Skip to main content

Cartilage of Marine Vertebrates

  • Chapter
  • First Online:
Biological Materials of Marine Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 4))

Abstract

Cartilage is primarily composed of a specialised extracellular matrix synthesised by chondrocytes and contains of the numerous molecules (collagens, polysaccharides, low molecular peptides). This biological material represents unique avascular tissue. This chapter considers the current state-of-the-art biomaterial characterisation of both non-mineralized and mineralized (calcified) cartilages, with respect to the future tissues in biomimetical and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed TA, Hincke MT (2010) Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng B Rev 16(3):305–329

    Article  Google Scholar 

  • Applegate SP (1967) A survey of shark hard parts. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Bargahi A, Rabbani–Chadegani A (2008) Angiogenic inhibitor protein fractions derived from shark cartilage. Biosci Rep 28:15–21

    Article  Google Scholar 

  • Bargmann W (1939) Zur Kenntnis der Knorpelarchitekturen (Untersuchungen am Skelettsystem von Selachiern). Z Zellforsch 29:405–424

    Article  Google Scholar 

  • Bonfil R, Meyer M, Scholl MC et al (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–103

    Article  Google Scholar 

  • Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair a review of the matrix–induced autologous chondrocyte implantation procedure. Am J Sports Med 38:1259–1271

    Article  Google Scholar 

  • Cameron TL, Belluoccio D, Farlie PG et al (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9:20

    Article  Google Scholar 

  • Cattell M, Lai S, Cerny R et al (2011) A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS One 6(7):e22474. Copyright: © 2011 Cattell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Google Scholar 

  • Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262

    Article  Google Scholar 

  • Coates MI, Sequeira SEK, Sansom IJ (1998) Spines and tissues of ancient sharks. Nature 396:729–730

    Article  Google Scholar 

  • Cole AG (2011) A review of diversity in the evolution and development of cartilage: the research for the origin of the chondrocyte. Eur Cell Mater 21:122–129

    Google Scholar 

  • Cole AG, Hall BK (2004) Cartilage is a metazoan tissue; integrating data from non-vertebrate sources. Acta Zool 85:69–80

    Article  Google Scholar 

  • Cole AG, Hall BK (2009) Cartilage differentiation in cephalopod molluscs. Zoology 112:2–15

    Article  Google Scholar 

  • Courtland H–W, Wright GM, Root RG et al (2003) Comparative equilibrium mechanical properties of bovine and lamprey cartilaginous tissues. J Exp Biol 206:1397–1408

    Article  Google Scholar 

  • Cozzi B, Panin M, Butti C et al (2010) Bone density distribution patterns in the rostrum of Delphinids and Beaked Whales: evidence of family–specific evolutive traits. Anat Rec 293:235–242

    Article  Google Scholar 

  • Currey JD (2010) Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater 3(5):357–372. Copyright (2010), with permission from Elsevier

    Article  Google Scholar 

  • Dean M (2007) Ontogeny, morphology and mechanics of the tessellated skeleton of cartilaginous fishes. J Morphol 268:1066

    Google Scholar 

  • Dean MN, Summers AP (2006) Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology 109:164–168

    Article  Google Scholar 

  • Dean MN, Bizzarro JJ, Summers AP (2007) The evolution of cranial design, diet, and feeding mechanisms in batoid fishes. Integr Comp Biol 47:70–81

    Article  Google Scholar 

  • Dean MN, Gorb SN, Summers AP (2008) A cryoSEM method for preservation and visualization of calcified shark cartilage (and other stubborn heterogeneous skeletal tissues). Microsc Today 16:48–50

    Google Scholar 

  • Dean MN, Mull CG, Gorb SN, Summers AP (2009a) Ontogeny of the tessellated skeleton: insight from the skeletal growth of the round stingray Urobatis halleri. J Anat 215:227–239. doi:10.1111/j.1469-7580.2009.01116.x. Copyright © 2009 The Authors. Journal compilation © 2009 Anatomical Society of Great Britain and Ireland. Reproduced with permission of Wiley-Liss, Inc

  • Dean MN, Youssefpour H, Earthman JC et al (2009b) Micro–mechanics and material properties of the tessellated skeleton of cartilaginous fishes. Integr Comp Biol 49:e45

    Google Scholar 

  • Dean MN, Socha JJ, Hall BK, Summers AP (2010) Canaliculi in the tessellated skeleton of cartilaginous fishes. J Appl Ichthyol 26:263–267. © 2010 Blackwell Verlag, Berlin. Reproduced with permission of Wiley-Liss, Inc

    Article  Google Scholar 

  • Delabre C, Spruyt N, Delmarre C et al (1998) The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula. Genetics 150:331–344

    Google Scholar 

  • Dupont É, Brazeau P, Juneau C (1997) Extracts of shark cartilage having an antiangiogenic activity and an effect on tumor progression: process of making thereof. US Patent, 5,618,925

    Google Scholar 

  • Egerbacher M, Helmreich M, Mayrhofer E et al (2006) Mineralization of hyaline cartilage in the small–spotted dogfish Scyliorhinus canicula. L Scripta Med (Brno) 79(4):199–212

    Google Scholar 

  • Ehrlich H, Steck E, Ilan M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II. Biomimetic potential and application. Int J Biol Macromol 47:141–147

    Article  Google Scholar 

  • Eikenberry EF et al (1984) Reprinted from: J Mol Biol 176(2), Eikenberry EF, Childs B, Sheren SB, Parry DAD, Craig AS, Brodsky B (1984) Crystalline fibril structure of type II collagen in lamprey notochord sheath 261–277. Copyright (1984), with permission from Elsevier

    Google Scholar 

  • Falardeau P, Champaigne P, Poyet P et al (2001) Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol 28:620–625

    Article  Google Scholar 

  • Fan TJ et al (2003) With kind permission from Springer Science + Business Media: Fan TJ, Jin LY, Wang XF (2003) Initiation of cartilage cell culture from skate (Raja porasa Günther). Mar Biotechnol (NY) 5(1):64–69. Copyright © 2003, Springer-Verlag New York Inc.

    Google Scholar 

  • Fan W, Wu C, Miao X et al (2012) Biomaterial scaffolds in cartilage–subchondral bone defects influencing the repair of autologous articular cartilage transplants. J Biomater Appl published online 8 June 2012. doi:10.1177/0885328211431310

  • Fernandesa RJ, Eyre DR (1999) Reprinted from: Fernandes RJ, Eyre DR (1999) The elastin-like protein matrix of lamprey branchial cartilage. Biochem Biophys Res Commun 261(3):635–640. Copyright (1999) with permission from Elsevier

    Google Scholar 

  • Finkelstein JB (2005) Sharks do get cancer: few surprises in cartilage research. J Natl Cancer Inst 97:1562–1563

    Article  Google Scholar 

  • Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134

    Article  Google Scholar 

  • Gargiulo V et al (2009) Reprinted with permission from: Gargiulo V, Lanzetta R, Parrilli M et al (2009) Structural analysis of chondroitin sulfate from Scyliorhinus canicula: a useful source of this polysaccharide. Glycobiology 19:1485–1491, by permission of Oxford University Press

    Google Scholar 

  • Glimm T, Headon D, Kiskowski MA (2012) Computational and mathematical models of chondrogenesis in vertebrate limbs. Birth Defects Res (Part C) 96:176–192

    Article  Google Scholar 

  • Greene JJ, Watson D (2010) Septal cartilage tissue engineering: new horizons. Facial Plast Surg 26(5):396–404

    Article  Google Scholar 

  • Gudger EW (1941) The food and feeding habits of the whale shark, Rhineodon typus. J Elisha Mitchell Sci Soc 57:57–72

    Google Scholar 

  • Guo Y, Yuan T, Xiao Z et al (2012) Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci Mater Med 23:2267–2279

    Article  Google Scholar 

  • Hall BK (2005) Bones and cartilage: developmental skeletal biology. Elsevier/Academic Press, London

    Google Scholar 

  • Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. BioEssays 22:138–147

    Article  Google Scholar 

  • Hecht J, Stricker S, Wiecha U, Stiege A, Panopoulou G, Podsiadlowski L, Poustka AJ, Dieterich C, Ehrich S, Suvorova J, Mundlos S, Seitz V (2008) Evolution of a core gene network for skeletogenesis in chordates. PloS Genet 4(3):e1000025. doi:10.1371/journal.pgen.1000025. Copyright (c) 2008 Hecht et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

  • Kemp NE, Westrin SK (1979) Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks. J Morphol 160:75–101. doi:10.1002/jmor.1051600106. Copyright © 1979 Wiley-Liss, Inc. Reproduced with permission of Wiley-Liss, Inc

    Article  Google Scholar 

  • Kitahashi T, Ikawa S, Sakamoto A et al (2012) Ingestion of proteoglycan fraction from shark cartilage increases serum inhibitory activity against matrix metalloproteinase–9 and suppresses development of N–nitrosobis(2–oxopropyl)amine– induced pancreatic duct carcinogenesis in hamster. J Agric Food Chem 60:940–945

    Article  Google Scholar 

  • Knudson CB, Knudson W (2001) Reprinted from: Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12(2):69–78. Copyright (2001), with permission from Elsevier

    Google Scholar 

  • Kupriyanova EK, Rouse GW (2008) Yet another example of paraphyly in Annelida: molecular evidence that Sabellidae contains Serpulidae. Mol Phylogenet Evol 46:1174–1181

    Article  Google Scholar 

  • Lakiza O, Miller S, Bunce A, Myung-Jae Lee E, McCauley DW (2011) SoxE gene duplication and development of the lamprey branchial skeleton: insights into development and evolution of the neural crest. Dev Biol 359(1):149–161

    Article  Google Scholar 

  • Lane IW, Comac L (1996) Sharks still don’t get cancer. Avery Publishing Group, New York

    Google Scholar 

  • Langer R, Brem H, Falterman K et al (1976) Isolation of a cartilage factor that inhibits tumor neovascularization. Science 193:70–72

    Article  Google Scholar 

  • Langille RM, Hall BK (1985) In vitro calcification of lamprey cartilage in hydroxyapatite metastable medium. Anat Rec 112:104A

    Google Scholar 

  • Langille RM, Hall BK (1988) With kind permission from Springer Science+Business Media: Langille RM, Hall BK (1988) The organ culture and grafting of lamprey cartilage and teeth. In Vitro Cell Dev Biol 24(1):1–8. Copyright © 1988, Tissue Culture Association, Inc.

    Google Scholar 

  • Langille RM, Hall BK (1993) Calcification of cartilage from the Lamprey Petromyzon marinus (L.) in vitro. Acta Zool 74:31–41. doi:10.1111/j.1463-6395.1993.tb01218.x. Copyright © 1993, The Royal Swedish Academy of Sciences. Reproduced with permission of John Wiley and Sons

    Article  Google Scholar 

  • Lee A, Langer R (1983) Shark cartilage contains inhibitors of tumor angiogenesis. Science 221:1185–1187

    Article  Google Scholar 

  • Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    Article  Google Scholar 

  • Li D, Williams JI, Pietras RJ (2002) Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER–2 gene overexpression. Oncogene 21:2805–2814

    Article  Google Scholar 

  • Loparic M, Wirz D, Daniels AU, Raiteri R, van Landingham MR, Guex G, Martin I, Aebi U, Stolz M (2010) Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. Biophys J 98:2731–2740

    Article  Google Scholar 

  • Macesic LJ, Summers AP (2012) Flexural stiffness and composition of the batoid propterygium as predictors of punting ability. J Exp Biol 215:2003–2012

    Article  Google Scholar 

  • Mansour JM (2004) Biomechanics of cartilage. In: Oatis KC (ed) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams & Wilkins, a business of Wolters Kluwer Health, Inc., Baltimore/Philadelphia

    Google Scholar 

  • Martin WM, Bumm LA, McCauley DW (2009) Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, Petromyzon marinus. Dev Dyn 238:3126–3138

    Article  Google Scholar 

  • Meulemans D, Bronner–Fraser M (2007) Insights from amphioxus into the evolution of vertebrate cartilage. PLoS One 2:e787

    Article  Google Scholar 

  • Moore KS, Wehrli S, Roder H et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci U S A 90:1354–1358

    Article  Google Scholar 

  • Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248(4961):1408–1410

    Article  Google Scholar 

  • Moses MA, Sudhalter J, Langer R (1992) Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes. J Cell Biol 119(2):475–482

    Article  Google Scholar 

  • Moss ML (1977) Skeletal tissues in sharks. Am Zool 17:335–342

    Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC et al (2008) Functional morphology of the feeding apparatus, feeding constraints, and suction performance in the nurse shark Ginglymostoma cirratum. J Morphol 369:1041–1055

    Article  Google Scholar 

  • Murano E, Perin D, Khan R, Bergamin M (2011) Hyaluronan: from biomimetic to industrial business strategy. Nat Prod Commun 6(4):555–572. Reprinted with permission. Copyright (c) 2011, Natural Product Inc. (NPI)

    Google Scholar 

  • O’Connell GD, Fong JV, Dunleavy N et al (2012) Trimethylamine N–oxide as a media supplement for cartilage tissue engineering. J Orthop Res 30:1898–1905

    Article  Google Scholar 

  • Obradovic-Wagner D, Aspenberg P (2011) Where did bone come from? An overview of its evolution. Acta Orthop 82(4):393–398. Copyright © 2011, Informa Healthcare. Reproduced with permission of Informa Healthcare

    Article  Google Scholar 

  • Ørvig T (1951) Histologic studies of placotlerms and fossil elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2:321–454

    Google Scholar 

  • Ostrander GK, Cheng KC, Wolf JC, Wolfe MJ (2004) Shark cartilage, cancer and the growing threat of pseudoscience. Cancer Res 64(23):8485–8491

    Article  Google Scholar 

  • Ota KG et al (2011) Reprinted by permission from Macmillan Publishers Ltd: Ota KG et al (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2:373. Copyright (2011)

    Google Scholar 

  • Patra D, Sandell LJ (2012) Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med 14:e10. doi:10.1017/erm.2012.3. Copyright © Cambridge University Press 2012, reproduced with permission

    Article  Google Scholar 

  • Person P, Philpott DE (1963) Invertebrate cartilage. Ann N Y Acad Sci 109:113–126

    Article  Google Scholar 

  • Person P, Philpott DE (1969) The nature and significance of invertebrate cartilages. Biol Rev Camb Philos Soc 44:1–16

    Article  Google Scholar 

  • Pilgrim BL, Franz–Odendaal TA (2009) A comparative study of the ocular skeleton of fossil and modern chondrichthyans. J Anat 214:848–858

    Article  Google Scholar 

  • Porter ME et al (2006) Republished with permission of The Company of Biologists Ltd., from: Porter ME, Beltrán JL, Koob TJ, Summers AP (2006) Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes). J Exp Biol 209:2920–2928. doi:10.1242/jeb.02325. Copyright (2006); permission conveyed through Copyright Clearance Center, Inc.

  • Porter ME et al (2007) Republished with permission of The Company of Biologists Ltd., from: Porter ME, Koob TJ, Summers AP (2007) The contribution of mineral to the material properties of vertebral cartilage from the smooth-hound shark Mustelus californicus. J Exp Biol 210:3319–3327. Copyright (2007); permission conveyed through Copyright Clearance Center, Inc.

    Google Scholar 

  • Ridewood WG (1921) On the calcification of the vertebral centra in sharks and rays. Philos Trans R Soc Lond B Biol Sci 210:311–407

    Article  Google Scholar 

  • Robson P, Wright GM, Sitarz E et al (1993) Characterization of lamprin, an unusual matrix protein from lamprey cartilage. J Biol Chem 268:1440–1447

    Google Scholar 

  • Romer AS (1964) Bone in early vertebrates. In: Frost HM (ed) Bone biodynamics. Little, Brown & Co., Boston, pp 13–40

    Google Scholar 

  • Roth W (1911) Beitrage zur Kenntnis der Strukturverhaltnisse des Selachier–Knorpels. Morphol Jahrb 42:485–555

    Google Scholar 

  • Rotter N, Bucheler M, Haisch A et al (2007) Cartilage tissue engineering using resorbable scaffolds. J Tissue Eng Regen Med 1(6):411–416

    Article  Google Scholar 

  • Rychel AL, Swalla BJ (2007) Development and evolution of chordate cartilage. J Exp Zool B Mol Dev Evol 308:325–335

    Article  Google Scholar 

  • Sangsen Y, Benjakul S, Oungbho K (2012) Fabrication of novel shark collagen–pectin scaffolds for tissue engineering. In: Biomedical Engineering International Conference (BMEiCON), Chiang Mai, Thailand, pp 273–278, 29–31 January 2012

    Google Scholar 

  • Sansom RS, Gabbott SE, Purnell MA (2011) Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proc Biol Sci 278(1709):1150–1157, by permission of the Royal Society

    Article  Google Scholar 

  • Sato K, Murata N, Tsutsumi M, Shimizu–Suganuma M et al (2004) Moderation of chemo–induced cancer by water extract of dried shark fin: anti–cancer effect of shark cartilage. In: Sakaguchi M (ed) Developments in food science: more efficient utilization of fish and fisheries products. Elsevier, Oxford

    Google Scholar 

  • Sato K, Kitahashi T, Itho C et al (2008) Shark cartilage: potential for therapeutic application for cancer. In: Barrow C, Shahidi F (eds) Marine nutraceuticals and functional foods. CRC Press, Boca Raton

    Google Scholar 

  • Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J Morphol 264:298–313

    Article  Google Scholar 

  • Shakibaei M, De Souza P (1997) Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol Int 21(2):75–86

    Article  Google Scholar 

  • Shirai S, Nakaya K (1992) Functional morphology of feeding apparatus of the cookie–cutter shark Isistius brasiliensis (Elasmobranchii, Dalatiinae). Zool Soc 9:811–821

    Google Scholar 

  • Sills AK Jr, Williams JI, Tyler BM (1998) Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res 58:2784–2792

    Google Scholar 

  • Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512

    Article  Google Scholar 

  • Summers AP (2000) Stiffening the stingray skeleton—an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae). J Morphol 243:113–126

    Article  Google Scholar 

  • Summers AP, Koob TJ, Brainerd EL (1998) Stingray jaws strut their stuff. Nature 395:450–451

    Article  Google Scholar 

  • Tomita T, Sato K, Suda K, Kawauchi J, Nakaya K (2011) Feeding of the megamouth shark (Pisces: Lamniformes: Megachasmidae) predicted by its hyoid arch: a biomechanical approach. J Morphol 272:513–524. doi:10.1002/jmor.10905. Copyright © 2011 Wiley-Liss, Inc. Reprinted with permission

    Article  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  Google Scholar 

  • Viala X, Andreopoulos FM (2009) Novel biomaterials for cartilage tissue engineering. Curr Rheumatol Rev 5:51–57. Reprinted by permission of Eureka Science Ltd

    Article  Google Scholar 

  • Wilga CD, Sanford CP (2008) Suction generation in white–spotted bamboo sharks Chiloscyllium plagiosum. J Exp Biol 211:3128–3138

    Article  Google Scholar 

  • Wilga CD, Wainwright PC, Motta PJ (2000) Evolution of jaw depression mechanics in aquatic vertebrates: insights from chondrichthyes. Biol J Linn Soc 71:165–185

    Article  Google Scholar 

  • Wright GM, Youson JH (1983) Ultrastructure of cartilage from young adult sea lamprey, Petromyzon marinus L: a new type of vertebrate cartilage. Am J Anat 167:59–70

    Article  Google Scholar 

  • Wright GM, Keeley FW, Youson JH (1983) Lamprin: a new vertebrate protein comprising the major structural protein of adult lamprey cartilage. Experientia 39:495–497

    Article  Google Scholar 

  • Wright GM, Armstrong LA, Jacques AM et al (1988) Trabecular, nasal, branchial, and pericardial cartilages in the sea lamprey, Petromyzon marinus: fine structure and immunohistochemical detection of elastin. Am J Anat 182:1–15

    Article  Google Scholar 

  • Wright GM, Keeley FW, Robson P (2001) The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 304:165–174

    Article  Google Scholar 

  • Zhang G–J, Cohn MJ (2006) Hagfish and lancelet fibrillar collagens reveal that type II collagen–based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A 103:16829–16833

    Article  Google Scholar 

  • Zotti A, Poggi R, Cozzi B (2009) Exceptional bone density DXA values of the rostrum of a deep–diving marine mammal: a new technical insight in the adaptation of bone to aquatic life. Skelet Radiol ISSN:1432–2161. doi:10.1007/s00256–009–0647–4

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ehrlich, H. (2015). Cartilage of Marine Vertebrates. In: Biological Materials of Marine Origin. Biologically-Inspired Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5730-1_2

Download citation

Publish with us

Policies and ethics