involves proteins in the keratin range and other keratin–associated proteins. Zool Stud 50(4):416–425

    Google Scholar 

  • Allen GR (1982) A field guide to inland fishes of Western Australia. University of Western Australia Press, Perth

    Google Scholar 

  • Amano M, Yamada TK, Brownell RL Jr et al (2011) Age determination and reproductive traits of killer whales entrapped in ice off Aidomari, Hokkaido. Jpn J Mammol 92:275–282

    Google Scholar 

  • Amiel D, Coutts RD, Harwood FL et al (1988) The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connect Tissue Res 18:27–39

    Google Scholar 

  • Anderson PSL, LaBarbera M (2008) Functional consequences of tooth design: effects of blade shape on energetics of cutting. J Exp Biol 211:3619–3626

    Google Scholar 

  • Andrews RM, Mathies T (2000) Natural history of reptilian development: constraints on the evolution of viviparity. Bioscience 50:227–238

    Google Scholar 

  • Applegate SP (1965) Tooth terminology and variation in sharks with special reference to the sand shark, Carcharias taurus rafinesque. Contib Sci Los Angel Cty Mus 86:3–18

    Google Scholar 

  • Arias JL, Fink DJ, Xiao S et al (1993) Biomineralization and eggshells: cell–mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol 145:217–250

    Google Scholar 

  • Avallone B, Balassone G, Balsamo G et al (2003) The otoliths of the antarctic teleost Trematomus bernacchii: scanning electron microscopy and X–ray diffraction studies. J Submicrosc Cytol Pathol 35(1):69–76

    Google Scholar 

  • Babonis LS, Brischoux F (2012) Perspectives on the convergent evolution of tetrapod salt glands. Integr Comp Biol 52(2):245–256. doi:10.1093/icb/ics073. By permission of Oxford University Press

  • Babonis LS, Evans DH (2011) Morphological and biochemical evidence for the evolution of salt glands in snakes. Comp Biochem Physiol A Mol Integr Physiol 160:400–411

    Google Scholar 

  • Babonis LS, Hyndman KA, Lillywhite HB et al (2009) Immunolocalization of Na+/K + −ATPase and Na+/K+/2Cl– cotransporter in the tubular epithelia of sea snake salt glands. Comp Biochem Physiol A Mol Integr Physiol 154:535–540

    Google Scholar 

  • Babonis LS, Miller SN, Evans DH (2011) Renal responses to salinity change in snakes with and without salt glands. J Exp Biol 214:2140–2156

    Google Scholar 

  • Baeuerlein E, Schüler D (1995) Biomineralisation: iron transport and magnetite crystal formation in Magnetospirillum gryphiswaldense. J Inorg Biochem 59(2):107

    Google Scholar 

  • Bain MM (1990) Eggshell strength: a mechanical/ultrastructural evaluation. Dissertation, University of Glasgow, Scotland

    Google Scholar 

  • Baird T, Solomon SE (1979) Calcite and aragonite in the eggshell of Chelonia mydas L. J Exp Mar Biol Ecol 36:295–303

    Google Scholar 

  • Ballantyne JS, Robinson JW (2010) With kind permission from Springer Science + Business Media: Ballantyne JS, Robinson JW (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. J Comp Physiol B 180(4):475–493. Copyright © 2010, Springer-Verlag

    Google Scholar 

  • Bargmann W (1933) Die Zahnplatten von Chimaera monstrosa. Zeit Zell Mikr Anat 19:537–561

    Google Scholar 

  • Barrera F, Schmitd G, Prado Figueroa M (2001) Electrocytes presence of aluminum in weakly electric fish (Rajidae) from Bahía Blanca. Reunión Anual de la Sociedad Argentina de Neuroquímica. Cell Mol Neurobiol 21:126

    Google Scholar 

  • Bauer GB, Fuller M, Perry A et al (1986) Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirshvink JL, Jones DS, McFadden BJ (eds) Magnetite biomineralization and magnetoreception in living organisms. Plenum Press, New York

    Google Scholar 

  • Bäuerlein E, Schüler D, Reszka R et al (2001) Specific magnetosomes, method for the production and use thereof. US patent 6 251 365 B1

    Google Scholar 

  • Bazylinski DA, Schüler D (2009) Biomineralization and assembly of the bacterial magnetosome chain. Microbe 4:124–130

    Google Scholar 

  • Beason RC, Semm P (1987) Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci Lett 80:229–234

    Google Scholar 

  • Beason RC, Dussourd N, Deutschlander ME (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–145

    Google Scholar 

  • Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B (2005) Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res 15:225–241

    Google Scholar 

  • Belcher E (1885) The last of the Arctic voyages; being a narrative of the expedition in H. M. S. Assistance, under the command of Captian Sir Edward Belcher, C. B., in search of Sir John Franklin, during the years 1852-53-54. Lovell Reeve, London

    Google Scholar 

  • Beniash E (2011) Biominerals—hierarchical nanocomposites: the example of bone. WIREs Nanomed Nanobiotechnol 3: 47–69. Copyright © 2010 John Wiley & Sons, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Benirschke KJ, Henderson JR, Sweeny JC (1984) A vaginal mass, containing fetal bones, in a common dolphin, Delphlnus delphis. In: Perrin WF, Brownel RL Jr, DeMaster DP (eds) Reproduction in whales, dolphins and porpoises. Reports of the International Whaling Commission, Special Issue 6, Cambridge, UK

    Google Scholar 

  • Berenyi M (1972) Models for the formation of uric acid and urate stones. Int Urol Nephrol 4:199–204

    Google Scholar 

  • Berry C (2004) Hearing the sermons in stones. QJM 97(2):109–110, by permission of Oxford University Press

    Google Scholar 

  • Besmer A (1947) Die Triasfauna der Tessiner Kalkalpen XVI. Beiträge zur Kenntnis des Ichthyosauriergebisses. Schweiz Palaeontol Abh 65:1–21

    Google Scholar 

  • Best RC (1981) The tusk of the narwhal (Monodon monoceros L.): interpretation of its function (Mammaia: Cetacea). Can J Zool 59:2386–2393

    Google Scholar 

  • Betts MW (2007) The Mackenzie Inuit whale bone industry: raw material, tool manufacture, scheduling, and trade. ARCTIC 60(2):129–144. doi:10.14430/arctic238. Reprinted with permission

    Google Scholar 

  • Bilinski JJ, Reina RD, Spotila JR et al (2001) The effects of nest environment on calcium mobilization by leatherback turtle embryos (Dermochelys coriacea) during development. Comp Biochem Physiol Part A Mol Integr Physiol 130:152–162

    Google Scholar 

  • Biro D, Freeman R, Meade J (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci USA 104:7471–7476

    Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 19:377–379

    Google Scholar 

  • Blumer MJF, Longato S, Fritsch H (2008) Structure, formation and role of cartilage canals in the developing bone. Ann Anat 190:305–315

    Google Scholar 

  • Board RG (1982) Properties of avian eggshells and their adaptive value. Biol Rev 57:1–28

    Google Scholar 

  • Boehm JR, Greenwell MG, Coe F (1997) Dietary management in the treatment of uric acid urolithiasis in a Pacific white–sided dolphin (Lagenorhynchus obliquidens). Proc Int Assoc Aqua Anim Med 28:134–135

    Google Scholar 

  • Boersma PD, Rebstock GA, Stokes DL (2004) Why penguin eggshells are so thick. The Auk 121(1):148–155. Published by the American Ornithologists’ Union

    Google Scholar 

  • Bohannon J (2007) Michael Walker: seeking nature’s inner compass. Science 5852(318):904–907

    Google Scholar 

  • Bonadonna F, Bajzak C, Benhamou S et al (2005) Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proc R Soc Lond B Biol Sci 272:489–495

    Google Scholar 

  • Bookman MA (1977) Sensitivity of the homing pigeon to an earth–strength magnetic field. Nature 267:340–342

    Google Scholar 

  • Borelli G, Mayer–Gostan N, De Pontual H et al (1994) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Hear Res 79(1–2):99–104

    Google Scholar 

  • Boschma H (1938) On the teeth and some other particulars of the sperm whale (Physeter macrocephalus L.). Temminckia 3:151–278

    Google Scholar 

  • Bradford EW (1957) The structure of rostral teeth and the rostrum of Pristis Microdon. J Dent Res 36:663–668

    Google Scholar 

  • Brear K, Currey JD, Pond CM et al (1990) The mechanical properties of the dentine and cement of the tusk of the narwhal Monodon monoceros compared with those of other mineralized tissues. Arc Oral Biol 35:615–621

    Google Scholar 

  • Brear K, Currey JD, Kingsley MCS et al (1993) The mechanical design of the tusk of the narwhal (Monodon monoceros: Cetacea). J Zool 230:411–423

    Google Scholar 

  • Brighton CT (1994) Bone formation and repair. Brighton CT, Friedlaender GE, Lane JM, (eds). American Academy of Orthopaedic Surgeons, Rosemount

    Google Scholar 

  • Brody RH, Edwards HGM, Pollard AM (2001) Chemometric methods applied to the differentiation of Fourier–transform Raman spectra of ivories. Anal Chim Acta 427:223–232

    Google Scholar 

  • Brongersma LD (1969) Miscellaneous notes on turtles. Proc Kronic Ned Akad Weten Ser C 72:90–102

    Google Scholar 

  • Burdett LG, Osborne CA (2010) Enterolith with a stingray spine nidus in an Atlantic Bottlenose dolphin (Tursiops truncatus). J Wildl Dis 46(1):311–315. Copyright © 2010, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permission

    Google Scholar 

  • Burger JW, Hess WN (1960) Function of the rectal gland in the spiny dogfish. Science 131:670–671

    Google Scholar 

  • Bustard HR, Simkiss K, Jenkins NK et al (1969) Some analyses of artificially incubated eggs and hatchlings of green and loggerhead sea turtles. J Zool Lond 158:311–315

    Google Scholar 

  • Bystrow AP (1938) Zahnstruktur der Labyrinthodonten. Acta Zool Stockh 19:387–425

    Google Scholar 

  • Bystrow AP (1939) Zahnstruktur der Crossopterygier. Acta Zool Stockh 20:283–338

    Google Scholar 

  • Cadiou H, McNaughton PA (2010) Avian magnetite-based magnetoreception: a physiologist’s perspective. J R Soc Interf 7(Suppl 2):S193–S205. By permission of the Royal Society

    Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. MEPS 188:263–297. Copyright © 1999 Inter-Research. Reprinted with permission

    Google Scholar 

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Google Scholar 

  • Campana SE (2004) Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. NRC Research Press, Ottawa

    Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Aquat Sci 58:30–38

    Google Scholar 

  • Campana SE, Gagne JA, Mclaren JW (1995) Elemental fingerprinting of fish otoliths using Id–Icpms. Mar Ecol Progress Ser 122:115–120

    Google Scholar 

  • Campana SE, Jones C, McFarlane GA et al (2006) Bomb dating and age validation using the spines of spiny dogfish (Squalus acanthias). Environ Biol Fish 77:327–336

    Google Scholar 

  • Campbell-Malone R (2007) Biomechanics of North Atlantic right whale bone: mandibular fracture as a fatal endpoint for blunt vessel-whale collision modeling. Doctoral thesis in biological oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Cambridge, MA, USA, p 257

    Google Scholar 

  • Campbell-Malone R, Barco SG, Pierre-Yves Daoust PY et al (2008) Gross and histologic evidence of sharp and blunt trauma in North Atlantic right whales (Eubalaena glacialis) killed by vessels. J Zoo Wildlife Med 39(1):37–55

    Google Scholar 

  • Cappetta H (1986) Types dentaires adaptatifs chez les sélaciens actuels et post–paléozoïques. Palaeovertebrata 16(2):57–76

    Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463

    Google Scholar 

  • Carlström D, Engström H (1955) The ultrastructure of statoconia. Acta Otolaryngol 45:14–18

    Google Scholar 

  • Carr A (1967) So excellent a fishe. Natural History Press, New York

    Google Scholar 

  • Carr A, Kemp AR, Tibbetts IR et al (2006) Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces:Scaridae). J Microsc 221:8–16

    Google Scholar 

  • Carthy RR (1992) Scanning electron microscopy (SEM) of loggerhead (Caretta caretta) eggshell structure. In: Proceedings of the eleventh annual workshop on sea turtle biology and conservation, Jekyll Island, Georgia, 26 February–2 March 1991. Compiled by M. Salmon and J. Wyneken. NOAA Tech. Memo. NMFS–SEFC–302, pp 143–144

    Google Scholar 

  • Casper BM (2006) The hearing abilities of elasmobranch fishes. Dissertation (Ph.D.), University of South Florida, FL, USA. Copyright © 2006, Casper BM. Reprinted with permission

    Google Scholar 

  • Castanet J, Francillon-Vieillot H, Ricqlès ADE, Zylberberg L (2003) The skeletal histology of the Amphibia. In: Heatwole H, Davies M (eds) Amphibian biology, vol 5, Osteology. Surrey Beatty and Sons, Pty. Ltd, Chipping Norton, pp 1598–1683

    Google Scholar 

  • Chan E–H, Solomon SE (1989) The structure and function of the eggshell of the leatherback turtle (Dermochelys coriacea) from Malaysia, with notes on attached fungal forms. Anim Technol 40:91–102

    Google Scholar 

  • Chapskii KK (1936) The walrus of the Kara Sea. Results of an investigation of the life history, geographical distribution, and stock of walruses in the Kara Sea. Trans Arct Inst 67:1–124

    Google Scholar 

  • Checkley DM Jr., Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances Otolith growth in young fish. Science 324(5935):1683. Copyright © 2009, American Association for the Advancement of Science. Reprinted with permission from AAAS

    Google Scholar 

  • Chen et al (2008) Reprinted from Chen P-Y, Lin AYM, Lin Y-S, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226. Copyright (2008), with permission from Elsevier

    Google Scholar 

  • Clark JW (1871) On the skeleton of a Narwhal (Monodon monoceros) with two fully developed tusks. Proc Zool Soc Lond VI 2:41–53

    Google Scholar 

  • Clifton KB, Reep RL, Mecholsky JJ Jr (2008) Quantitative fractography for estimating whole bone properties of manatee rib bones. J Mater Sci 43(6):2026–2034

    Google Scholar 

  • Compagno LJV (1984a) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date, part 1: hexanchiformes to lamniformes. Food and Agriculture Organization of the United Nations, Rome, 249

    Google Scholar 

  • Compagno LJV (1984b) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date, part 2: Carcharhiniformes. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Compagno LJV (1988) Sharks of the order Carcharhiniformes. Princeton University Press, Princeton

    Google Scholar 

  • Confer A, Panciera R (1995) The urinary system. In: Carlton W, McGavin MD (eds) Thompson’s special veterinary pathology, 2nd edn. Mosby–Year Book, St. Louis

    Google Scholar 

  • Cook J (1973) Blue whale: vanishing leviathan. Dodd Mead & Co., New York

    Google Scholar 

  • Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and non-otolithic sound detection. J Comp Physiol 142:379–390

    Google Scholar 

  • Coulombe HN, Ridgway SH, Evans WE (1965) Respiratory water exchange in two species of porpoise. Science 149:86–88

    Google Scholar 

  • Courtillot V, Hulot G, Alexandrescu M et al (1997) Sensitivity and evolution of sea–turtle magnetoreception: observations, modelling and constraints from geomagnetic secular variation. Terra Nova 9:203–207

    Google Scholar 

  • Cowan FBM (1969) Gross and microscopic anatomy of the orbital glands of Malaclemys and other emydine turtles. Can J Zool 47:723–729

    Google Scholar 

  • Cowan FBM (1971) The ultrastructure of the lachrymal ‘salt’ gland and the harderian gland in the euryhaline Malaclemys and some closely related stenohaline emydines. Can J Zool 49:691–697

    Google Scholar 

  • Cowan DF, Walker WA, Brownwell RL (1986) Pathology of small cetaceans stranded along southern California beaches. In: Bryden MM, Harrison R (eds) Research on dolphins. Clarendon Press, Oxford

    Google Scholar 

  • Coyne JA (2012) Mysteries of evolution: the narwhal’s “tusk,” or rather, tooth. Published on-line http://whyevolutionistrue.wordpress.com/2012/04/22/mysteries-of-evolution-the-narwhals-tusk-or-rather-tooth/. Accessed 15 May 2014. Copyright (c) 2012, Jerry Coyne

  • Cramp RL, Hudson NJ, Holmberg A et al (2007) The effects of saltwater acclimation on neurotransmitters in the lingual salt glands of the estuarine crocodile, Crocodylus porosus. Regul Pept 140:55–64

    Google Scholar 

  • Cramp RL, Meyer EA, Sparks N et al (2008) Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands. J Exp Biol 211:1482–1489

    Google Scholar 

  • Cramp RL, De Vries I, Anderson WG (2010a) Hormone–dependent dissociation of blood flow and secretion rate in the lingual salt glands of the estuarine crocodile, Crocodylus porosus. J Comp Physiol B Biochem Syst Environ Physiol 180:825–834

    Google Scholar 

  • Cramp RL et al (2010b) Republished with permission of The Company of Biologists Ltd, from Cramp RL, Hudson NJ, Franklin CE (2010) Activity, abundance, distribution and expression of Na+/K+−ATPase in the salt glands of Crocodylus porosus following chronic saltwater acclimation. J Exp Biol 213:1301–1308. Copyright (2010); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Cranford TW, McKenna MF, Soldevilla MS et al (2008) Anatomic geometry of sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Anat Rec 291:353–378

    Google Scholar 

  • Currey JD (1984) Comparative mechanical properties and histology of bone. Integr Comp Biol 24(1):5–12

    Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Currey JD (2006) Bones: structure and mechanics, chapter 6.3. Enamel. Princeton University Press, Princeton

    Google Scholar 

  • Currey JD, Abeysekera RM (2003) The microhardness and fracture surface of the petrodentine of Lepidosiren (Dipnoi), and of other mineralized tissues. Arch Oral Biol 48:439–447

    Google Scholar 

  • Currey JD, Brear K, Zioupos P (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885–897

    Google Scholar 

  • Curry BE et al (1994) The occurrence of calculi in the nasal diverticula of porpoises (Phocoenidae). Mar Mamm Sci 10(1):81–86. Copyright © 2006, John Wiley and Sons. Reprinted with permission

    Google Scholar 

  • Dantzler WH, Bradshaw SD (2009) Osmotic and ionic regulation in reptiles. In: Evans DH (ed) Osmotic and ionic regulation: cells and animals. CRC Press, Boca Raton

    Google Scholar 

  • Dauphin Y, Cuif JP, Salomé M et al (2006) Microstructure and chemical composition of giant avian eggshells. Anal Bioanal Chem 386:1761–1771

    Google Scholar 

  • Davenport J, Balazs GH, Faithfull JV et al (1993) A struvite faecolith in the leatherback turtle Dermochelys coriacea vandelli: a means of packaging garbage? Herpetol J 3:81–83

    Google Scholar 

  • Davila AF (2005) Detection and function of biogenic magnetite. Dissertation, LMU München, Fakultät für Geowissenschaften, München. Copyright © 2005, Fernandez Davila A. Reprinted with permission

    Google Scholar 

  • Davila AF, Fleissner G, Winklhofer M et al (2003) A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 28:647–652

    Google Scholar 

  • Davis JG, Oberholtzer JC, Burns FR et al (1995) Molecular cloning and characterization of an inner ear–specific structural protein. Science 267:1031–1034

    Google Scholar 

  • Davis JG, Oberholtzer JC, Burns FR et al (2002) Molecular cloning and characterization of an inner ear–specific structural protein. Eur J Biochem 269(2):688–696

    Google Scholar 

  • De Bufférnil V, Casinos A (1995) Observations histologiques sur le rostre de Mesoplodon densirostris (Mammalia, Cetacea, Ziphiidae): le tissu osseux le plus dense connu. Ann Sci Nat Zool Paris 16(13):21–32

    Google Scholar 

  • Deans MR, Peterson JM, Wong GW (2010) Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS ONE 5(9):e12765. Copyright © 2010 Deans et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Google Scholar 

  • Debiais-Thibaud M, Borday-Birraux V, Germon I, Bourrat F, Metcalfe CJ, Casane D, Laurenti P (2007) Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression of eve1 gene. J Exp Zool (Mol Dev Evol) 308B:693–708. © 2007 Wiley-Liss, Inc

    Google Scholar 

  • Debiais–Thibaud M, Oulion S, Bourrat F et al (2011) The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evol Biol 11:307

    Google Scholar 

  • Deeming DC, Thompson MB (1991) Gas exchange across reptilian eggshells. In: Deeming DC, Ferguson MWJ (eds) Egg incubation: its effects on embyronic development in birds and reptiles. Cambridge University Press, Cambridge

    Google Scholar 

  • Deeming DC, Whitfield TR (2010) Effect of shell type on the composition of chelonian eggs. Herpetol J 20(7):165–171

    Google Scholar 

  • Degens ET et al (1969) With kind permission from Springer Science + Business Media: Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2(2):105–113. Copyright © 1969 Springer

    Google Scholar 

  • DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    Google Scholar 

  • Den Hanog JC, Van Nierop MM (1984) A study on the gut contents of six leathery turtles Dermochelys coriacea (Linnaeus) (Reptilia: Testudines: Dermochelyidae from British waters and from the Netherlands. Zool Verh Leiden 20:1–36

    Google Scholar 

  • Denison RH (1974) The structure and evolution of teeth in lungfishes. Fieldiana Geol 33:31–58

    Google Scholar 

  • Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc Biol Sci 274:1153–1158

    Google Scholar 

  • Dennison S, Gulland F, Haulena M et al (2007) Urate nephrolithiasis in a northern elephant seal (Mirounga angustirostris) and a california sea lion (Zalophus californianus). J Zoo Wildl Med 38(1):114–120. doi:10.1638/05-121.1. Copyright © 2007, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permission

  • Deutschlander ME, Muheim R (2010):Magnetic orientation in migratory songbirds. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic, Oxford

    Google Scholar 

  • Didier DA, Stahl BJ, Zangerl R (1994) Development and growth of compound tooth plates in Callorhinchus milii (chondrichthyes, holocephali). J Morphol 222: 73–89. © 1994 Wiley-Liss, Inc. Reprinted with permission

    Google Scholar 

  • Diebel CE, Proksch R, Green CR et al (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302

    Google Scholar 

  • Donoghue PC (2002) Evolution of development of the vertebrate dermal and oral skeletons: unraveling concepts, regulatory theories, and homologies. Paleobiology 28(4):474–507

    Google Scholar 

  • Donoghue PCJ, Sansom IJ (2002) Origin and early evolution of vertebrate skeletonization. Microsc Res Tech 59:185–218

    Google Scholar 

  • Donoghue PCJ, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306(3):278–294. doi:10.1002/jez.b.21090. Copyright © 2006 Wiley-Liss, Inc., A Wiley Company. Reprinted with permission

  • Doody JS (2011) Environmentally cued hatching in reptiles. Integr Comp Biol 51(1):49–61

    Google Scholar 

  • Doyle WL (1960) The principal cells of the salt gland of marine birds. Exp Cell Res 21:386–393

    Google Scholar 

  • Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, de Angelis MH Paulmichl M, Weiner S, Avraham KB (2010) Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 285:21724–21735. © 2010 The American Society for Biochemistry and Molecular Biology. Reprinted with permission

    Google Scholar 

  • Dunson WA (1968) Salt gland secretion in the pelagic sea snake Pelamis. Am J Physiol 215:1512–1515

    Google Scholar 

  • Dunson W (1969) Electrolyte excretion by the salt gland of the Galápagos marine iguana. Am J Physiol 216:995–1002

    Google Scholar 

  • Dunson WA (1970) Some aspects of electrolyte and water balance in three estuarine reptiles, the diamond back terrapin, American and ‘salt water’ crocodiles. Comp Biochem Physiol 32A:161–174

    Google Scholar 

  • Dunson WA, Dunson MK (1974) Interspecific differences in fluid 497 concentration and secretion rate of sea snake salt glands. Am J Physiol 227:430–438

    Google Scholar 

  • Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: an unusual gland under the tongue. Science 173:437–441

    Google Scholar 

  • Eckert KL, Luginbuhl C (1988) Death of a giant. Mar Turtl News 43:1–3

    Google Scholar 

  • Eder SHK, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, Winklhofer M (2012) Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Nat Acad Sci 109(30):12022–12027. Copyright (2012) National Academy of Sciences, USA. Reprinted with permission

    Google Scholar 

  • Edwards H, Schnell G, DuBois R et al (1992) Natural and induced remanent magnetism in birds. Auk 109:43–56

    Google Scholar 

  • Efremov JA (1940) Taphonomy: new branch of paleontology. Pan-Am Geo 174:81–93

    Google Scholar 

  • Ehrlich H (2010) Biological materials of marine origin. Springer, Heidelberg

    Google Scholar 

  • Ehrlich H (2011) Silica biomineralization in sponges. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 796–808

    Google Scholar 

  • Ehrlich H et al (2008) Reprinted from Ehrlich H, Koutsoukos PG, Demadis KD et al (2008) Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 39(8):1062–1091. doi:10.1016/j.micron.2008.02.004. Copyright (2008), with permission from Elsevier

  • Ehrlich H et al (2010) Reprinted with permission from Ehrlich H, Demadis KD, Pokrovsky OS et al (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110(8):4656–4689. Copyright (2010) American Chemical Society

    Google Scholar 

  • Eidelman N, Eichmiller FC, Zhang Y et al (2005) Position–resolved structural and mechanical properties of Narwhal tusk dental tissues, Abstract. The Preliminary Program for IADR/AADR/CADR 83rd General Session, Baltimore, MD, USA, 9–12 March 2005

    Google Scholar 

  • Ellis RA, Abel JH (1964) Intercellular channels in the salt–secreting glands of marine turtles. Science 144:1340–1342

    Google Scholar 

  • Elsdon TS, Wells BK, Campana SE et al (2008) Otolith chemistry to describe movements and life–history parameters of fishes: hypotheses, assumptions, limitations and inferences using five methods. Oceanogr Mar Biol Ann Rev 46:207–330

    Google Scholar 

  • Engkvist O, Ohlsen L (1979) Reconstruction of articular cartilage with free autologous perichondrial grafts. An experimental study in rabbits. Scand J Plast Reconstr Surg 13(2):269–274

    Google Scholar 

  • Erben HK (1970) Ultrastrukturen und mineralisation rezenter und fossiler eischalen bei vogeln und reptilien. Biomin Forschsber 1:1–65

    Google Scholar 

  • Erben HK, Newesely H (1972) Kristalline bausteine und mineralbestand von kalkigen eischalen. Biomin Forschsber 6:32–48

    Google Scholar 

  • Erway LC, Purichia NA, Netzler ER et al (1986) Genes, manganese, and zinc in formation of otoconia: labeling, recovery, and maternal effects. Scan Electron Microsc 4:1681–1694

    Google Scholar 

  • Espinoza EO, Mann MJ (2000) Identification guide for ivory and ivory substitutes, 3rd edn. Ivory Identification, Inc., Richmond. Reprinted with permission

    Google Scholar 

  • Evans P (1987) Natural history of whales and dolphins. Facts on File, New York

    Google Scholar 

  • Evans K, Robertson K (2001) A note on the preparation of sperm whale (Physeter macrocephalus) teeth for age determination. J Cet Res Man 3:101–107

    Google Scholar 

  • Ewert MA (1985) Embryology of turtles. In: Gans C, Billett F, Maderson P (eds) Biology of the reptilian. Wiley, New York

    Google Scholar 

  • Ewert MA, Firth SJ, Nelson CE (1984) Normal and multiple eggshells in batagurine turtles and their implications for dinosaurs and other reptiles. Can J Zool 62(9):1834–1841. © 2008 Canadian Science Publishing or its licensors. Reproduced with permission

    Google Scholar 

  • Fablet R, Daverat F, de Pontual H (2007a) Unsupervised bayesian reconstruction of individual life histories chronologies from otolith signatures: case study of Sr:Ca transects of eel 436 (Anguilla anguilla) otoliths. Can J Fish Res Aquat Sci 64:152–165

    Google Scholar 

  • Fablet R et al (2007b) Reprinted from Fablet R, Pujolle S, Chessel A, Benzinou A, Cao F (2007) 2D Image-based reconstruction of shape deformation of biological structures using a level-set representation. Comput Vision Image Understand 111(3):295–306. with permission from Elsevier

    Google Scholar 

  • Fablet R, Chessel A, Carbini S et al (2009) Reconstructing individual shape histories of fish otoliths: a new imagebased tool for otolith growth analysis and modeling. Fish Res 96:148–159

    Google Scholar 

  • Faivre D (2004) Propriétés cinétiques, minéralogiques et isotopiques de la formation de nanomagnétites a basse temperature: implication pour la détermination de critères de biogénicité. Dissertation, University of Paris, Paris, France

    Google Scholar 

  • Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108(11):4875–4898

    Google Scholar 

  • Faivre D, Böttger L, Matzanke B et al (2007) Intracellular magnetite biomineralization in bacteria proceeds via a distinct pathway involving membrane–bound ferritin and ferrous iron species. Angew Chem Int Ed 46(44):8647–8652

    Google Scholar 

  • Falkenberg G, Fleissner G, Schuchardt K et al (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5(2):e9231

    Google Scholar 

  • Fänge R, Fugelli K (1962) Osmoregulation in chimaeroid fishes. Nature 196:689

    Google Scholar 

  • Fassbinder JWE, Stanjek H, Vali H (1990) Occurrence of magnetic bacteria in soil. Nature 343:181–183

    Google Scholar 

  • Fay FH (1955) The Pacific walrus (Odobenus rosmarus divergens): spatial ecology life history, and population. PhD thesis, University of British Columbia, Vancouver

    Google Scholar 

  • Fay FH (1982) Ecology and Biology of the Pacific Walrus, Odobenus rosmarus divergens Illiger. N Am Fauna 74:1–279. US Department of Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Feder ME et al (1982) Reprinted from Feder ME, Satel SL, Gibbs AG (1982) Resistance of the shell membrane and mineral layer to diffusion of oxygen and water in flexible-shelled eggs of the snapping turtle (Chelydra serpentina). Resp Physiol 49(3):279–291. Copyright (1982), with permission from Elsevier

    Google Scholar 

  • Feltmann CF, Slijper EJ, Vervoort W (1948) Preliminary researches on the fat–content of meat and bone of blue and fin whales. Proc R Neth Acad Arts Sci 51:604–615

    Google Scholar 

  • Ferguson MWJ (1982) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. Trans Zool Soc Lond 36:99–152. Copyright © 1982 The Zoological Society of London. Reprinted with permission

    Google Scholar 

  • Ferguson MWJ (2010) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. Trans Zool Soc Lond 36:99–152

    Google Scholar 

  • Ferguson SH, Higdon JW, Westdal KH (2012) Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aqu Biosyst 8:3

    Google Scholar 

  • Fernandez M, Gasparini Z (2000) Salt glands in a Tithonian metriorhynchgid crocodyliform and their physiological significance. Lethaia 33:269–276

    Google Scholar 

  • Fernandez MS, Moya A, Lopez L (2001) Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19:793–803

    Google Scholar 

  • Ferraris G, Fuess H, Joswig W (1986) Neutron diffraction study of MgNH4PO4•6H2O (struvite) and survey of water molecules donating short hydrogen bonds. Acta Cryst 42:253–258

    Google Scholar 

  • Finarelli JA, Coates MI (2012) First tooth–set outside the jaws in a vertebrate. Proc R Soc B 279:775–779. Copyright © 2012, The Royal Society. Reprinted with permission from The Royal Society

    Google Scholar 

  • Finger LW, King HE (1978) A revised method of operation of the single–crystal diamond cell and refinement, of the structure of NaCl at 32 kbar. Am Mineral 63:337–342

    Google Scholar 

  • Fischer JH, Freake MJ, Borland SC et al (2001) Evidence for the use of a magnetic map by an amphibian. Anim Behav 62(1):1–10

    Google Scholar 

  • Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc Biol Sci 273(1604):2955–2963. doi:10.1098/rspb.2006.3664. Copyright © 2006 The Royal Society

  • Fleissner G, Holtkamp–Rötzler E, Hanzlik M et al (2003) Ultrastructural analysis of a magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Google Scholar 

  • Formicki K, Tański A, Winnicki A (2002) Effects of magnetic field on the direction of fish movement under natural conditions. General Assembly URCI, Maastricht, pp 1–3

    Google Scholar 

  • Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum Press, New York

    Google Scholar 

  • Fraser GJ, Smith M (2011) Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. J Exp Zool Mol Dev Evol 316B:99–112, 2011. © 2010 Wiley-Liss, Inc

    Google Scholar 

  • Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR et al (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 7(2):e1000031. doi:10.1371/journal.pbio.1000031. Copyright © 2009 Fraser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

  • Fraser GJ et al (2010) Reproduced from Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT (2010) The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 32(9):808–817. Copyright © 2010 WILEY Periodicals, Inc

    Google Scholar 

  • Fratzl P, Gupta H, Paschalis E, Roshger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123

    Google Scholar 

  • Frazzetta TH (1988) The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108:93–107

    Google Scholar 

  • Freake MJ, Muheim R, Phillips JB (2006) Magnetic maps in animals – a theory comes of age? Quart Rev Biol 81:327–347

    Google Scholar 

  • Freeman MMR, Bogoslovskaya L, Caulfield RA et al (1998) Inuit, whaling, and sustainability. Altamira Press, Walnut Creek

    Google Scholar 

  • Fritzsch B (1996) Similarities and differences in lancelet and craniate nervous systems. Isr J Zool 42:147–160

    Google Scholar 

  • Gauldie RW (1996) Fusion of Otoconia: a Stage in the development of the Otolith in the evolution of fishes. Acta Zool 77:1–23. Copyright © 1996, The Royal Swedish Academy of Sciences. Reprinted with permission

    Google Scholar 

  • Gauldie RW, Dunlop D, Tse J (1986) The simultaneous occurrence of otoconia and otoliths in four teleost fish species. N Z J Mar Freshw Res 20:93–99

    Google Scholar 

  • Gerson HB, Hickie JP (1985) Head scarring on male narwhals (Monodon monoceros): evidence for aggressive tusk use. Can J Zool 63(9):2083–2087

    Google Scholar 

  • Gerstberger R, Gray DA (1993) Fine structure, innervation and functional control of avian salt glands. Int Rev Cytol 144:129–215

    Google Scholar 

  • Gervais P (1873) Remarques sur la Dentition du Narval. J Zool 2:498–500

    Google Scholar 

  • Giachelli CM (2005) Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res 8(4):229–231

    Google Scholar 

  • Gibbs PE (1987) A new species of Phascolosoma (Sipuncula) associated with a decaying whale’s skull trawled at 880 m depth in the southwest Pacific. NZ J Zool 14:135–137

    Google Scholar 

  • Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282

    Google Scholar 

  • Goldenstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 467–480

    Google Scholar 

  • Golub EE (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33(5):409–417

    Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    Google Scholar 

  • Gottfried MD, Compagno LJV, Bowman SC (1996) Size and skeletal anatomy of the giant megatooth shark Carcharodon megalodon. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic, San Diego

    Google Scholar 

  • Gould JL (1982) The map sense of pigeons. Nature 296:205–211

    Google Scholar 

  • Gould JL (1985) Are animal maps magnetic? In: Kirschvinkn JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New York

    Google Scholar 

  • Gould JL, Kirschvink JL, Defieyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028

    Google Scholar 

  • Greig DJ, Gulland FMD, Kreuder C (2005) A decade of live California sea lion (Zalophus californianus) strandings along the central California coast: causes and trends, 1991–2000. Aquat Mamm 31:11–22

    Google Scholar 

  • Grigg G, Beard L (1985) Water loss and gain by eggs of Crocodylus porosus, related to incubation age and fertility. In: Grigg G, Shine R, Ehmann H (eds) Biology of Australasian frogs and reptiles. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp 353–359

    Google Scholar 

  • Grove RA, Bildfell R, Henny CJ et al (2003) Bilateral uric acid nephro–lithiasis and ureteral hypertrophy in a free–ranging river otter (Lontra canadensis). J Wildl Dis 39:914–917

    Google Scholar 

  • Gudger EW (1937) Abnormal dentition in sharks, Selachii. Bull Am Mus Nat His 73:249–280

    Google Scholar 

  • Guillette LJ (1982) The evolution of viviparity and placentation in the high elevation, Mexican lizard Sceloporus aeneus. Herpetology 38:94–103

    Google Scholar 

  • Hamilton RMG (1986) The microstructure of the hen’s eggshell: a short review. Food Microstruct 5:99–110

    Google Scholar 

  • Hamzelou J (2012) Mystery of bird navigation system still unsolved. Published online http://www.newscientist.com/article/dn21688-mystery-of-bird-navigation-system-still-unsolved.html#.U63jUhZwIQI. Accessed 15 May 2014. Newscientist Life. Copyright © 2012, Reed Business Information Ltd. Reprinted with permission

  • Hanson M, Westerberg H (1986) Occurrence of magnetic material in teleosts. Comp Biochem Physiol 86A:169–172

    Google Scholar 

  • Hanzlik M, Heunemann C, Holtkamp–Rötzler E et al (2000) Superparamagnetic magnetite in the upper–beak tissue of homing pigeons. Biometals 13:325–331

    Google Scholar 

  • Harms CA et al (2004) Struvite penile urethrolithiasis in a pygmy sperm whale (Kogia breviceps). J Wildl Dis 40(3):588–593. Copyright © 2004, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permission

    Google Scholar 

  • Harrison RJ (1969) Reproduction and reproductive organs. In: Anderson HT (ed) The biology of marine mammals. Academic, New York

    Google Scholar 

  • Hay KA, Mansfied AW (1989) Narwhal Monodon monoceros Linnaeus, 1758. In: Ridgway SH, Harrison R (eds) Handbook of marine mammals, vol 4. Academic, San Diego

    Google Scholar 

  • Hazard L (2001) Ion secretion by salt glands of desert iguanas (Dipsosaurus dorsalis). Physiol Biochem Zool 74(1):22–31

    Google Scholar 

  • Hazard LC (2004) Sodium and potassium secretion by iguana salt glands: acclimation or adaptation? In: Alberts A, Carter RL, Hayes WB, Martins E (eds) Iguanas: biology and conservation. University of California Press, Berkley, pp 84–93

    Google Scholar 

  • Hazon N et al (2003) Reprinted from Hazon N, Wells A, Pillans RD et al (2003) Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comp Biochem Physiol Part B Biochem Mol Biol 136(4):685–700. Copyright (2003), with permission from Elsevier

    Google Scholar 

  • Heaney PJ (1993) A proposed mechanism for the growth of chalcedony. Contrib Mineral Petrol 114:66–74

    Google Scholar 

  • Heizer RF (1963) Fuel in primitive society. J R Anthropol Inst G B Irel 93:186–194

    Google Scholar 

  • Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423(6937):326–331

    Google Scholar 

  • Herbert CF (1975) In: Stonehouse B (ed) The biology of penguins. Macmillan & Co., London/Basingstone

    Google Scholar 

  • Heulin B, Ghielmi S, Vogrin N et al (2002) Variation in eggshell characteristics and in intrauterine egg retention between two oviparous clades of the lizard Lacerta vivipara: insight into the oviparity–viviparity continuum in squamates. J Morphol 252:255–262

    Google Scholar 

  • Higgs ND, Little CTS, Glover AG (2011a) Bones as biofuel: the composition of whale bones with implications for deep–sea biology and palaeoanthropology. Proc R Soc B 278:9–17

    Google Scholar 

  • Higgs ND, Glover AG, Dahlgren TG et al (2011b) Bone–boring worms: characterizing the morphology, rate, and method of bioerosion by Osedax mucofloris (Annelida, Siboglinidae). Biol Bull 22:307–316

    Google Scholar 

  • Hildebrandt JP (2001) Coping with excess salt: adaptive functions of extrarenal osmoregulatory organs in vertebrates. Zoology 104:209–220

    Google Scholar 

  • Hincke MT, Nys Y, Gautron J et al (2012) The eggshell: structure, composition and mineralization. Front Biosci 17:1266–1280

    Google Scholar 

  • Hirsch KF (1983) Contemporary and fossil chelonian eggshells. Copeia 1983:382397

    Google Scholar 

  • Hirsch KF (1994) The fossil record of vertebrate eggs. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, New York

    Google Scholar 

  • Hirsch KF (2001) Pathological amniote eggshell–fossil and modern. In: Tanke DH, Carpenter K (eds) Mesozoic vertebrate life. Indiana University Press, Bloomington/Indianapolis

    Google Scholar 

  • Hirsch KF, Packard MJ (1987) Review of fossil eggs and their shell structure. Scan Microsc 1:383–400

    Google Scholar 

  • Holland RA, Kirschvink JL, Doak TG et al (2008) Bats use magnetite to detect the earth’s magnetic field. PLoS ONE 3:e1676

    Google Scholar 

  • Holmes WN, McBean RL (1964) Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J Exp Biol 41:81–90

    Google Scholar 

  • Holmgren S, Olsson C (2011) Autonomic control of glands and secretion: a comparative view. Auton Neurosci 165:102–112

    Google Scholar 

  • Horton JM, Summers AP (2009) Republished with permission of The Company of Biologists Ltd, from Horton JM, Summers AP (2009) The material properties of acellular bone in a teleost fish. J Exp Biol 212:1413–1420. Copyright (2009); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Howard EB (1983) Miscellaneous diseases. In: Howard EB (ed) Pathobiology of marine mammal diseases, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • http://austhrutime.com/bone.htm. Accessed 15 May 2014. 2014 Copyright © Ahttp://usthrutime.com/. Reprinted with permission

  • Hubbell GS (1996) Using tooth structure to determine the evolutionary history of the white shark. In: Klimley AP, Ainley DG (eds) The biology of the white shark, Carcharodon carcharias. Academic, San Diego

    Google Scholar 

  • Huber DR, Dean MN, Summers AP (2008) Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei. J R Soc Interface 5:941–952

    Google Scholar 

  • Hudson DM, Lutz PL (1986) Salt gland function in the leatherback sea turtle, Dermochelys coriacea. Copeia 1986:247–249

    Google Scholar 

  • Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

    Google Scholar 

  • Hughes MR (2003) Reprinted from Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol Part A Mol Integr Physiol 136(3):507–524. Copyright (2003), with permission from Elsevier

    Google Scholar 

  • Hughes I, Thalmann I, Thalmann R (2006) Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74

    Google Scholar 

  • Hughes MR, Kitamura N, Bennett DC et al (2007) Effect of melatonin on salt gland and kidney function of gulls, Larus glaucescens. Gen Comp Endocrinol 151:300–307

    Google Scholar 

  • Ishiyama M, Teraki Y (1990) The fine structure and formation of hypermineralized petrodentine in the tooth plate of extant lungfish (Lepidosiren paradoxa and protopterus sp.). Arch Histol Cytol 53(3):307–321

    Google Scholar 

  • Iwasaki SI (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201:1–13

    Google Scholar 

  • Jackson FD, Varricchio DJ (2003) Abnormal, multilayered eggshell in birds: implications for dinosaur reproductive anatomy. J Vertebr Paleontol 23:699–702

    Google Scholar 

  • Jackson FD, Garrido A, Schmitt JG et al (2004) Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ Clutches at the Auca Mahuevo Locality, Neuquen Province, Argentina. J Vertebr Paleontol 24(4):913–922

    Google Scholar 

  • Jahnen–Dechent W (2004) Lot’s wife’s problem revisited: how we prevent pathological calcification. In: Baeuerlein E (ed) Biomineralization, 2nd edn. Wiley–VCH, Weinheim

    Google Scholar 

  • Janis CM, Devlin K, Warren DE, Witzmann F (2012) Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proc Biol Sci 279(1740):3035–3040. doi:10.1098/rspb.2012.0558, by permission of the Royal Society

  • Jenkins N (1975) Chemical composition of the eggs of the crocodile (Crocodylus novaeguineae). Comp Biochem Physiol 51:891–895

    Google Scholar 

  • Jobert M (1869) Récherches anatomiques sur les glandes nasals des oiseaux. Ann Sci Nat Zool 11:349–368

    Google Scholar 

  • Jogler C, Schüler D (2009) Genetics, genomics, and cell biology of magnetosome formation in magnetotactic bacteria. Annu Rev Microbiol 63:501–521

    Google Scholar 

  • Johanson Z, Smith MM (2003) Placoderm fishes, pharyngeal denticles, and the vertebrate dentition. J Morphol 257:289–307. Copyright © 2003 Wiley-Liss, Inc

    Google Scholar 

  • Johanson Z, Smith MM (2005) Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms. Biol Rev Camb Philos Soc 80(2):303–345

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918

    Google Scholar 

  • Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisúa Belmonte JC, Ninomiya Y (2004) Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121(3):301–312

    Google Scholar 

  • Kang YJ, Stevenson AK, Yau PM et al (2008) Sparc protein is required for normal growth of zebrafish otoliths. J Assoc Res Otolaryngol 9:436–451

    Google Scholar 

  • Kaplan M (1997) Reptile rehabilitation. In: Lowell Ackerman DVM (ed) The biology husbandry, and health care of reptiles. TFH Publishing, Neptune City

    Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Google Scholar 

  • Kastelein RA, Gerrits NM (1990) The anatomy of the walrus head (Odobenus rosmarus) part 1: the skull. Aquat Mamm 16(3):101–119

    Google Scholar 

  • Kastelein RA, Mosterd P (1989) The excavation technique for molluscs of Pacific Walruses (Odobemus rosmarus divergens) under controlled conditions. Aquat Mamm 15(1):3–5

    Google Scholar 

  • Kastelein RA, Gerrits NM, Dubbeldam JL (1991) The anatomy of the Walrus Head (Odobenus rosmarus), part 2: description of the muscles and of their role in geeding and haul–out behaviour. Aquat Mamm 17(3):156–180

    Google Scholar 

  • Katz JL, Bronzino JD (2000) The biomedical engineering handbook, chapter 18, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kawasaki et al (2009) Reproduced with permission of Annual Review of Kawasaki et al (2009) Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43:119–142. by Annual Reviews, http://www.annualreviews.org

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106

    Google Scholar 

  • Keller M, Moliner JL, Vasquez G et al (2008) Nephrolithiasis and pyelonephritis in two West Indian Manatees (Trichechus manatus spp.). J Wildl Dis 44(3):707–711

    Google Scholar 

  • Kemp A (2002) Growth and hard tissue remodelling in the dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). J Zool 257:219–235

    Google Scholar 

  • Kemp A (2003) Reprinted from Kemp (2003) Ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Tissue Cell 35:401–426. Copyright (2003), with permission from Elsevier

    Google Scholar 

  • Khorevin VI (2008) The lagena (the third otolith endorgan in vertebrates). Neurophysiology 40:142–159

    Google Scholar 

  • Kingsley MCS, Ramsay MA (1988) The spiral in the tusk of the narwhal. Arctic 41:236–238

    Google Scholar 

  • Kirkland JI, Aguillón Martínez MC (2002) Schizorhiza: a unique sawfish paradigm from the Difunta Group, Coahuila, Mexico. Rev Mex Cienc Geol 19(1):16–24

    Google Scholar 

  • Kirschvink JL (1980) Magnetic material in turtles: a preliminary report and request. Marine Turtle Newlett 15:7–9

    Google Scholar 

  • Kirschvink JL (1982) Birds, bees, and magnetism. Trends Neurosci 5:160–167

    Google Scholar 

  • Kirschvink JL (1990) Geomagnetic sensitivity in cetaceans:an update with live stranding records in the United States. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans:laboratory an field Evidence. Plenum Press, New York

    Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201

    Google Scholar 

  • Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The biomineralization of nano– and microstructures. Wiley–VCH Verlag GmbH, Berlin

    Google Scholar 

  • Kirschvink JL, Jones DS, MacFadden BJ (1985a) Magnetite biomineralization and magnetoreception in organisms:a new biomagnetism, volume 5 of Topics in geobiology. Plenum Publ, New York

    Google Scholar 

  • Kirschvink JL, Walker MM, Chang S–B et al (1985b) Chains of single–domain magnetite particles in chinook salmon, Oncorhynchus tschawytscha. J Comp Physiol 157A:375–381

    Google Scholar 

  • Kirschvink JL, Dizon AE, Westphal JA (1986) Evidence from strandings for geomagnetic sensitivity in cetaceans. J Exp Biol 120:1–24

    Google Scholar 

  • Kirschvink et al (2001) Reprinted from Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11(4):462–7. Copyright (2001), with permission from Elsevier

    Google Scholar 

  • Kirschvink JL, Winklhofer M, Walker MM (2010) Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J R Soc Interface 7:S179–S191

    Google Scholar 

  • Kitimasak W, Thirakhupt K, Moll DL (2003) Eggshell structure of the Siamese narrow–headed turtle Chitra chitra Nutphand, 1986 (Tetundise: Trionchidae). Sci Asia 29:95–98

    Google Scholar 

  • Klimley AP (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 117:1–22

    Google Scholar 

  • Klinowska M (1985) Cetacean stranding sites relate to geomagnetic topography. Aquat Mamm 1:27–32

    Google Scholar 

  • Kolinko S, Jogler C, Katzmann E et al (2012) Single–cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14(7):1709–1721

    Google Scholar 

  • Kölliker A (1859) On the different types in the microscopic structure of the skeleton of osseous fish. Proc Biol Sci 9:656–688

    Google Scholar 

  • Komeili A (2007) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–366

    Google Scholar 

  • Königsberger E, Königsberger L (2006) Solubility phenomena related to normal and biomineralization processes. In: Königsberger E, Königsberger L (eds) Biomineralization – medical aspects of solubility. Wiley, Chichester. Copyright © 2006, John Wiley and Sons. Reproduced with permission of J. Wiley in the format Republish in a book via Copyright Clearance Center

    Google Scholar 

  • Kooistra TA, Evans DH (1976) Sodium balance in the green turtle, Chelonia mydas, in seawater and freshwater. J Comp Physiol 107:229–240

    Google Scholar 

  • Koussoulakou DS, Margaritis LH, Koussoulakos SL (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5(3):226–243

    Google Scholar 

  • Kozel PJ, Friedman RA, Erway LC et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+ − ATPase isoform 2. J Biol Chem 273:18693–18696

    Google Scholar 

  • Kramer G (1961) Long–distance orientation. In: Marshall AJ (ed) Biology and comparative physiology of birds. Academic, London

    Google Scholar 

  • Kranenbarg S, van Cleynenbreugel T, Schipper H, van Leeuwen J (2005) Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.). J Exp Biol 208(18):3493–3502

    Google Scholar 

  • Kraus DS, Rolland RM (2007) The urban whale: North Atlantic right whales at the crossroads. Kraus DS, Rolland RM (eds). Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kühnel W (1972) With kind permission from Springer Science + Business Media: Kühnel W (1972) On the innervation of the salt gland. Zeitschrift für Zellforschung und Mikroskopische Anatomie 134(3):435–438. Copyright © 1972, Springer-Verlag

    Google Scholar 

  • Lacalli TC (2004) Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav Evol 64:148–162

    Google Scholar 

  • Laidre KL, Heide-Jørgensen MP (2005) Winter feeding intensity of narwhals. Mar Mamm Sci 21(1):45–57

    Google Scholar 

  • Laidre KL, Heide-Jørgensen MP (2011) Life in the lead: extreme densities of narwhals in the offshore pack ice. Mar Ecol Prog Ser 423:269–278

    Google Scholar 

  • Laidre KL, Heide-Jørgensen MP, Dietz R, Hobbs RC, Jørgensen OA (2003) Deep-diving by narwhals, Monodon monoceros: differences in foraging behavior between wintering areas? Mar Ecol Prog Ser 261:269–281

    Google Scholar 

  • Lakshminarayanan R, Jin EO, Loh XJ et al (2005) Purification and characterization of a vaterite–inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft–shelled turtle). Biomacromolecules 6(3):1429–1437

    Google Scholar 

  • Lakshminarayanan R et al (2008) Reprinted with permission from Lakshminarayanan R, Vivekanandan S, Samy RP et al (2008) Structure, self-assembly, and dual role of a β-Defensin-like peptide from the Chinese soft-shelled turtle eggshell matrix. J Am Chem Soc 130(14):4660–4668. Copyright 2008 American Chemical Society

    Google Scholar 

  • Lambert et al (2011) Reproduced from Lambert O, de Buffrénil V, de Muizon C (2011) Rostral densification in beaked whales: diverse processes for a similar pattern. (La densification du rostre des baleines à bec : des processus variés pour un résultat similaire). Comptes Rendus Palevol 10(5–6):453–468. Copyright © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved

    Google Scholar 

  • Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio– and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7(2):144–151

    Google Scholar 

  • Langille RM, Hall BK (1988) With kind permission from Springer Science + Business Media: Langille RM, Hall BK (1988) The organ culture and grafting of lamprey cartilage and teeth. In Vitro Cell Dev Biol 24(1):1–8. Copyright © 1988, Tissue Culture Association, Inc

    Google Scholar 

  • Leask MJM (1977) A physicochemical mechanism for magnetic field detection by migrating birds and homing pigeons. Nature 267:144–145

    Google Scholar 

  • Levy R, Dawson P (2006) Reconstructing a thule whalebone house using 3D imaging. J IEEE MultiMed 13:78–83

    Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton, p 248

    Google Scholar 

  • Lim DJ (1973) Formation and fate of the otoconia. Scanning and transmission electron microscopy. Ann Otol Rhinol Laryngol 82:23–35

    Google Scholar 

  • Loch C, Grando LJ, Kieser JA et al (2011) Dental pathology in dolphins (Cetacea: Delphinidae) from the southern coast of Brazil. Dis Aquat Org 94:225–234

    Google Scholar 

  • Locke M (2008) Structure of ivory. J Morphol 269(4):423–450

    Google Scholar 

  • Lohße A, Ullrich S, Katzmann E et al (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: The mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6(10):e25561

    Google Scholar 

  • Lohman K, Lohman CMF (1994) Acquisition of magnetic directional preference in hatchling loggerhead sea turtles. J Exp Biol 190:1–8

    Google Scholar 

  • Lohmann KJ (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 155:31–49

    Google Scholar 

  • Lohmann KJ, Johnsen S (2000) Reprinted from Lohmann KJ, Johnsen S (2000) The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 23(4):153–159. Copyright © 2000, with permission from Elsevier

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the Leatherback Sea Turtle. Biol Bull 185(1):149–151. Copyright © 1993, The Marine Biological Laboratory. Reprinted with permission

    Google Scholar 

  • Lohmann CMF, Lohmann KJ (2006) Reprinted from Lohmann CMF, Lohmann KJ (2006) Sea turtles. Cur Biol 16(18):R784–R786. Copyright © 2006, Elsevier Ltd., (Under an Elsevier user license), with permission from Elsevier

    Google Scholar 

  • Lohmann KJ, Hester JT, Lohmann CMF (1999) Long distance navigation in sea turtles. Ethol Ecol Evol 11:1–23

    Google Scholar 

  • Lohmann KJ, Cain SD, Dodge SA et al (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366

    Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM et al (2004) Geomagnetic map used in sea–turtle navigation. Nature 428:909–910

    Google Scholar 

  • Lohmann KJ, Putman NF, Lohmann CMF (2008) Geomagnetic imprinting:a unifying hypothesis of long–distance natal homing in salmon and sea turtles. Proc Natl Acad Sci USA 105:19096–19101

    Google Scholar 

  • Long JA (1995) The rise of fishes – 500 million years of evolution. University of New South Wales Press/Johns Hopkins University Press, Sydney/Baltimore

    Google Scholar 

  • Lowenstam HA (1962) Magnetite in denticle capping in recent chitons (polyplacophora). Geol Soc Am Bull 73:435–438

    Google Scholar 

  • Lowy RJ, Dawson DC, Ernst SA (1989) Mechanism of ion transport by avian salt gland primary cell cultures. Am J Physiol 256:R1184–R1191

    Google Scholar 

  • Lü J, Unwin DM, Deeming DC et al (2011) An egg–adult association, gender, and reproduction in pterosaurs. Science (New York) 331(6015):321–324

    Google Scholar 

  • Lucifora LO, Menni RC, Escalante AH (2001) Analysis of dental insertion angles in the sand tiger shark, Carcharias taurus (Chondrichthyes: Lamniformes). Cybium Int J Ichtyol 25(1):23–31. Copyright © 2001 Société Française d’Ichtyologie

    Google Scholar 

  • Lundberg YW et al (2006) Reprinted from Lundberg YW, Zhao X, Yamoah EN (2006) Assembly of the otoconia complex to the macular sensory epithelium of the vestibule. Brain Res 1091(1):47–57. Copyright (2006), with permission from Elsevier

    Google Scholar 

  • Lutz P (1997) Salt, water and pH balance in the sea turtle. In: Lutz P, Musick J (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 343–361

    Google Scholar 

  • Lychakov DV (2004) Evolution of otolithic membrane. structure of otolithic membrane in amphibians and reptilians. J Evol Biochem Physiol 40:331–342

    Google Scholar 

  • Lychakov DV et al (2000) Reprinted from Lychakov DV, Boyadzhieva-Mikhailova A, Christov I, Evdokimov II (2000) Otolithic apparatus in Black Sea elasmobranchs. Fish Res 46(1–3):27–38. Copyright (2000), with permission from Elsevier

    Google Scholar 

  • Magalhaes MCF, Marques PAAP, Correia RN (2006) Biomineralization – medical aspects of solubility. Wiley, Chichester

    Google Scholar 

  • Mahanty P, Sahoo G (1999) Ultrastructural and biochemical study of egg shell calcium utilization during embryogenesis in the Olive Ridley (Lepidochelys olivacea) sea turtles. In: 19th annual sea turtle symposium, South Padre Island, Texas, USA, pp 112–113

    Google Scholar 

  • Maher BA (1998) Magnetite biomineralization in termites. Proc R Soc Lond Ser B 265:733–737

    Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407

    Google Scholar 

  • Mann S, Sparks NH, Walker MM, Kirschvink JL (1988) Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140:35–49

    Google Scholar 

  • Marples J (1932) The structure and development of the nasal glands of birds. Proc Zool Soc London 102(4):829–844

    Google Scholar 

  • Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153

    Google Scholar 

  • Marx FG (2010) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mammal Evol 18:77–100. doi:10.1007/s10914-010-9148-4

    Google Scholar 

  • Mathis A, Moore FR (1988) Geomagnetism and the homeward orientation of the box turtle Terrapene Carolina. Ethology 78:265–274

    Google Scholar 

  • Matsunaga T, Sakaguchi T (2000) Molecular mechanism of magnet formation in bacteria. J Biosci Bioeng 90:1–13

    Google Scholar 

  • Maxwell EE, Caldwell MW, Lamoureux DO (2011) The structure and phylogenetic distribution of amniote plicidentine. J Vertebr Paleontol 31(3):553–561. Reprinted by permission of Taylor & Francis Ltd. http://www.tandf.co.uk/journals

  • McCartney AP, Savelle JM (1985) Thule Eskimo whaling in the central Canadian Arctic. ArcAnthropol 22(2):37–58

    Google Scholar 

  • McCartney MR, Lins U, Farina M et al (2001) Magnetic microstructure of bacterial magnetite by electron holography. Eur J Mineral 13:685–689

    Google Scholar 

  • McFee WE, Carl AO (2004) Struvite calculus in the vagina of a bottlenose dolphin (Tursiops truncatus). J Wildl Dis 40:125–128

    Google Scholar 

  • McKown RD (1998) A cystic calculus from a wild western spiny softshell turtle (Apalone Trionyx spiniferus hartwegi). J Zool Wildl Med 29(3):347

    Google Scholar 

  • Mead JG (1975) Anatomy of the external nasal passages and facial complex in the Delphinidae (Mammalia: Cetacea). Smith Contr Zool 207:1–72

    Google Scholar 

  • Melancon S, Fryer BJ, Gagnon JE et al (2008) Mineralogical approaches to the study of biomineralization in fish otoliths. Min Magaz 72:627–637

    Google Scholar 

  • Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5(9):e1000634. doi:10.1371/journal.pgen.1000634. Copyright © 2009 Meredith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

  • Meunier FJ, Huysseune A (1992) The concept of bone tissue in osteichthyes. Neth J Zool 42:445–458

    Google Scholar 

  • Meunier FJ, Sorba L, Béarez P (2004) Presence of vascularized acellular bone in the elasmoid scales of Micropogonias altipinnis (Osteichthyes, Perciformes, Sciaenidae). Cybium 28:25–31

    Google Scholar 

  • Meylan A (1988) From Meylan A (1988) Spongivory in Hawksbill turtles: a diet of glass. Science 239(4838):393–395. Reprinted with permission from AAAS

    Google Scholar 

  • Mikhailov KE (1991) Classification of fossil eggshells of amniotic vertebrates. Acta Palaeont Polonica 36:193–238

    Google Scholar 

  • Mikhailov KE (1997a) Avian eggshells: an Atlas of scanning electron micrographs, British Ornitologists’. Club Occasional Publications, Nr.3, 88 p

    Google Scholar 

  • Mikhailov KE (1997b) Fossil and recent eggshell in amniotic vertebrates: fine structure, comparative morphology and classification. Spec Papers Palaeontol (56):1–80

    Google Scholar 

  • Milius S (2006) That’s one weird tooth. Sci News 169:186

    Google Scholar 

  • Miller WA (1974) Observations on the developing rostrum and rostral teeth of sawfish: Pristis perotteti and P. cuspidatus. Copeia 1974(2):311–318

    Google Scholar 

  • Miller JD (1982) Embryology of marine turtles. Dissertation, University of New England, Armidale, New South Wales, Australia

    Google Scholar 

  • Miller JD (1985) Embryology of marine turtles. In: Gans C, Billett F, Maderson P (eds) Biology of the reptilian. Wiley, New York

    Google Scholar 

  • Miller GW (1994) Diagnosis and treatment of uric acid renal stone diseases in Tursiops truncatus. In: Abstracts of the international association for aquatic animal medicine proceedings, Vallejo, vol 25, pp 22

    Google Scholar 

  • Miller JM (1999) Morphometric variation in the pharyngeal teeth of zebrafish (Danio rerio Cyprinidae) in response to varying diets. Master dissertation, Texas Tech University, Lubbock, USA

    Google Scholar 

  • Miller K, Packard GC, Packard MJ (1987) Hydric conditions during incubation influence locomotor performance of hatchling snapping turtles. J Exp Biol 127:401–412

    Google Scholar 

  • Mills M, Rasch R, Siebeck UE, Collin SP (2011) Exogenous material in the inner ear of the adult Port Jackson Shark, Heterodontus Portusjacksoni (Elasmbranchii). Anat Rec 294:373–378. Copyright ©2005, IOS Press All rights reserved

    Google Scholar 

  • Modesto SP, Reisz RR (2008) New material of Colobomycter pholeter, a small parareptile from the Lower Permian of Oklahoma. J Vertebr Paleontol 28:677–684

    Google Scholar 

  • Moliner JL (2005) Renal lithiasis and pyelonephritis in two West Indian manatees (Trichechus manatus sp). In: Abstracts of the international association for aquatic animal medicine proceedings, Seward, Alaska, USA, vol 34, pp 52

    Google Scholar 

  • Mora CV, Davison M, Wild JM et al (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Google Scholar 

  • Morris WR, Kittleman LR (1967) Piezoelectric property of otoliths. Science 19:368–370

    Google Scholar 

  • Moss ML (1960) Osteogenesis and repair of acellular teleost bone. Anat Rec 136:246–247

    Google Scholar 

  • Moss ML (1961) Studies on the acellular bone of teleost fish. I. Morphological and systematic variations. Acta Anat 46:343–362

    Google Scholar 

  • Moss ML (1962) Studies of acellular bone of teleost fish. 2. Response to fracture under normal and acalcemic conditions. Acta Anat 48:46–60

    Google Scholar 

  • Moss ML (1965) Studies of acellular bone of teleost fish. 5. Histology and mineral homeostasis of fresh-water species. Acta Anat 60:262–276

    Google Scholar 

  • Moss ML, Freilich M (1963) Studies of acellular bone of teleost fish. 4. Inorganic content of calcified tissues. Acta Anat 55:1–8

    Google Scholar 

  • Motta CM, Avallone B, Balassone G, Balsamo G, Fascio U, Simoniello P, Tammaro S, Marmo F (2009) Morphological and biochemical analyses of otoliths of the ice-fish Chionodraco hamatus confirm a common origin with red-blooded species. J Anatomy 214:153–162. © 2009 The Authors. Journal compilation © 2009 Anatomical Society of Great Britain and Ireland

    Google Scholar 

  • Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414

    Google Scholar 

  • Moy Thomas JA (1939) The early evolution and relationships of the elasmobranchs. Biol Rev 14:1–26

    Google Scholar 

  • Muheim R (2001) Animal magnetoreception – models, physiology and behaviour. Introductory paper no 128. Department of Ecology, Animal Ecology, Lund University, Lund. Copyright © 2000, Muheim R

    Google Scholar 

  • Muheim R (2004) Magnetic orientation in migratory birds. Dissertation, Lund University, Lund. Copyright © 2004, R. Muheim. Reprinted with permission

    Google Scholar 

  • Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. Copyright © 2011 Munday et al. This work is distributed under the Creative Commons Attribution 3.0 License

    Google Scholar 

  • Munro U, Munro JA, Phillips JB et al (1997) Evidence for a magnetite–based navigational map in birds. Naturwissenschaften 84:26–28

    Google Scholar 

  • Murayama E, Okuno A, Ohira T, Takagi Y, Nagasawa H (2000) Molecular cloning and expression of an otolith matrix protein cDNA from the rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol 126B:511–520

    Google Scholar 

  • Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI and Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. European Journal of Biochemistry 269:688–696. Copyright © 2002, John Wiley and Sons.

    Google Scholar 

  • Murayama E, Takagi Y, Nagasawa H (2004) Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts. Histochem Cell Biol 121:155–166

    Google Scholar 

  • Murayama E, Herbomel P, Kawakami A et al (2005) Otolith matrix proteins OMP–1 and Otolin–1 are necessary for normal otolith growth and their correct anchoring onto the sensory maculae. Mech Dev 122:791–803

    Google Scholar 

  • Murie J (1871) Researches upon the anatomy of Pinnipedia. Part I. on the Walrus (Trichechus rosmarus, Linn.). Trans Zool Soc (Lond) 7:411–464

    Google Scholar 

  • Nakamura Y, Inloes JB, Katagiri T et al (2011) Chondrocyte–specific microRNA–140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 31(14):3019–3028

    Google Scholar 

  • Nemec P, Altmann J, Marhold S et al (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:366–368

    Google Scholar 

  • Nicolson SW, Lutz PL (1989) Reproduced with permission Nicolson SW, Lutz PL (1989) Salt gland function in the green sea turtle Chelonia mydas. J Exp Biol 144:171–184. Copyright © 1989, The Company of Biologists Limited

    Google Scholar 

  • Nishiwaki M, Yagi T (1953) On the age and the growth of teeth in a dolphin, (Prodelphinus caeruleoalbus). Sci Rep Whales Res Inst (Tokyo) 8:133–146

    Google Scholar 

  • Norman SA, Garner MM, Berta S et al (2011) Vaginal calculi in a juvenile habor porpoise (Phocoena phocoena). J Zool Wildlife Med 42:335–337

    Google Scholar 

  • Nuamsukon S, Chuen–Im T, Rattanayuvakorn S et al (2009) Thai marine turtle eggshell: morphology, ultrastructure and composition. J Micr Soc Thai 23(1):52–56

    Google Scholar 

  • Nutter FB, Lee DD, Stamper MA et al (2000) Hemiovariosalpingectomy in a loggerhead sea turtle (Caretta caretta). Vet Rec 146:78–80

    Google Scholar 

  • Nweeia M, Eichmiller F, Orr J (2010) The narwhal tooth sensory organ system and its evolutionary and ecological significance. International Polar Year, Oslo science conference, 8–12 June, 2010

    Google Scholar 

  • Nweeia MT, Eidelman N, Eichmiller FC et al (2005) Hydrodynamic sensor capabilities and structural resilience of the male Narwhal tusk. In: Abstract presented at the 16th biennial conference on the biology of marine mammals, San Diego, CA, 13 December 2005

    Google Scholar 

  • Nweeia MT, Nutarak C, Eichmiller FC et al (2009) Considerations of anatomy, morphology, evolution, and function for narwhal dentition. In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles. Smithsonian Institution Scholarly Press, Washington

    Google Scholar 

  • Nweeia MT, Eichmiller FC, Hauschka PV et al (2012) Vestigial tooth anatomy and tusk nomenclature for Monodon monoceros. Anat Rec (Hoboken) 295(6):1006–1016

    Google Scholar 

  • Nys Y, Hincke M, Arias JL et al (1999) Avian eggshell mineralization. Poult Avian Biol Rev 10:143–166

    Google Scholar 

  • Nys Y, Gautron J, Garcia–Ruiz JM et al (2004) Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. CR Palevol 3:549–562

    Google Scholar 

  • O’Leary DP, Vilches–Troya J, Dunn RF et al (1981) Magnets in guitarfish vestibular receptors. Cell Mol Life Sci 37:86–88

    Google Scholar 

  • Obradovic-Wagner D, Aspenberg P (2011) Where did bone come from? An overview of its evolution. Acta Orthopaed 82(4):393–398. Copyright © 2011, Informa Healthcare. Reproduced with permission of Informa Healthcare

    Google Scholar 

  • Oftedal OT (2002) The origin of lactation as a water source for parchment–shelled eggs. J Mammary Gland Biol Neoplasia 7(3):253–266

    Google Scholar 

  • Olsson PE, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman and Hall, London

    Google Scholar 

  • Omelon S, Georgiou J, Henneman ZJ et al (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4(5):e5634. Copyright: © 2009 Omelon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Google Scholar 

  • Ørvig T (1965) Palaeohistological notes. 2: certain comments on the phylogenetic significance of acellular bone in early lower vertebrates. Ark Zool 16:551–556

    Google Scholar 

  • Ørvig T (1967) Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, London

    Google Scholar 

  • Ørvig T (1976) Palaeohistological notes. 3. The interpretation of pleromin (pleromic hard tissue) in the dermal skeleton of Psammosteid heterostracans. Zool Scr 5:35–47

    Google Scholar 

  • Ørvig T (1977) A survey of odontodes (‘dermal teeth’) from developmental, structural, functional and phyletic points of view. In: Mahala Andrews S, Miles RS, Walker AD (eds) Problems in vertebrate evolution. Academic, New York, pp 53–75

    Google Scholar 

  • Ørvig T (1989) Histologic studies of ostracoderms, placoderms and fossil elasmobranchs. 6. Hard tissues of Ordovician vertebrates. Zool Scr 18:427–446

    Google Scholar 

  • Osborne CA, Polzin DJ, Abdullahi SU et al (1985) Struvite urolithiasis in animals and man: formation, detection, and dissolution. Adv Vet Sci Comp Med 29:1–101

    Google Scholar 

  • Osborne CA, Klausner JS, Polzin DE et al (1986) Etiopathogenesis of canine struvite urolithiasis. Vet Clin North Am Small Anim Pract 16:67–86

    Google Scholar 

  • Osmolska H (1979) Nasal salt gland in dinosaurs. Acta Paleont Polonica 25:205–215

    Google Scholar 

  • Outridge PM, Davis WJ, Stewart REA et al (2003) Investigation of the stock structure of Atlantic Walrus (Odobenus rosmarus rosmarus) in Canada and Greenland using dental Pb isotopes derived from local geochemical environments. Arctic 56:82–90

    Google Scholar 

  • Owen R (1945) Odontography: a treatise on the comparative anatomy of the teeth, vols I, 11. Hippolyte Bailliere, London

    Google Scholar 

  • Packard MJ (1980) Ultrastructural morphology of the shell and shell membrane of eggs of common snapping turtles (Chelydra serpentina). J Morphol 165:187–204

    Google Scholar 

  • Packard MJ (1994) Patterns of mobilization and deposition of calcium in embryos of oviparous, amniotic vertebrates. Israel J Zool 40:481–492

    Google Scholar 

  • Packard MJ, Hirsh KF (1986) Scanning electron microscopy of eggshells of contemporary reptiles. Scan Electron Microsc 4:1581–1590

    Google Scholar 

  • Packard MJ, Packard GC (1979) Structure of the shell and tertiary membranes of eggs of soft–shell turtles (Trionyx spiniferus). J Morphol 159:131–144

    Google Scholar 

  • Packard GC, Packard MJ (1980) Evolution of the cleidoic egg among reptilian antecedents of birds. Am Zool 20:351–362

    Google Scholar 

  • Packard MJ, Packard GC (1984) Comparative aspects of calcium metabolism in embryonic reptiles and birds. In: Seymour RS (ed) Respiration and metabolism of embryonic vertebrates. Dr. w. Junk, The Hague

    Google Scholar 

  • Packard GC, Packard MJ (1988) The physiological ecology of reptilian eggs and embryos. In: Gans C, Huey RB (eds) Biology of the reptilia, vol 16. Ecology B, Defense and Life History. Alan R. Liss, New York, pp 523–605

    Google Scholar 

  • Packard GC, Tracy CR, Roth JANJ (1977) The physiological ecology of reptilian eggs and embryos and the evolution of viviparity within the class reptilia. Biol Rev (Camb) 52:71–105

    Google Scholar 

  • Packard GC et al (1979) Reprinted from Packard GC, Taigen TL, Packard MJ, Shuman RD (1979) Water-vapor conductance of testudinian and crocodilian eggs (class reptilia). Resp Physiol 38(1):1–10. Copyright (1979), with permission from Elsevier

    Google Scholar 

  • Packard MJ, Packard GC, Boardman TJ (1981) Patterns and possible significance of water exchange by flexible–shelled eggs of painted turtles (Chrysemys picta). Physiol Zool 54:165–178

    Google Scholar 

  • Packard MJ, Packard GC, Boardman TJ (1982) Structure of eggshells and water relations of reptilian eggs. Herpetologica 38:136–155

    Google Scholar 

  • Packard MJ, Hirsch KF, Iverson JB (1984) Structure of shells from eggs of kinosternid turtles. J Morphol 181:9–20

    Google Scholar 

  • Panella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173(4002):1124–1127. Copyright © 1971, American Association for the Advancement of Science. Reprinted with permission from AAAS

    Google Scholar 

  • Parago C (2001) Contribuição à taxonomia do gênero Psammobatis Günther, 1870 (Chondrichthyes, Rajidae): Caracterização das espécies do subgênero I de McEachran (1983) com base em padrões de coloração e espinulação. 52 p. Dissertação (Mestrado). Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro

    Google Scholar 

  • Pasco-Viel E, Charles C, Chevret P, Semon M, Tafforeau P et al (2010) Evolutionary trends of the pharyngeal dentition in cypriniformes (Actinopterygii: Ostariophysi). PLoS ONE 5(6):e11293. doi:10.1371/journal.pone.0011293. Copyright © 2010 Pasco-Viel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

  • Patterson WP (1999) Oldest isotopically characterized fish otoliths provide insight to Jurassic continental climate of Europe. Geology 27:199–202

    Google Scholar 

  • Patton AK, Savelle JM (2006) The symbolic dimensions of whale bone use in Thule winter dwellings. Études/Inuit/Studies 30:137–161

    Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, New York

    Google Scholar 

  • Perrin WF, Myrick AC Jr (eds) (1981) Age determi nation of toothed whales and sirenians. Rep Int Whal Commun (Spec. Issue No. 3):1–229

    Google Scholar 

  • Perrin W, Wursig B, Thewissen JGM (2002) Encyclopedia of marine mammals. Academic, Boston

    Google Scholar 

  • Perry A (1982) Magnetite in the green turtle. Pac Sci 36:514

    Google Scholar 

  • Perry A, Bauer GB, Dizon AE (1985) Magnetoreception and biomineralization of magnetite in amphibians and reptiles. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New York

    Google Scholar 

  • Petersen N, von Dobeneck T, Vali H (1986) Fossil bacterial magnetite in deep–sea sediments from the south atlantic ocean. Nature 320(6064):611–615

    Google Scholar 

  • Petillon J–M (2008) First evidence of a whale–bone industry in the western European Upper Paleolithic: Magdalenian artifacts from Isturitz (Pyrénées–Atlantiques, France). J Human Evol 54(5):720–726

    Google Scholar 

  • Petko JA, Millimaki BB, Canfield VA et al (2008) Otoc1: a novel otoconin–90 ortholog required for otolith mineralization in zebrafish. Dev Neurobiol 68:209–222

    Google Scholar 

  • Peyer B (1968) Comparative odontology. University of Chicago Press, Chicago

    Google Scholar 

  • Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319

    Google Scholar 

  • Phillott AD (2002) Fungal colonisation of sea turtle nests in eastern Australia. Dissertation, Central Queensland University

    Google Scholar 

  • Phillott AD, Parmenter CJ (2001) The influence of diminished respiratory surface area on survival of sea turtle embryos. J Exp Zool 289:317–321

    Google Scholar 

  • Phillott AD, Parmenter CJ, Limpus CJ (2004) The occurrence of mycobiota in eastern Australian sea turtle nests. Mem Queensl Mus 49:701–703

    Google Scholar 

  • Phillott AD, Parmenter CJ, McKillup SC (2006) Calcium depletion of eggshell after fungal invasion of sea turtle eggs. Chel Conserv Biol 5(1):146–149

    Google Scholar 

  • Pichler FB, Dalebout ML, Baker CS (2001) Nondestructive DNA extraction from sperm whale teeth and scrimshaw. Mol Ecol Notes 1:106–109. Copyright © 2005, John Wiley and Sons

    Google Scholar 

  • Pimiento C, Ehret DJ, MacFadden BJ, Hubbell G (2010) Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama. PLoS ONE 5(5):e10552. doi:10.1371/journal.pone.0010552. Copyright © 2010 Pimiento et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

  • Pollinger ML (1997) Mineralogy and microstructure of dinosaur eggshells. Dissertation, Texas Tech University

    Google Scholar 

  • Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Colin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, pp 3–38

    Google Scholar 

  • Pote KG, Ross MD (1991) Each otoconia polymorph has a protein unique to that polymorph. Comp Biochem Physiol B 98:287–295

    Google Scholar 

  • Pote KG, Hauer CR III, Michel H et al (1993) Otoconin–22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2. Biochemistry 32:5017–5024

    Google Scholar 

  • Powlik JJ (1995) On the geometry and mechanics of tooth position in the white shark Carcharodon carcharias. J Morphol 226:277–288

    Google Scholar 

  • Prado Figueroa M (2005) Distribución Cuantitativa del Malondialdehido entre las Fracciones Subcelulares Obtenidas por Centrifugación Diferencial de Órganos Eléctricos de peces de la familia Rajidae y Topografía del nAChR. III Jornadas de Bioquímica y Biología Molecular de Lípidos y Lipoproteínas, Bahía Blanca, Argentina, p 101

    Google Scholar 

  • Prado Figueroa M (2011) The growth of chalcedony (nanocrystalline silica) in electric organs from living marine fish. In: Mastai Y (ed) Advances in crystallization processes. InTech, Rijeka, pp 285–300

    Google Scholar 

  • Prado Figueroa M, Cesaretti NN (2006) Silicificación en ó rganos eléctricos de peces vivientes del estuario de Bahía Blanca. In: IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, San Carlos de Bariloche, Argentina. Limarino y DF Rosetti, GD Veiga, CO, p 184

    Google Scholar 

  • Prado Figueroa M, Barrera F, Cesaretti NN (2005) Si4+ and chalcedony precipitation during oxidative stress in Rajidae electrocyte: a mineralogical study. In: 41th annual meeting. Argentine society for biochemistry and molecular biology research, Pinamar, Argentina, (Biocell 29), p 231

    Google Scholar 

  • Prado Figueroa M et al (2008) Reprinted from Prado Figueroa M, Barrera F and Cesaretti NN (2008) Chalcedony (a crystalline variety of silica): biogenic origin in electric organs from living Psammobatis extenta (family Rajidae). Micron 39(7):1027–1035. Copyright (2008), with permission from Elsevier

    Google Scholar 

  • Purdy RW (1996) Paleoecology of fossil white sharks. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias: vol 67. Academic, San Diego

    Google Scholar 

  • Quinn TP (1980) Evidence of celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137A:243–248

    Google Scholar 

  • Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko M-A (2002) Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. PNAS 99(13):8713–8718. Copyright (2002) National Academy of Sciences, USA. Reprinted with permission

    Google Scholar 

  • Radtke RL, Targett TF (1984) Rhythmic structural and chemicalpatterns in otoliths of Antarctic fish Notothenia larseni: their application to age determination. Polar Biol 3:203–210

    Google Scholar 

  • Rafferty AR, Reina RD (2012) Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles. Proc Biol Sci B 279(1737):2299–2308. doi:10.1098/rspb.2012.0100, by permission of the Royal Society

  • Ramsay JB, Wilga CD (2007) Morphology and mechanics of the teeth and jaws of white–spotted bamboo sharks (Chiloscyllium plagiosum). J Morphol 268:664–682

    Google Scholar 

  • Reddi AH (2000a) Initiation and promotion of endochondral bone formation by bone morphogenetic proteins: potential implications for Avian Tibial Dyschondroplasia. Poult Sci 79:978–981

    Google Scholar 

  • Reddi AH (2000b) Reprinted from Principles of Tissue Engineering, 2nd ed.: Reddi AH (2000) Morphogenesis and tissue engineering. In: Lanza R, Langer R, Vacanti JP (eds) Principles of tissue engineering, 2nd edn. Academic, San Diego. Copyright (2000), with permission from Elsevier

    Google Scholar 

  • Reeves RR, Tracey S (1980) Monodon monoceros. Mamm Species 127:1–7

    Google Scholar 

  • Reibisch J (1899) Über die Eizahl bei Pleronectes platessa und die Altersbestimmung dieser Form aus den Otolithen. Wiss Meeresuntcrsuch. Abt Kid N F 4:231–248

    Google Scholar 

  • Reiche et al (2011) Reproduced from Reiche I, Müller K, Staude A, Goebbels J, Riesemeier H (2011) Synchrotron radiation and laboratory micro X-ray computed tomography—useful tools for the material identification of prehistoric objects made of ivory, bone or antler. J Anal Atomic Spectrom 26:1802–1812. With permission of The Royal Society of Chemistry

    Google Scholar 

  • Reidarson TH, McBain J (1994) Ratio of urine levels of uric acid to creatinine as an aid in diagnosis of urate stones in bottlenose dolphins. Proc Int Assoc Aqua Anim Med 25:21

    Google Scholar 

  • Reina RD, Cooper PD (2000) Control of salt gland activity in the hatchling green sea turtle, Chelonia mydas. J Comp Physiol B 170:27–35

    Google Scholar 

  • Reina RD, Jones TT, Spotila JR (2002) Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860

    Google Scholar 

  • Retting KN, Song B, Yoon BS et al (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093–1104

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol I. Samson and Wallin, Stockholm

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Amnioten. Samson und Wallin, Stockholm

    Google Scholar 

  • Rice D (1989) The sperm whale Physeter macrocephalus Linnaeus 1758. In: Ridgway SH, Harrison R (eds) Handbook of marine mammals. Academic, London

    Google Scholar 

  • Right Whale Consortium (2005) North Atlantic right whale consortium photo–id, sightings, genetics, contaminants and necropsy database. New England Aquarium, Boston

    Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for vision–based magnetoreception in birds. Biophys J 78:707–718

    Google Scholar 

  • Ritz T, Thalau P, Phillips JB et al (2004) Resonance effects indicate a radical–pair mechanism for avian magnetic compass. Nature 429:177–180

    Google Scholar 

  • Roberts HS, Sharp RM (1985) Prefered orientation of calcite and aragonite in the reptilian eggshells. Proc R Soc Lond B Bio 255:445–455

    Google Scholar 

  • Rocha F, Oddone MC, Gadign OBF (2010) Egg capsules of the little skate, Psammobatis extent (Garman, 1913) (Chondrichthyes, Rajidae). Braz J Oceanogr 58(3):251–254

    Google Scholar 

  • Romanoff AL, Romanoff AJ (1949) The Avian egg. Wiley, NewYork

    Google Scholar 

  • Rose ML, Hincke MT (2009) Protein constituents of the eggshell: eggshell–specific matrix proteins. Cell Mol Life Sci 66(16):2707–2719

    Google Scholar 

  • Ross MD, Pote KG (1984) Some properties of otoconia. Philos Trans R Soc Lond B Biol Sci 304:445–452

    Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone–eating marine worms with dwarf males. Science 305:668–671

    Google Scholar 

  • Ruben JA, Bennett AA (1987) The evolution of bone. Evolution 41(6):1187–1197. Evolution: international journal of organic evolution by Society for the Study of Evolution. Reproduced with permission of Society for the Study of Evolution, in the format Republish in a book via Copyright Clearance Center

    Google Scholar 

  • Rückert–Ülkümen N, Yigitbas E (2007) Pharyngeal teeth, lateral ethmoids, and jaw teeth of fishes and additional fossils from the late Miocene (Late Khersonian/Early Maeotian) of Eastern Paratethys (Yalova, Near Üstanbul, Turkey). Turk J Earth Sci 16:211–224

    Google Scholar 

  • Sahoo G, Mohapatra BK, Sahoo RK et al (1996a) Ultrastructure and characteristics of eggshells of the Olive Ridley turtle (Lepidochelys olivacea) from Gahirmatha, India. Acta Anat 156:261–267

    Google Scholar 

  • Sahoo G, Mohapatra BK, Sahoo RK et al (1996b) Contrasting ultrastructures in the eggshells of olive ridley turtles (Lepidochelys olivacea) from Gahirmatha in Orissa. Curr Sci 70:246–249

    Google Scholar 

  • Sahoo G, Sahoo RK, Mohanty–Hejmadi P (1998) Calciummetabolism in olive ridley turtle eggs during embryonic development. Comp Biochem Physiol Part A 121:91–97

    Google Scholar 

  • Savelle (1997) Reprinted from Savelle JM (1997) The role of architectural utility in the formation of zooarchaeological whale bone assemblages. J Archaeol Sci 24(10):860–885. Copyright (1997), with permission from Elsevier

    Google Scholar 

  • Savelle JM, Habu J (2004) A processual investigation of a Thule whale bone house, Somerset Island, Arctic Canada. Arct Anthropol 41(2):204–221

    Google Scholar 

  • Savelle JM, McCartney AP (2003) Prehistoric bowhead whaling in the Bering Strait and Chukchi sea regions of Alaska: a zooarchaeological assessment. In: McCartney AP (ed) Indigenous ways to the present: native whaling in the Western Arctic, Canadian Circumpolar Institute: studies in whaling no. 6., pp 167–184

    Google Scholar 

  • Sawyer JE, Walker WA (1977) Vaginal calculi in the dolphin. J Wildl Dis 13:346–348

    Google Scholar 

  • Scanlon JD, Lee MSY (2002) Varanoid–like dentition in primitive snakes (Madtsoiidae). J Herpetol 36:100–106

    Google Scholar 

  • Schaefer SA, Buitrago-Suárez UA (2002) Odontode morphology and skin surface features of Andean astroblepid catfishes (Siluriformes, Astroblepidae). J Morphol 254:139–148. Copyright © 2002 Wiley-Liss, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Scheffel A, Gruska M, Faivre D et al (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Google Scholar 

  • Scheffer VB, Myrick AB Jr (1980) A review of studies to 1970 of growth layers in the teeth of marine mammals. Report of the International Whaling Commission (Special Issue 3), Cambridge, UK, pp 51–63. Copyright © 1980, International Whaling Commission. Reprinted with permission

    Google Scholar 

  • Schipiani E (2003) Otoconin–22 and Calcitonin: a novel modality of regulating calcium storages in lower vertebrates? Endocrinology 144:3285–3286

    Google Scholar 

  • Schleich H, Kastle W (1988) Reptile eggshells. SEM Atlas, Stuttgart

    Google Scholar 

  • Schmidt M (1885) Das Walross (Trichechus rosmarus). D Zool Gart Frankf 1:1–16

    Google Scholar 

  • Schmidt WJ (1967) Das “globularmuster” im eischalenkalk von Diomedea. Z Zellforsch 77:518–533

    Google Scholar 

  • Schmidt–Nielsen K (1960) The salt–secreting glands of marine birds. Circulation 21:955–967

    Google Scholar 

  • Schmidt-Nielsen K, Fange R (1958a) The function of the salt gland in the brown pelican. The Auk 75(3):282–289. Published by the American Ornithologists’ Union

    Google Scholar 

  • Schmidt-Nielsen K, Fänge R (1958b) Salt glands in marine reptiles. Nature 182: 783

    Google Scholar 

  • Schmidt–Nielsen K, Jörgensen CB, Osaki H (1957) Secretion of hypertonic solutions in marine birds. Fed Proc 16:113–114

    Google Scholar 

  • Schmitt TL, Sur RG (2012) Treatment of ureteral calculus obstruction with laser lithotripsy in an Atlantic Bottlenose Dolphin (Tursiops truncatus). J Zoo Wildl Med 43:101–109

    Google Scholar 

  • Schönwetter M (1960) Handbuch der oologie. Akademie Verlag, Berlin

    Google Scholar 

  • Schreiber EA, Burger J (2001) Biology of marine birds. CRC Press, Boca Raton

    Google Scholar 

  • Schüler D (1999) Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol 1:79–86

    Google Scholar 

  • Schüler D (2006) Magnetoreception and magnetosomes in bacteria. (ed) Microbiology monographs, vol 3. Springer, Heidelberg

    Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32(4):654–672

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180(1):159–162

    Google Scholar 

  • Schultze H–P (1969) Die faltenzähne der rhipidistiiden crossopterygier, der tetrapoden und der Actinopterygier–Gattung Lepisosteus; nebst einer beschreibung der zahnstruktur von onychodus (Struniiformer Crossopterygier). Palaeontograph Ital, New Series 35 65:63–137

    Google Scholar 

  • Schultze H–P (1970) Folded teeth and the monophyletic origin of tetrapods. Amer Mus 2408:1–10

    Google Scholar 

  • Scotti C, Tonnarelli B, Papadimitropoulos A et al (2010) Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA 107:7251–7256. Copyright (2010) National Academy of Sciences, USA. Reprinted with permission

    Google Scholar 

  • Seitz JC (2011) Freshwater sawfish ichthyology at the Florida museum of natural history. http://www.flmnh.ufl.edu/fish/Gallery/Descript/Freshwatersawfish/Freshwatersawfish.htm

  • Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system in bobolinks. Brain Res Bull 25:735–740

    Google Scholar 

  • Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76

    Google Scholar 

  • Shellis RP, Berkovitz BKB (1980) Reprinted from Shellis RP and Berkovitz BKB (1980) Dentine structure in the rostral teeth of the sawfish Pristis (Elasmobranchii). Arch Oral Biol 25(5):339–343. Copyright © 1980, with permission from Elsevier

    Google Scholar 

  • Shoemaker VH, Nagy KA, Bradshaw SD (1972) Studies on the control of electrolyte excretion by the nasal gland of the lizard Dipsosaurus dorsalis. Comp Biochem Physiol 42A:749–757

    Google Scholar 

  • Shuttleworth TJ, Hildebrandt JP (1999) Vertebrate salt glands: short– and long–term regulation of function. J Exp Zool 283:689–701

    Google Scholar 

  • Silva P, Solomon RJ, Epstein FH (1990) Shark rectal gland. In: Fleischer S, Fleischer B (eds) Methods in enzymology, cellular and subcellular transport: epithelial cells. Academic, New York

    Google Scholar 

  • Silverman HB, Dunbar MJ (1980) Aggressive tusk use by the narwhal (Monodon monoceros L.). Nature 284:57–58

    Google Scholar 

  • Silyn-Roberts H, Sharp RM (1986) Crystal growth and the role of the organic network in eggshell biomineralization. Proc R Soc Lond B 227(1248):303–324. By permission of the Royal Society. Copyright © 1986, The Royal Society

    Google Scholar 

  • Simkiss K (1962) The sources of calcium for the ossification of the embryos of the giant leathery turtle. Comp Biochem Physiol 7:71–79

    Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization, cell biology and mineral deposition. Academic, San Diego

    Google Scholar 

  • Simpson JG, Gardner MB (1972) Comparative microscopic anatomy of selected marine mammals. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield

    Google Scholar 

  • Sire J-Y (2001) Teeth outside the mouth in teleost fishes: how to benefit from a developmental accident. Evol Dev 3:104–108. Copyright © 2001 Wiley-Liss, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Sire JY, Allizard F (2001) A fourth teleost lineage possessing extra–oral teeth: the genus atherion (teleostei; atheriniformes). Eur J Morphol 39(5):295–305

    Google Scholar 

  • Sire J–Y, Huysseune A (2003) Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev Camb Philos Soc 78:219–249

    Google Scholar 

  • Skiles DD (1985) The geomagnetic field: its nature, history, and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New York

    Google Scholar 

  • Skinner HCW (2000) Minerals and human health, in EMU Notesin mineralogy. In: Varughan DJ, Wogelius RA (eds) Environmental mineralogy, vol 2. Eotvos University Press, Budapest

    Google Scholar 

  • Skoog T, Johanason SH (1976) The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 57:1–6

    Google Scholar 

  • Smith LH (1982) Abnormal mineralization. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, New York

    Google Scholar 

  • Sollner C, Burghammer M, Busch–Nentwich E et al (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286

    Google Scholar 

  • Solomon SE, Baird T (1976) Studies on the egg shell (oviducal and oviposited) of Chelonia mydas L. J Exp Mar Biol Ecol 22:145–160

    Google Scholar 

  • Solomon SE, Baird T (1977) Studies on the soft shell membranes of the egg shell of Chelonia mydas L. J Exp Mar Biol Ecol 27:83–92

    Google Scholar 

  • Solomon SE, Baird T (1980) The effect of fungal penetration on the eggshell of the green turtle. In: Brederoo P, de Priester W (eds) Proceedings of the seventh European congress on electron microscopy. Seventh European Congress on Electron Microscopy Foundation, Leiden, pp 434–435

    Google Scholar 

  • Solomon SE, Gain M (1996) The normal eggshell. In: Proceedings of the national breeders roundtable, pp 42–53. Copyright (c) 1996, Poultry Science Association, Inc. Reprinted with permission

    Google Scholar 

  • Solomon SE, Watt JM (1985) The structure of the egg shell of the latherback turtle (Dermochelys coriacea). Anim Technol 36:19–27

    Google Scholar 

  • Soukup V et al (2008) Reprinted by permission from Macmillan Publishers Ltd: Nature, Soukup V, Epperlein H-H, Horácek I, Cerny R (2008) Dual epithelial origin of vertebrate oral teeth. Nature 455:795–798. Copyright (2008)

    Google Scholar 

  • Stewart C (1903–1906) On the membranous labyrinths of Echinorchinus, Cestracion and Rhina. J Linn Soc Zool 29:439–442

    Google Scholar 

  • Stewart JR (1997) Morphology and evolution of the egg of oviparous amniotes. In: Sumida SS, Martin KLM (eds) Amniote origins: completing the transition to land. Academic, San Diego

    Google Scholar 

  • Stonehouse B (1975) The biology of penguins. MacMillan, London/Basingstone. Copyright (c) 1975, Palgrave Macmillan. Reprinted with permission

    Google Scholar 

  • Stroud RK (1979) Nephrolithiasis in a harbor seal. J Am Vet Med Assoc 175:924–925

    Google Scholar 

  • Studnicka FK (1912) Die otoconien, otolithen und cupulae terminalis urn gehörorgan von ainmocoetes und von petromyzon. Anal Anz 42:529–562

    Google Scholar 

  • Suepaul RB, Alley MR, van Rensburg MJ (2010) Salt gland adenitis associated with bacteria in blue penguins (Eudyptula minor) from hauraki gulf (Auckland, New Zealand). J Wildl Dis Jan 46(1):46–54. Copyright © 2010, Wildlife Disease Association. Reprinted with permission

    Google Scholar 

  • Taplin LE, Grigg GC (1981) Salt glands in the tongue of the estuarine crocodile Crocodylus porosus. Science 212:1045–1047

    Google Scholar 

  • Taplin LE, Grigg GC, Harlow P et al (1982) Lingual salt glands in Crocodylus acutus and C. johnstoni and their absence from Alligator mississippiensis and Caiman crocodilus. J Comp Physiol 149:43–47

    Google Scholar 

  • Tarlo LBH (1963) Aspidin; the precursor of bone. Nature 199:46–48

    Google Scholar 

  • Taub AM, Dunson WA (1967) The salt gland in a Sea Snake (Laticauda). Nature 215:995–996

    Google Scholar 

  • Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol: An Int J Paleobiol 14(1–2):15–31. Reprinted by permission of Taylor & Francis Ltd, http://www.tandf.co.uk/journals

  • Thalmann R, Ignatova E, Kachar B et al (2001) Development and maintenance of otoconia: biochemical considerations. Ann NY Acad Sci 942:162–178

    Google Scholar 

  • Tian L, Xiao B, Lin W et al (2007) Testing for the presence of magnetite in the upper–beak skin of homing pigeons. Biometals 20:197–203

    Google Scholar 

  • Tohse H, Takagi Y, Nagasawa H (2008) Identification of a novel matrix protein contained in a protein aggregate associated with collagen in fish otoliths. FEBS J 275:2512–2523

    Google Scholar 

  • Tont SA, Pearcy WG, Arnold JS (1977) Bone structure of some marine vertebrates. Mar Biol 39:191–196

    Google Scholar 

  • Townsend DW (1980) Microstructural growth increments in some Antarctic fish otoliths. Cybium 3e Ser 8:17–23

    Google Scholar 

  • Townsend FI, Ringway S (1995) Kidney stones in Atlantic bottlenose dolphins (Tursiops truncatus): composition, diagnosis and therapeutic strategies. Proc Int Assoc Aquat Anim Med 26:2–3

    Google Scholar 

  • Traub W, Arad T, Weiner S (1992) Growth of mineral crystals in turkey tendon collagen fibers. Connect Tissue Res 28(1–2):99–111

    Google Scholar 

  • Treiber CD et al (2012) Reprinted by permission from Macmillan Publishers Ltd: Nature. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484(7394):367–370. Copyright (2012)

    Google Scholar 

  • Tricas TC, McCosker JE, Walker TI (1997) Sharks field guide. In: Taylor LR (ed) Sharks and rays. Harper Collins, London

    Google Scholar 

  • Tsukrov I, DeCew JC, Baldwin K, Campbell-Malone R, Moore MJ (2009) Mechanics of the right whale mandible: full scale testing and finite element analysis. J Exp Mar Biol Ecol 374:93–103

    Google Scholar 

  • Tucker A, Sharpe P (2004) The cutting–edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508

    Google Scholar 

  • Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446. Copyright © 2006, John Wiley and Sons. Reproduced with permission

    Google Scholar 

  • Turner–Walker G (2012) The removal of fatty residues from a collection of historic whale skeletons in Bergen: an aqueous approach to degreasing. http://www.museum.nantes.fr/…/G.%20Turner-Walker

  • Tuset VM, Lombarte A, Assis CA (2003) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72S1:7–198

    Google Scholar 

  • Tyack PL, Johnson M, Aguilar Soto N et al (2006) Extreme diving of beaked whales. J Exp Biol 209:4238–4253

    Google Scholar 

  • Tyler C (1964) Wilhelm von Nathusius 1821–1899 on the avian egg–shells. The Berkshire Printing Co. Ltd., Reading

    Google Scholar 

  • Ueda K, Maeda Y, Koyama M et al (1986) Magnetic remanences in salmonid fish. Bull Jpn Soc Sci Fish 52:166–170

    Google Scholar 

  • Uehara K et al (1983) With kind permission from Springer Science + Business Media: Uehara K, Miyoshi S, Toh H (1983) Fine structure of the horny teeth of the lamprey, Entosphenus japonicas. Cell Tissue Res 231(1):1–15. Copyright (c) 1983, Springer

    Google Scholar 

  • Uhen MD (2010) The origin(s) of whales. Annu Rev Earth Planet Sci 38:189–219

    Google Scholar 

  • Unwin DM, Deeming DC (2008) Pterosaur eggshell structure and its implications for pterosaur reproductive biology. Zitteliana B 28:199–207

    Google Scholar 

  • Van Bressem MF, Van Waerebeek K, Siebert U et al (2000) Genital diseases in the peruvian dusky dolphin (Lagenorhynchus obscurus). Comp Pathol 122(4):266–277

    Google Scholar 

  • Venn–Watson S, Smith CR, Johnson S et al (2010a) Clinical relevance of urate nephrolithiasis in bottlenose dolphins Tursiops truncatus. Dis Aquat Organ 89(2):167–177

    Google Scholar 

  • Venn–Watson SK, Townsend FI, Daniels RL et al (2010b) Hypocitraturia in common Bottlenose Dolphins (Tursiops truncatus): assessing a potential risk factor for urate nephrolithiasis. Comp Med 60:149–153

    Google Scholar 

  • Verpy E, Leibovici M, Petit C (1999) Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc Natl Acad Sci USA 96:529–534

    Google Scholar 

  • Vickaryous MK, Hall BK (2008) Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J Morphol 269:398–422. Copyright © 2007 Wiley-Liss, Inc., A Wiley Company. Reprinted with permission

    Google Scholar 

  • Vignieri S (2012) Republished with permission of AAAS, from Vignieri S (2012) Magnetic sense. Neurosci Sci Signal 5(226):ec153; permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Viguier C (1882) Le sens d’orientation et ses organes chez les animaux et chez l’homme. Rev Phil France et de l’E′ tranger 14:1–36

    Google Scholar 

  • Vilches-Troya J, Dunn RF, O’Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otolith of the guitarfish sacculus. J Comput Neurol 226(4):489–494. Copyright © 1984 Alan R. Liss, Inc

    Google Scholar 

  • Vilstrup T (1951) Structure and function of the membranous sacs of the labyrinth in acanthias vulgaris. Ejnar Munksgaard, Copenhagen

    Google Scholar 

  • von Baer KE (1837) Anatomische und zoologische Untersuchungen über das Walross (Trichenus rosmarus) und Vergleichung dieses Thiers mit andern See–Säugethieren. Mém de l’Acad Impér des Sciences de Saint–Pétersbourg, 6th sér. Sci Math Phys et Nat 4:96–236

    Google Scholar 

  • von Schreiber JCD (1774) Die Säugethiere in Abbildungen nach der Natur. Wolfgang Walther, Erlangen, pp 1775–1855

    Google Scholar 

  • Walcott C (1978) Annomalies in the earth’s magnetic field increase the scatter of pigeon’s vanishing bearings. In: Schmidt–König K, Keeton WTZ (eds) Animal migration, navigation, and homing. Springer, Berlin

    Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of the applied magnetic field. Science 184:180–182

    Google Scholar 

  • Walker MM (1998) On a wing and a vector: a model for magnetic field navigation by homing pigeons. J Theor Biol 192:341–349

    Google Scholar 

  • Walker MM, Kirschvink JL, Chang SBR et al (1984) A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224:751–753

    Google Scholar 

  • Walker MM et al (1988) Republished with permission of The Company of Biologists Ltd, from Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. J Exp Biol 140:51–63. Copyright (1988); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Walker MM et al (1992) Republished with permission of The Company of Biologists Ltd, from Walker MM, Kirschvink JL, Ahmed G, Dizon AE (1992) Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 171:67–78. Copyright (1992); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Walker CE, Diebel CV, Haugh PM et al (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    Google Scholar 

  • Walker MM, Dennis TE, Kirschvink JL (2002) The magnetic sense and its use in long–distance navigation by animals. Curr Opin Neurobiol 12:735–744

    Google Scholar 

  • Walker MM et al (2007) Reprinted from Walker MM, Diebel CE, Kirschvink JL (2007) Magnetoreception In: Hara TJ, Zielinski B (eds) Sensory systems neuroscience. Fish physiology series, vol 25, pp 523. Elsevier Academic, Amsterdam, p. 369. Copyright (2007), with permission from Elsevier

    Google Scholar 

  • Walsh MT, Murru FL (1987) Urogenital sinus calculi in a Sand Tiger Shark (Odontaspis taurus). J Wildl Dis 23(3):428–431

    Google Scholar 

  • Wang Y, Kowalski PE, I T et al (1998) Otoconin–90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc Natl Acad Sci USA 95:15345–15350

    Google Scholar 

  • Wangkulangkul S, Thirakhupt K, Chantrapornsyl S (2000) Comparative study of eggshell morphology in wild and captive Olive ridley turtles Lepidochelys olivacea at Phuket, Thailand. In: Pilcher N, Ismail G (eds) Sea turtles of the Indo–Pacific: research, management and conservation. Asean Academic Press, London

    Google Scholar 

  • Warren AA, Davey L (1992) Folded teeth in temnospondyls—a preliminary study, Alcheringa. Aust J Palaeontol 16:107–132

    Google Scholar 

  • Warren A, Turner S (2006) Tooth histology patterns in early tetrapods and the presence of “dark dentine”. Trans R Soc Edinb Earth Sci 96:113–130

    Google Scholar 

  • Wei JD, Knittel I, Lang C et al (2011) Magnetic properties of single biogenic magnetite nanoparticles. J Nanopart Res 13(8):3345–3352

    Google Scholar 

  • Weiner S, Wagner H (1998) The material bone: structure mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Google Scholar 

  • Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    Google Scholar 

  • Weisburd S (1984) Whales and dolphins use magnetic ‘roads’. Sci News 126:389

    Google Scholar 

  • Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421

    Google Scholar 

  • Whitenack LB (2008) The biomechanics and evolution of shark teeth. PhD thesis, University of South Florida, Tampa, FL. Copyright © 2008, Whitenack LB. Reprinted with permission

    Google Scholar 

  • Whitenack LB, Motta PJ (2010) Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biol J Linn Soc 100:271–286. Copyright © 2010 The Linnean Society of London. Reprinted with permission

    Google Scholar 

  • Whitenack LB et al (2010) Reprinted from Whitenack LB, Simkins Jr. DC, Motta PJ, Hirai M, Kumar A (2010) Young’s modulus and hardness of shark tooth biomaterials. Arch Oral Biol 55(3):203–209. Copyright © 2010, with permission from Elsevier

    Google Scholar 

  • Whitenack LB, Simkins DC, Motta PJ (2011) Biology meets engineering: the structural mechanics of fossil and extant shark teeth. J Morphol 272:169–179. Copyright © 2011 Wiley-Liss, Inc

    Google Scholar 

  • Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458

    Google Scholar 

  • Wicke B (1863) Chemisch–physiologische Notizen. Ann Chem Pharm 125:78–80

    Google Scholar 

  • Wiley TR, Simpfendorfer CA, Faria VV et al (2008) Range, sexual dimorphism and bilateral asymmetry of rostral tooth counts in the smalltooth sawfish Pristis pectinata Latham (Chondrichthyes: Pristidae) of the southeastern United States. Zootaxa 1810:51–59

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Wilson LE, Chin K, Jackson FD, Bray ES (2014) “I. Introduction to eggshells” Fossil eggshell: fragments from the past. Published on-line: http://www.ucmp.berkeley.edu/science/eggshell/eggshell1.php. Accessed 15 May 2014. Copyright © 2014, by the Regents of the University of California. Reprinted with permission

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of european robins. Science 205:1027–1029

    Google Scholar 

  • Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291:433–434

    Google Scholar 

  • Wiltschko W, Wiltschko R (1988) Magnetic orientation in birds. In: Johnston RF (ed) Current ornithology. Plenum Press, New York

    Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Zoophysiology. Springer, Berlin

    Google Scholar 

  • Wiltschko W, Munro U, Wiltschko R et al (2002) Magnetite–based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behaviour. J Exp Biol 205:3031–3037

    Google Scholar 

  • Wiltschko W, Munro U, Ford H et al (2009) Avian orientation:the pulse effect is mediated by the magnetite receptors in the upper beak. Proc Biol Sci 276:2227–2232

    Google Scholar 

  • Winkler JD (2006) Testing phylogenetic implications of eggshell characters in side–necked turtles (Testudines: Pleurodira). Zoology (Jena) 109(2):127–136

    Google Scholar 

  • Winklhofer M, Holtkamp–Rötzler E, Hanzlik M et al (2001) Clusters of superparamagnetic magnetite particles in the upper–beak skin of homing pigeons:evidence of a magnetoreceptor? Eur J Mineral 13:659–669

    Google Scholar 

  • Witzmann F (2009) Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis. Palaeodiversity 2:233–270

    Google Scholar 

  • Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? J Physiol Sci 62(4):299–307

    Google Scholar 

  • Woo SL, Kwan MK, Lee TQ et al (1987) Perichondrial autograft for articular cartilage. Acta Orthop Scand 58:510–515

    Google Scholar 

  • Woodall PF (1984) The structure and some functional aspects of the eggshell of the broad–shelled river tortoise Chelodinia expansa (Testudinata: Chelidae). Aust J Zool 32:7–14

    Google Scholar 

  • Woodhouse CD, Rennie CJ (1991) Observations of vaginal calculi in dolphins. J Wildl Dis 27:421–427

    Google Scholar 

  • Wroe S, Huber DR, Lowry M, McHenry C, Moreno K, Clausen P, Ferrara TL, Cunningham E, Dean MN, Summers AP (2008) Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? J Zool 276:336–342. © 2008 The Authors. Journal compilation © 2008 The Zoological Society of London

    Google Scholar 

  • Wu LQ, Dickman JD (2012) Neural correlates of a magnetic sense. Science 336:1054–1057

    Google Scholar 

  • Wyeth RC (2010) Should animals navigating over short distances switch to a magnetic compass sense? Front Behav Neurosci 4:42–46

    Google Scholar 

  • Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YW (2010) Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 239:2659–2673. © 2010 Wiley-Liss, Inc

    Google Scholar 

  • Yano A, Ogura M, Sato A et al (1997) Effect of modified magnetic field on the ocean migration of maturing chum salmon, Oncorhynchus keta. Mar Biol 129:523–530

    Google Scholar 

  • Yaoi Y, Kikuyama S, Hayashi H et al (2001) Immunocytochemical localization of secretory phospholipase A(2)-like protein in the pituitary gland and surrounding tissue of the bullfrog, Rana catesbeiana. J Histochem Cytochem 49:631–637

    Google Scholar 

  • Young JD (1950) The structure and some physical properties of the testudinian egg shell. Proc Zool Soc Lond 120:455–469

    Google Scholar 

  • Young GC (2008) With kind permission from Springer Science + Business Media: Young GC (2008) Early evolution of the vertebrate eye—fossil evidence. Evol Educ Outreach 1(4):427–438. Copyright © 2008, Springer Science + Business Media, LLC

    Google Scholar 

  • Yuki M, Sugimoto N, Takahashi K et al (2006) Enterolithiasis in a cat. J Fel Med Surg 8:349–352

    Google Scholar 

  • Zangerl R (1981) Handbook of paleoichthyology. Chondrichthyes I: paleozoic elasmobranchii. Gustav Fischer Verlag, Stuttgart/New York

    Google Scholar 

  • Zangerl R, Winter HF, Hansen MC (1993) Comparative microscopic dental anatomy in the Petalodontida (Chondrichthyes, Elasmobranchii). Fieldiana Geol Ser 26:1–43

    Google Scholar 

  • Zaslansky P (2008) Dentin. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New York

    Google Scholar 

  • Zeidel JD, Mathai JC, Campbell JD, Ruiz WG, Apodaca GL, Riordan J, Zeidel ML (2005) Selective permeability barrier to urea in shark rectal gland. Am J Physiol-Renal Physiol 289:F83–F89. ©The American Physiological Society (APS). Reprinted with permission

    Google Scholar 

  • Zerbini AN, Cesar M, Santos O (1997) First record of the pygmy killer whale Feresa attenuate (Gray, 1874) for the Brazilian coast. Aquat Mamm 23(2):105–109

    Google Scholar 

  • Zhang Z, Zhang YW, Gao H (2011) On optimal hierarchy of load–bearing biological materials. Proc R Soc B 278:519–525

    Google Scholar 

  • Zhao X, Yang H, Yamoah EN, Lundberg YW (2007) Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix. Dev Biol 304:508–524

    Google Scholar 

  • Zhao X, Jones SM, Yamoah EN, Lundberg YW (2008) Otoconin–90 deletion leads to imbalance but normal hearing: a comparison with other otoconia mutants. Neuroscience 153:289–299

    Google Scholar 

  • Zioupos P (2005) In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. Eur J Morphol 42(1/2):31–41

    Google Scholar 

  • Zioupos P, Currey JD (1996) Pre–failure toughening mechanisms in the dentine of the narwhal tusk: microscopic examination of stress/strain induced microcracking. J Mater Sci Lett 15:991–994

    Google Scholar 

  • Zioupos P, Currey JD, Casinos A et al (1997) Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue. J Zool Lond 241:725–737

    Google Scholar 

  • Zustin et al (2010) Reprinted from Am J Pathol 177(3): Zustin J, Akpalo H, Gambarotti M et al (2010) Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol 177(3):1072–1078. Copyright (2010), with permission from American Society for Investigative Pathology. Published by Elsevier Inc

    Google Scholar 

  • Zylberberg et al (1998) Reprinted from Zylberberg L, Traub W, de Buffrenil V, Allizard F, Arad T, Weiner S (1998) Rostrum of a toothed whale: ultrastructural study of a very dense bone. Bone 23(3):241–247. Copyright (1998), with permission from Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ehrlich, H. (2015). Biocomposites and Mineralized Tissues. In: Biological Materials of Marine Origin. Biologically-Inspired Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5730-1_3

Download citation

Publish with us

Policies and ethics