Glycerolipid Biosynthesis and Chloroplast Biogenesis

  • Maryse A. BlockEmail author
  • Emmanuelle Dubots
  • Eric Maréchal
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)


Chloroplast membranes are enriched with galactoglycerolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). These galactolipids do not contain phosphorus and chloroplast membranes are therefore very poor in phospholipids, primarily represented as a special trans Δ3-hexadecenoic acid-containing phosphatidylglycerol (PG), a finely compartmentalized amount of phosphatidylcholine (PC) and a very low and transitory level of phosphatidic acid (PA). The biogenesis of chloroplasts requires a highly efficient glycerolipid-synthesis system for the development and functioning of both the chloroplast envelope and the thylakoids. Photosynthesis notably relies on the presence of galactolipids and PG. In this chapter, we review the properties of these glycerolipids, their role in photosynthesis and the characteristics of their synthetic pathways. We focus on the role of MGDG synthase in chloroplast biogenesis, the enzyme functioning in the chloroplast envelope membrane, and different mechanisms involved in its regulation. The regulation of MGDG synthase by the phospholipids, PG and PA, is discussed in terms of membrane homeostasis and plant cell biology.


Phosphatidic Acid Chloroplast Membrane Envelope Membrane Chloroplast Envelope Anionic Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acyl carrier protein;

C16:0 –

Palmitic acid;

C16:3 –

Hexadecatrienoic acid;

C18:0 –

Stearic acid;

C18:1 –

Oleic acid;

C18:2 –

Linoleic acid;





ER –

Endoplasmic reticulum;

G3P –




PA –

Phosphatidic acid;


Phosphatidic acid phosphatase;

PC –


PE –


PG –



Phosphatidylglycerol phosphate;

PI –



Phospholipase C;


Phospholipase D;

PS –



Photosystem II;





TetraGDG –


TriGDG –




We are grateful to Jacques Joyard and Roland Douce for initiating this research in our laboratory and for the guidance they gave us. We are thankful to Denis Falconet and Juliette Jouhet for helpful reading of the manuscript. The research conducted in the authors’ laboratory was supported by Centre National de la Recherche Scienti­fique (CNRS), Com­missariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA) and Université Joseph Fourier (UJF).


  1. Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40PubMedCrossRefGoogle Scholar
  2. Andersson MX, Kjellberg JM, Sandelius AS (2001) Chloroplast biogenesis. Regulation of lipid transport to the thylakoid in chloroplasts isolated from expanding and fully expanded leaves of pea. Plant Physiol 127:184–193PubMedCrossRefGoogle Scholar
  3. Andersson MX, Kjellberg JM, Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta 1684:46–53PubMedCrossRefGoogle Scholar
  4. Andersson MX, Goksor M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174PubMedCrossRefGoogle Scholar
  5. Andrews J, Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts: pathway and localization. Plant Physiol 79:259–265PubMedCrossRefGoogle Scholar
  6. Andrews J, Ohlrogge JB, Keegstra K (1985) Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78:459–465PubMedCrossRefGoogle Scholar
  7. Andrews J, Schmidt H, Heinz E (1989) Interference of electron inhibitors with desaturation of monogalactosyldiacylglycerol in intact chloroplasts. Arch Biochem Biophys 270:611–622PubMedCrossRefGoogle Scholar
  8. Apostolova EL, Domonkos I, Dobrikova AG, Sallai A, Bogos B, Wada H, Gombos Z, Taneva SG (2008) Effect of phosphatidylglycerol depletion on the surface electric properties and the fluorescence emission of thylakoid membranes. J Photochem Photobiol B 91:51–57PubMedCrossRefGoogle Scholar
  9. Aronsson H, Schottler MA, Kelly AA, Sundqvist C, Dormann P, Karim S, Jarvis P (2008) Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148:580–592PubMedCrossRefGoogle Scholar
  10. Aseeva E, Ossenbuhl F, Sippel C, Cho WK, Stein B, Eichacker LA, Meurer J, Wanner G, Westhoff P, Sol J, Vothknecht UC (2007) Vipp 1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiol Biochem 45:119–128PubMedCrossRefGoogle Scholar
  11. Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965PubMedCrossRefGoogle Scholar
  12. Awai K, Xu C, Lu B, Benning C (2006) Lipid trafficking between the endoplasmic reticulum and the chloroplast. Biochem Soc Trans 34:395–398PubMedCrossRefGoogle Scholar
  13. Babiychuk E, Muller F, Eubel H, Braun HP, Frentzen M, Kushnir S (2003) Arabidopsis phosphatidylgly­cerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909PubMedCrossRefGoogle Scholar
  14. Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49:53–75PubMedCrossRefGoogle Scholar
  15. Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92:199–203PubMedCrossRefGoogle Scholar
  16. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91PubMedCrossRefGoogle Scholar
  17. Bessoule JJ, Testet E, Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur J Biochem 228:490–497PubMedCrossRefGoogle Scholar
  18. Billecocq A (1975) Structure des membranes biologiques: localisation du sulfoquinovosyldiglycéride dans les diverses membranes des chloroplastes au moyen des anticorps spécifiques. Annales d’Immunologie (Institut Pasteur) 126C:337–352Google Scholar
  19. Billecocq A, Douce R, Faure M (1972) Structures des membranes biologiques: localisation des galactosyldiglycérides dans les chloroplastes au moyen des anticorps spécifiques. CR Académie des Sciences Paris 275:1135–1137Google Scholar
  20. Block MA, Dorne A-J, Joyard J, Douce R (1983a) The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane. FEBS Lett 164:111–115CrossRefGoogle Scholar
  21. Block MA, Dorne AJ, Joyard J, Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286PubMedGoogle Scholar
  22. Block MA, Maréchal E, Joyard J (2001) Role of the plastid envelope in the biogenesis of chloroplast lipids. In: Aro EM, Andersson B (eds) Regulation of photosynthesis, vol 11. Kluwer, Dordrecht, pp 195–218CrossRefGoogle Scholar
  23. Botté C, Jeanneau C, Snajdrova L, Bastien O, Imberty A, Breton C, Maréchal E (2005) Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol synthase reveal critical residues for activity. J Biol Chem 280:34691–34701PubMedCrossRefGoogle Scholar
  24. Botté CY, Deligny M, Roccia A, Bonneau A-L, Saïdani N, Hardré H, Aci S, Yamaryo-Botté Y, Jouhet J, Dubots E, Loizeau K, Bastien O, Bréhélin L, Joyard J, Cintrat J-C, Falconet D, Block MA, Rousseau B, Lopez R, Maréchal E (2011) Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nat Chem Biol 7:834–842PubMedCrossRefGoogle Scholar
  25. Carde J, Joyard J, Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44:315–324Google Scholar
  26. Cline K, Keegstra K (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Physiol 71:366–372PubMedCrossRefGoogle Scholar
  27. Coves J, Joyard J, Douce R (1988) Lipid requirement and kinetic studies of solubilized UDP-galactose:diacyl­glycerol galactosyltransferase activity from spinach chloroplast envelope membranes. Proc Natl Acad Sci USA 85:4966–4970PubMedCrossRefGoogle Scholar
  28. Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase Dζ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770PubMedCrossRefGoogle Scholar
  29. Domonkos I, Laczko Dobos H, Gombos Z (2008) Lipid-assisted protein-protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47:422–435PubMedCrossRefGoogle Scholar
  30. Dörmann P, Hoffmann-Benning S, Balbo I, Benning C (1995) Isolation and characterization of an arabidopsis mutant deficient in the thylakoid lipid digalactosyldiacylglycerol. Plant Cell 7:1801–1810PubMedGoogle Scholar
  31. Dörmann P, Balbo I, Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284:2181–2184PubMedCrossRefGoogle Scholar
  32. Dorne AJ, Block MA, Joyard J, Douce R (1982) The galactolipid: galactolipid galactosyltransferase is located on the outer surface of the outer chloroplast envelope. FEBS Lett 145:30–34CrossRefGoogle Scholar
  33. Dorne AJ, Joyard J, Block MA, Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100:1690–1697PubMedCrossRefGoogle Scholar
  34. Douce R (1974) Site of galactolipid synthesis in spinach chloroplasts. Science 183:852–853PubMedCrossRefGoogle Scholar
  35. Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216PubMedCrossRefGoogle Scholar
  36. Dubacq JP, Trémolières A (1983) Occurence and function of phosphatidyl glycerol containing d-3-tran-hexadecenoic acid in photosynthetic lamellae. Physiologie Végétale 2:293–312Google Scholar
  37. Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226:473–482PubMedCrossRefGoogle Scholar
  38. Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C, Maréchal E, Block MA (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011PubMedCrossRefGoogle Scholar
  39. Dubots E, Botté C, Boudière L, Yamaryo-Botté Y, Jouhet J, Maréchal E, Block MA (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 94(1):86–93PubMedCrossRefGoogle Scholar
  40. Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811PubMedCrossRefGoogle Scholar
  41. Essigmann B, Hespenheide BM, Kuhn LA, Benning C (1999) Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369:30–41PubMedCrossRefGoogle Scholar
  42. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345PubMedGoogle Scholar
  43. Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276PubMedCrossRefGoogle Scholar
  44. Frentzen M, Heinz E, McKeon TA, Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:629–636PubMedCrossRefGoogle Scholar
  45. Frentzen M, Neuburger M, Joyard J, Douce R (1990) Intraorganelle localization and substrate specificities of the mitochondrial acyl-CoA: sn-glycerol-3-phosphate O-acyltransferase and acyl-CoA: 1-acyl-sn-glycerol-3-phosphate O-acyltransferase from potato tubers and pea leaves. Eur J Biochem 187:395–402PubMedCrossRefGoogle Scholar
  46. Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625PubMedCrossRefGoogle Scholar
  47. Froehlich JE, Benning C, Dormann P (2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol syn­thase for DGDG biosynthesis. J Biol Chem 276:31806–31812PubMedCrossRefGoogle Scholar
  48. Gad M, Awai K, Shimojima M, Yamaryo Y, Shimada H, Masuda T, Takamiya K, Ikai A, Ohta H (2001) Accumulation of plant galactolipid affects cell morphology of Escherichia coli. Biochem Biophys Res Commun 286:114–118PubMedCrossRefGoogle Scholar
  49. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  50. Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256PubMedCrossRefGoogle Scholar
  51. Heinz E, Harwood JL (1977) Incorporation of carbon dioxide, acetate and sulphate into the glycerolipids of Vicia faba leaves. Z Physiol Chem 358:897–908CrossRefGoogle Scholar
  52. Heinz E, Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279PubMedCrossRefGoogle Scholar
  53. Holzl G, Witt S, Gaude N, Melzer M, Schottler MA, Dormann P (2009) The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiol 150:1147–1159PubMedCrossRefGoogle Scholar
  54. Hugueney P, Bouvier F, Badillo A, d’Harlingue A, Kuntz M, Camara B (1995) Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation. Proc Natl Acad Sci USA 92:5630–5634PubMedCrossRefGoogle Scholar
  55. Jager-Vottero P, Dorne AJ, Jordanov J, Douce R, Joyard J (1997) Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci USA 94:1597–1602PubMedCrossRefGoogle Scholar
  56. Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179PubMedCrossRefGoogle Scholar
  57. Jouhet J, Marechal E, Bligny R, Joyard J, Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68PubMedCrossRefGoogle Scholar
  58. Jouhet J, Marechal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55PubMedCrossRefGoogle Scholar
  59. Joyard J, Douce R (1977) Site of synthesis of phosphatidic acid and diacyglycerol in spinach chloroplasts. Biochim Biophys Acta 486:273–285PubMedCrossRefGoogle Scholar
  60. Joyard J, Douce R (1979) Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett 102:147–150PubMedCrossRefGoogle Scholar
  61. Joyard J, Blée E, Douce R (1986) Sulfolipid synthesis from 35SO42- and [1-14C]-acetate in isolated intact spinach chloroplasts. Biochim Biophys Acta 879:78–87CrossRefGoogle Scholar
  62. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158PubMedCrossRefGoogle Scholar
  63. Kelly AA, Dormann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173PubMedCrossRefGoogle Scholar
  64. Kelly AA, Froehlich JE, Dormann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706PubMedCrossRefGoogle Scholar
  65. Kelly AA, Öhman A, Sedoud A, Wieslander A (2007) Membrane homeostasis mechanisms for plant glycosyl-transferases involved in galactolipid biosynthesis: biochemical and in-silico structure studies of key enzymes. In: Benning C, Olhlrogge J (eds) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global, Salt Lake City, pp 25–31Google Scholar
  66. Kim HU, Huang AH (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216PubMedCrossRefGoogle Scholar
  67. Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089PubMedCrossRefGoogle Scholar
  68. Klaus D, Hartel H, Fitzpatrick LM, Froehlich JE, Hubert J, Benning C, Dormann P (2002) Digalacto­syldiacylglycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol 128:885–895PubMedCrossRefGoogle Scholar
  69. Kobayashi K, Awai K, Takamiya K, Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648PubMedCrossRefGoogle Scholar
  70. Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221PubMedCrossRefGoogle Scholar
  71. Kobayashi K, Awai K, Nakamura M, Nagatani A, Masuda T, Ohta H (2009) Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57:322–331PubMedCrossRefGoogle Scholar
  72. Koo AJ, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279:16101–16110PubMedCrossRefGoogle Scholar
  73. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242PubMedCrossRefGoogle Scholar
  74. Krumova SB, Koehorst RB, Bota A, Pali T, van Hoek A, Garab G, van Amerongen H (2008) Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim Biophys Acta 1778:2823–2833PubMedCrossRefGoogle Scholar
  75. Krumova SB, Laptenok SP, Kovacs L, Toth T, van Hoek A, Garab G, van Amerongen H (2010) Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. Photosynth Res 105(3):229–242PubMedCrossRefGoogle Scholar
  76. Li HM, Kaneko Y, Keegstra K (1994) Molecular cloning of a chloroplastic protein associated with both the envelope and thylakoid membranes. Plant Mol Biol 25:619–632PubMedCrossRefGoogle Scholar
  77. Li MY, Qin C, Welti R, Wang XM (2006a) Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770PubMedCrossRefGoogle Scholar
  78. Li MY, Welti R, Wang XM (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761PubMedCrossRefGoogle Scholar
  79. Liu CM, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol Biol Cell 16:1165–1177PubMedCrossRefGoogle Scholar
  80. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519PubMedCrossRefGoogle Scholar
  81. Lu BB, Xu CC, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282:35945–35953PubMedCrossRefGoogle Scholar
  82. Malherbe A, Block MA, Joyard J, Douce R (1992) Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol. J Biol Chem 267:23546–23553PubMedGoogle Scholar
  83. Maréchal E, Block MA, Joyard J, Douce R (1994a) Kinetic properties of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. J Biol Chem 269:5788–5798PubMedGoogle Scholar
  84. Maréchal E, Block MA, Joyard J, Douce R (1994b) Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Lett 352:307–310PubMedCrossRefGoogle Scholar
  85. Maréchal E, Miège C, Block MA, Douce R, Joyard J (1995) The catalytic site of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. Biochemical analysis of the structure and of the metal content. J Biol Chem 270:5714–5722PubMedCrossRefGoogle Scholar
  86. Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R, Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265:990–1001PubMedCrossRefGoogle Scholar
  87. Miquel M, Block MA, Joyard J, Dorne AJ, Dubacq JP, Kader JC, Douce R (1988) Protein-mediated transfer of phosphatidylcholine from liposomes to spinach chloroplast envelope membranes. Biochim Biophys Acta 937:219–228CrossRefGoogle Scholar
  88. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228PubMedCrossRefGoogle Scholar
  89. Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223PubMedCrossRefGoogle Scholar
  90. Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112PubMedCrossRefGoogle Scholar
  91. Morre DJ, Morre JT, Morre SR, Sundqvist C, Sandelius AS (1991) Chloroplast biogenesis. Cell-free transfer of envelope monogalactosylglycerides to thylakoids. Biochim Biophys Acta 1070:437–445PubMedCrossRefGoogle Scholar
  92. Mulichak AM, Theisen MJ, Essigmann B, Benning C, Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96:13097–13102PubMedCrossRefGoogle Scholar
  93. Muller F, Frentzen M (2001) Phosphatidylglycerophos­phate synthases from Arabidopsis thaliana. FEBS Lett 509:298–302PubMedCrossRefGoogle Scholar
  94. Munnik T, Testerink C (2009) Plant phospholipid signaling: “in a nutshell”. J Lipid Res 50:260–265CrossRefGoogle Scholar
  95. Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476PubMedCrossRefGoogle Scholar
  96. Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021PubMedCrossRefGoogle Scholar
  97. Nakamura Y, Kobayashi K, Ohta H (2009a) Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol Biochem 47:535–539PubMedCrossRefGoogle Scholar
  98. Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009b) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci USA 106:20978–20983PubMedCrossRefGoogle Scholar
  99. Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277PubMedCrossRefGoogle Scholar
  100. Nishiyama Y, Hardre-Lienard H, Miras S, Miège C, Block MA, Revah F, Joyard J, Maréchal E (2003) Refolding from denatured inclusion bodies, purification to homogeneity and simplified assay of MGDG synthases from land plants. Protein Expr Purif 31:79–87PubMedCrossRefGoogle Scholar
  101. Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430PubMedCrossRefGoogle Scholar
  102. Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26PubMedCrossRefGoogle Scholar
  103. Ohlrogge J, Pollard M, Bao X, Focke M, Girke T, Ruuska S, Mekhedov S, Benning C (2000) Fatty acid synthesis: from CO2 to functional genomics. Biochem Soc Trans 28:567–573PubMedCrossRefGoogle Scholar
  104. Ohta H, Shimojima M, Arai T, Masuda T, Shioi Y, Takamiya K (1995) UDP–galactose:diacylglycerol galactosyltransferase in cucumber seedlings: purification of the enzyme and the activation by phosphatidic acid. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Dordrecht, pp 152–155CrossRefGoogle Scholar
  105. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158PubMedGoogle Scholar
  106. Park JM, Cho JH, Kang SG, Jang HJ, Pih KT, Piao HL, Cho MJ, Hwang I (1998) A dynamin-like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. EMBO J 17:859–867PubMedCrossRefGoogle Scholar
  107. Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Tremolieres A, Gerard-Hirne C, Bennardo-Connan A, Decottignies P, Gillet S, Wollman FA (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. Eur J Biochem 271:329–338PubMedCrossRefGoogle Scholar
  108. Räntfors M, Everstsson I, Kjellberg JM, Sandelius AS (2000) Intraplastidial lipid trafficking: regulation of galactolipid release from isolated chloroplast envelope. Physiol Plant 110:262–270CrossRefGoogle Scholar
  109. Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196PubMedCrossRefGoogle Scholar
  110. Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990) Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:766–772PubMedCrossRefGoogle Scholar
  111. Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant Arabidopsis SQD1 converts udp-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276:3941–3946PubMedCrossRefGoogle Scholar
  112. Sato N (2004) Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res 117:495–505PubMedCrossRefGoogle Scholar
  113. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660PubMedCrossRefGoogle Scholar
  114. Schmidt H, Heinz E (1990) Involvement of ferredoxin indesaturation of lipid-bound oleate in chloroplasts. Plant Physiol 94:214–220PubMedCrossRefGoogle Scholar
  115. Schmidt H, Heinz E (1993) Direct desaturation of intact galactolipids by a desaturase solubilized from spinach (Spinacia oleracea) chloroplast envelopes. Biochem J 289:777–782PubMedGoogle Scholar
  116. Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129:1700–1709PubMedCrossRefGoogle Scholar
  117. Seifert U, Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose: DAG sulfoquinovosyltransferase from chloroplast envelopes. Botanica Acta 105:197–205Google Scholar
  118. Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y, Takamiya K (1997) Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94:333–337PubMedCrossRefGoogle Scholar
  119. Siebertz HP, Heinz E, Joyard J, Douce R (1980) Labelling in vivo and in vitro of molecular species of lipids from chloroplast envelopes and thylakoids. Eur J Biochem 108:177–185PubMedCrossRefGoogle Scholar
  120. Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97:1473–1476PubMedCrossRefGoogle Scholar
  121. Slack CR, Roughan PG, Balasingham N (1977) Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J 162:289–296PubMedGoogle Scholar
  122. Tietje C, Heinz E (1998) Uridine-diphospho-sulfo­quinovose: diacylglycerol sulfoquinovosyltransferase activity is concentrated in the inner membrane of chloroplast envelopes. Planta 206:72–78CrossRefGoogle Scholar
  123. van Besouw A, Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529:44–53PubMedCrossRefGoogle Scholar
  124. Vojta L, Soll J, Bolter B (2007) Protein transport in chloroplasts: targeting to the intermembrane space. FEBS J 274:5043–5054PubMedCrossRefGoogle Scholar
  125. Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92:1062–1069PubMedCrossRefGoogle Scholar
  126. Wang Q, Sullivan RW, Kight A, Henry RL, Huang JR, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136:3594–3604PubMedCrossRefGoogle Scholar
  127. Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278PubMedCrossRefGoogle Scholar
  128. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002PubMedCrossRefGoogle Scholar
  129. Wintermans JF, Van Besouw A, Bogemann G (1981) Galactolipid formation in chloroplast envelopes. II. Isolation-induced changes in galactolipid composition. Biochim Biophys Acta 663:99–107PubMedCrossRefGoogle Scholar
  130. Wu F, Yang Z, Kuang T (2006) Impaired photosynthesis in phosphatidylglycerol-deficient mutant of cyanobacterium Anabaena sp. PCC7120 with a disrupted gene encoding a putative phosphatidylglycerophosphatase. Plant Physiol 141:1274–1283PubMedCrossRefGoogle Scholar
  131. Xu C, Hartel H, Wada H, Hagio M, Yu B, Eakin C, Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129:594–604PubMedCrossRefGoogle Scholar
  132. Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379PubMedCrossRefGoogle Scholar
  133. Xu CC, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110PubMedCrossRefGoogle Scholar
  134. Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3- phosphate acyltransferase. Plant J 47:296–309PubMedCrossRefGoogle Scholar
  135. Xu C, Fan J, Cornish AJ, Benning C (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. Plant Cell 20:2190–2204PubMedCrossRefGoogle Scholar
  136. Xu C, Moellering ER, Muthan B, Fan J, Benning C (2010) Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid. Plant Cell Physiol 51:1019–1028PubMedCrossRefGoogle Scholar
  137. Yamaryo Y, Dubots E, Albrieux C, Baldan B, Block MA (2008) Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D. FEBS Lett 582:685–690PubMedCrossRefGoogle Scholar
  138. Yang MF, Zheng GL, Zhang FY, Xu YN (2006) FAD2-silencing has pleiotropic effect on polar lipids of leaves and varied effect in different organs of transgenic tobacco. Plant Sci 170:170–177CrossRefGoogle Scholar
  139. Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770PubMedCrossRefGoogle Scholar
  140. Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737PubMedCrossRefGoogle Scholar
  141. Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45:503–510PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maryse A. Block
    • 1
    Email author
  • Emmanuelle Dubots
    • 2
  • Eric Maréchal
    • 1
  1. 1.CEA-Grenoble, iRTSV/LPCVGrenobleFrance
  2. 2.Department of Medicine, Biochemistry UnitUniversity of FribourgFribourgSwitzerland

Personalised recommendations