Advertisement

The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study

  • Karin MeierhoffEmail author
  • Peter Westhoff
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)

Summary

The thylakoid membrane of cyanobacteria and higher plants is a highly organized system of internal membranes that enclose the protein complexes of the photosynthetic apparatus. Photosystem II (PSII) is a central component of this machinery and it is responsible for catalyzing the light induced electron transfer from water to plastoquinone, generating almost all of the oxygen in the atmosphere. PSII is a multimeric chlorophyll-protein complex of dual genetic origin, whose biogenesis is a complicated and highly regulated process. Nuclear-encoded auxiliary factors coordinate the expression of plastid- and nuclear-encoded PSII subunits in response to environmental and endogenous cues. Studies performed with photosynthesis mutants of green algae and higher plants have revealed that these factors control the expression of the plastid-encoded genes at the posttranscriptional level. Many of the regulatory proteins are able to modify the efficiency of translation of specific PSII subunit transcripts, and redox regulation plays an important role in the control of these processes. The assembly of PSII proteins into a functional complex also requires the activity of nuclear-encoded factors, several of which are conserved throughout the plant kingdom, but some appear only in higher plants and green algae, indicating that new requirements for PSII assembly have evolved during evolution. Recent studies suggest that the initial steps of PSII biogenesis are localized to a specific region of the interior membrane system of chloroplasts and cyanobacteria.

Keywords

PSII Complex Reaction Center Complex PSII Core Complex PSII Protein PSII Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

ADP

Adenosine-diphosphate;

ATAB

Arabidopsis translation of psaB mRNA;

ATP

Adenosine-triphosphate;

CES

Control by epistasy of synthesis;

CRP

Chloroplast RNA processing;

EMS

Ethyl-methanesulfonate;

Hcf

High chlorophyll fluorescence;

LHCII

Light harvesting complex II;

Mbb

Accumulation/maturation of psbB mRNA;

OEC

Oxygen evolving complex;

PABP

Poly(A)-binding protein;

PDI

Protein disulfide isomerase;

PPIase

Peptidyl-prolyl isomerase;

PSI

Photosystem I;

PSII

Photosystem II;

RB

RNA binding;

RBP

RNA binding protein;

RBS

Ribosome binding site;

RC

PSII reaction center-like complex containing D1, D2 and PsbE/F;

RC47

PSII core complex lacking CP43;

RCC1

Monomeric PSII core complex;

RCC2

Dimeric PSII core complex;

cpSRP

Signal recognition particle;

SDR

Short chain dehydrogenase reductase;

Tab

Translation of psaB mRNA;

Tba

Translation of psbA mRNA;

Tbc

Translation of psbC mRNA;

TPR

Tetratrico peptide repeat;

UTR

Untranslated region;

UV

Ultraviolet;

Ycf

Hypothetical chloroplast open-reading frame

Notes

Acknowledgments

The research on PSII biogenesis was supported by a grant to P.W. from the German Science Foundation through SFB-TR1.

References

  1. Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240PubMedCrossRefGoogle Scholar
  2. Alergand T, Peled-Zehavi H, Katz Y, Danon A (2006) The chloroplast protein disulfide isomerase RB60 reacts with a regulatory disulfide of the RNA-binding protein RB47. Plant Cell Physiol 47:540–548PubMedCrossRefGoogle Scholar
  3. Anbudurai PR, Mor TS, Ohad I, Shestakov SV, Pakrasi HB (1994) The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc Natl Acad Sci USA 91:8082–8086PubMedCrossRefGoogle Scholar
  4. Anderson LB, Maderia M, Ouellette AJ, Putnam-Evans C, Higgins L, Krick T, MacCoss MJ, Lim H, Yates JR 3rd, Barry BA (2002) Posttranslational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci USA 99:14676–14681PubMedCrossRefGoogle Scholar
  5. Armbruster U, Zuhlke J, Rengstl B, Kreller R, Makarenko E, Ruhle T, Schunemann D, Jahns P, Weisshaar B, Nickelsen J, Leister D (2010) The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell 22(10):3439–3460PubMedCrossRefGoogle Scholar
  6. Auchincloss AH, Zerges W, Perron K, Girard-Bascou J, Rochaix JD (2002) Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. J Cell Biol 157:953–962PubMedCrossRefGoogle Scholar
  7. Baena-Gonzalez E, Aro E-M (2002) Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B 357:1451–1460CrossRefGoogle Scholar
  8. Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7:2637–2644PubMedGoogle Scholar
  9. Barneche F, Winter V, Crevecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918PubMedCrossRefGoogle Scholar
  10. Bellafiore S, Ferris P, Naver H, Gohre V, Rochaix JD (2002) Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14:2303–2314PubMedCrossRefGoogle Scholar
  11. Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M (2000) Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics 156:1503–1517PubMedGoogle Scholar
  12. Boudreau E, Nickelsen J, Lemaire SD, Ossenbühl F, Rochaix JD (2000) The Nac2 gene of Chlamydo­­monas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J 19:3366–3376PubMedCrossRefGoogle Scholar
  13. Burnap RL (2004) D1 protein processing and Mn cluster assembly in light of the emerging photosystem II structure. Phys Chem Chem Phys 6(20):4803–4809CrossRefGoogle Scholar
  14. Cai W, Ma J, Chi W, Zou M, Guo J, Lu C, Zhang L (2010) Cooperation of LPA3 and LPA2 is essential for photosystem II assembly in Arabidopsis. Plant Physiol 154:109–120PubMedCrossRefGoogle Scholar
  15. Chen H, Zhang D, Guo J, Wu H, Jin M, Lu Q, Lu C, Zhang L (2006) A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol Biol 61:567–575PubMedCrossRefGoogle Scholar
  16. Chi W, Zhang L, Burnap R, Vermaas W (2012) Dissection of photosynthetic mechanisms in Arabidopsis. In: Burnap RL, Vermaas WF (eds) Functional genomics and evolution of photosynthetic systems. Springer, Dordrecht, pp 177–198CrossRefGoogle Scholar
  17. Choquet Y, Stern DB, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA (1998) Translation of cytochrome f is autoregulated through the 5′ untranslated region of petA mRNA in Chlamydomonas chloroplasts. Proc Natl Acad Sci USA 95:4380–4385PubMedCrossRefGoogle Scholar
  18. Choquet Y, Zito F, Wostrikoff K, Wollman F-A (2003) Cytochrome f translation in Chlamydomonas chloroplast is autoregulated by its carboxyl-terminal domain. Plant Cell 15:1443–1454PubMedCrossRefGoogle Scholar
  19. Chua NH, Blobel G, Siekevitz P, Palade GE (1973) Attachment of chloroplast polysomes to thylakoid membranes in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 70:1554–1558PubMedCrossRefGoogle Scholar
  20. Clery A, Blatter M, Allain FH (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18:290–298PubMedCrossRefGoogle Scholar
  21. Danon A, Mayfield SPY (1991) Light-regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J 10:3993–4001PubMedGoogle Scholar
  22. Danon A, Mayfield SP (1994) ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light-modulated translation. EMBO J 13:2227–2235PubMedGoogle Scholar
  23. Dauvillee D, Stampacchia O, Girard-Bascou J, Rochaix JD (2003) Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO J 22:6378–6388PubMedCrossRefGoogle Scholar
  24. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39PubMedCrossRefGoogle Scholar
  25. del Campo EM (2009) Post-transcriptional control of chloroplast gene expression. Gene Regul Syst Bio 3:31–47Google Scholar
  26. Dent RM, Han M, Niyogi KK (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 6:364–371PubMedCrossRefGoogle Scholar
  27. Dewez D, Park S, Garcia-Cerdan JG, Lindberg P, Melis A (2009) Mechanism of REP27 protein action in the D1 protein turnover and photosystem II repair from photodamage. Plant Physiol 151:88–99PubMedCrossRefGoogle Scholar
  28. Diner BA, Ries DF, Cohen BN, Metz JG (1988) COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. J Biol Chem 263:8972–8980PubMedGoogle Scholar
  29. Dobakova M, Sobotka R, Tichy M, Komenda J (2009) Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 149:1076–1086PubMedCrossRefGoogle Scholar
  30. Dormann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118PubMedCrossRefGoogle Scholar
  31. Douce R (1974) Site of biosynthesis of galactolipids in spinach chloroplasts. Science 183:852–853PubMedCrossRefGoogle Scholar
  32. Drapier D, Rimbault B, Vallon O, Wollman FA, Choquet Y (2007) Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase subunits. EMBO J 26:3581–3591PubMedCrossRefGoogle Scholar
  33. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257PubMedCrossRefGoogle Scholar
  34. Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plucken H, Klaff P, Stein B, Bechtold N, Westhoff P (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell 13:2127–2141PubMedGoogle Scholar
  35. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  36. Fong CL, Lentz A, Mayfield SP (2000) Disulfide bond formation between RNA binding domains is used to regulate mRNA binding activity of the chloroplast poly(A)-binding protein. J Biol Chem 275:8275–8278PubMedCrossRefGoogle Scholar
  37. Fromm H, Devic M, Fluhr R, Edelman M (1985) Control of psbA gene expression: in mature Spirodela chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J 4:291–295PubMedGoogle Scholar
  38. Fu A, He Z, Cho HS, Lima A, Buchanan BB, Luan S (2007) A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15947–15952PubMedCrossRefGoogle Scholar
  39. Fujita S, Inagaki N, Ono T, Inoue Y, Satoh K (1989) Cleavage of a synthetic COOH-terminal oligopeptide of D1 precursor protein by a purified processing enzyme. FEBS Lett 255:1–4PubMedCrossRefGoogle Scholar
  40. Fulgosi H, Vener AV, Altschmied L, Herrmann RG, Andersson B (1998) A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen. EMBO J 17:1577–1587PubMedCrossRefGoogle Scholar
  41. Gamble PE, Mullet JE (1989) Translation and stability of proteins encoded by the plastid psbA and psbB genes are regulated by a nuclear gene during light-induced chloroplast development in barley. J Biol Chem 264:7236–7243PubMedGoogle Scholar
  42. Golbik R, Yu C, Weyher-Stingl E, Huber R, Moroder L, Budisa N, Schiene-Fischer C (2005) Peptidyl prolyl cis/trans-isomerases: comparative reactivities of cyclophilins, FK506-binding proteins, and parvulins with fluorinated oligopeptide and protein substrates. Biochemistry 44:16026–16034PubMedCrossRefGoogle Scholar
  43. Goral TK, Johnson MP, Brain AP, Kirchhoff H, Ruban AV, Mullineaux CW (2010) Visualizing the mobi­lity and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J 62:948–959PubMedGoogle Scholar
  44. Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS (2010) Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynth Res 106:3–17PubMedCrossRefGoogle Scholar
  45. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  46. Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671PubMedCrossRefGoogle Scholar
  47. Herrmann RG, Westhoff P, Link G (1992) Biogenesis of plastids in higher plants. In: Herrmann RG (ed) Plant gene research. Cell organelles. Springer, Wien-New York, pp 275–349CrossRefGoogle Scholar
  48. Hirose T, Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: Development of an in vitro translation system from tobacco chloroplasts. EMBO J 15:1687–1695PubMedGoogle Scholar
  49. Hodge AJ, McLean JD, Mercer FV (1955) Ultrastructure of the lamellae and grana in the chloroplasts of Zea mays L. J Biophys Biochem Cytol 1:605–614PubMedCrossRefGoogle Scholar
  50. Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009) Peptidyl-prolyl isomerase activity in chloroplast thylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50:1801–1814PubMedCrossRefGoogle Scholar
  51. Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679PubMedCrossRefGoogle Scholar
  52. Kanervo E, Suorsa M, Aro EM (2005) Functional flexibility and acclimation of the thylakoid membrane. Photochem Photobiol Sci 4:1072–1080PubMedCrossRefGoogle Scholar
  53. Kanervo E, Singh M, Suorsa M, Paakkarinen V, Aro E, Battchikova N, Aro EM (2008) Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum). Plant Cell Physiol 49:396–410PubMedCrossRefGoogle Scholar
  54. Kargul J, Barber J (2008) Photosynthetic acclimation: structural reorganisation of light harvesting antenna–role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J 275:1056–1068PubMedCrossRefGoogle Scholar
  55. Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012PubMedCrossRefGoogle Scholar
  56. Keren N, Ohkawa H, Welsh EA, Liberton M, Pakrasi HB (2005) Psb29, a conserved 22-kD protein, functions in the biogenesis of Photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell 17:2768–2781PubMedCrossRefGoogle Scholar
  57. Kim J, Mayfield S (2002) The active site of the thioredoxin-like domain of chloroplast protein disulfide isomerase, RB60, catalyzes the redox-regulated binding of chloroplast poly(A)-binding protein, RB47, to the 5′ untranslated region of psbA mRNA. Plant Cell Physiol 43:1238–1243PubMedCrossRefGoogle Scholar
  58. Kim J, Klein PG, Mullet JE (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem 266:14931–14938PubMedGoogle Scholar
  59. Kim J, Klein PG, Mullet JE (1994) Vir-115 gene product is required to stabilize D1 translation intermediates in chloroplasts. Plant Mol Biol 25:459–467PubMedCrossRefGoogle Scholar
  60. Klein RR, Mason HS, Mullet JE (1988) Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol 106:289–301PubMedCrossRefGoogle Scholar
  61. Klinkert B, Ossenbuhl F, Sikorski M, Berry S, Eichacker L, Nickelsen J (2004) PratA, a periplasmic tetratricopeptide repeat protein involved in biogenesis of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 279:44639–44644PubMedCrossRefGoogle Scholar
  62. Komenda J (2005) Autotrophic cells of the Synechocystis psbH deletion mutant are deficient in synthesis of CP47 and accumulate inactive PS II core complexes. Photosynth Res 85:161–167PubMedCrossRefGoogle Scholar
  63. Komenda J, Nickelsen J, Tichy M, Prasil O, Eichacker LA, Nixon PJ (2008) The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 283:22390–22399PubMedCrossRefGoogle Scholar
  64. Kovacs L, Damkjaer J, Kereiche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120PubMedCrossRefGoogle Scholar
  65. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242PubMedCrossRefGoogle Scholar
  66. Krupinska K, Apel K (1989) Light-induced transformation of etioplasts to chloroplasts of barley without transcriptional control of plastid gene expression. Mol Gen Genet 219:467–473CrossRefGoogle Scholar
  67. Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix J-D (1989) Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Cell 58:869–876PubMedCrossRefGoogle Scholar
  68. Kufryk GI, Vermaas WFJ (2001) A novel protein involved in the functional assembly of the oxygen-evolving complex of photosystem II in Synechocystis sp PCC 6803. Biochemistry 40:9247–9255PubMedCrossRefGoogle Scholar
  69. Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S (2006) A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:12631–12636PubMedCrossRefGoogle Scholar
  70. Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47PubMedCrossRefGoogle Scholar
  71. Ma J, Peng L, Guo J, Lu Q, Lu C, Zhang L (2007) LPA2 is required for efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 19:1980–1993PubMedCrossRefGoogle Scholar
  72. Malnoe, Mayfield SP, Rochaix JD (1988) Comparative analysis of the biogenesis of photosystem II in the wild-type and Y-1 mutant of Chlamydomonas reinhardtii. J Cell Biol 106:609–616PubMedCrossRefGoogle Scholar
  73. Mamedov F, Nowaczyk MM, Thapper A, Rogner M, Styring S (2007) Functional characterization of monomeric photosystem II core preparations from Thermosynechococcus elongatus with or without the Psb27 protein. Biochemistry 46:5542–5551PubMedCrossRefGoogle Scholar
  74. Margulies MM (1983) Synthesis of photosynthetic membrane proteins directed by RNA from rough thylakoids of Chlamydomonas reinhardtii. Eur J Biochem 137:241–248PubMedCrossRefGoogle Scholar
  75. Marin-Navarro J, Manuell AL, Wu J, PM S (2007) Chloroplast translation regulation. Photosynth Res 94:359–374PubMedCrossRefGoogle Scholar
  76. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedCrossRefGoogle Scholar
  77. Meurer J, Plücken H, Kowallik KV, Westhoff P (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 17:5286–5297PubMedCrossRefGoogle Scholar
  78. Miles D (1980) Mutants of higher plants: maize. Method Enzymol 69:3–23CrossRefGoogle Scholar
  79. Miles D (1994) The role of high chlorophyll fluores­cence photosynthesis mutants in the analysis of chloroplast thylakoid membrane assembly and function. Maydica 39:35–45Google Scholar
  80. Minagawa J, Takahashi Y (2004) Structure, function and assembly of photosystem II and its light-harvesting proteins. Photosynth Res 82:241–263PubMedCrossRefGoogle Scholar
  81. Minai L, Wostrikoff K, Wollman FA, Choquet Y (2006) Chloroplast biogenesis of photosystem II cores involves a series of assembly-controlled steps that regulate translation. Plant Cell 18:159–175PubMedCrossRefGoogle Scholar
  82. Monde RA, Greene JC, Stern DB (2000a) Disruption of the petB-petD intergenic region in tobacco chloroplasts affects petD RNA accumulation and translation. Mol Gen Genet 263:610–618PubMedCrossRefGoogle Scholar
  83. Monde RA, Zito F, Olive J, Wollman FA, Stern DB (2000b) Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b 6/f complex. Plant J 21:61–72PubMedCrossRefGoogle Scholar
  84. Moore M, Goforth RL, Mori H, Henry R (2003) Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: substrate not required. J Cell Biol 162:1245–1254PubMedCrossRefGoogle Scholar
  85. Müller B, Eichacker LA (1999) Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11:2365–2377PubMedGoogle Scholar
  86. Mulo P, Sirpio S, Suorsa M, Aro EM (2008) Auxiliary proteins involved in the assembly and sustenance of photosystem II. Photosynth Res 98:489–501PubMedCrossRefGoogle Scholar
  87. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565PubMedCrossRefGoogle Scholar
  88. Nickelsen J, Fleischmann M, Boudreau E, Rahire M, Rochaix JD (1999) Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in chlamydomonas. Plant Cell 11:957–970PubMedGoogle Scholar
  89. Nickelsen J, Rengstl B, Stengel A, Schottkowski M, Soll J, Ankele E (2011) Biogenesis of the cyanobacterial thylakoid membrane system – an update. FEMS Microbiol Lett 315:1–5Google Scholar
  90. Nixon PJ, Trost JT, Diner BA (1992) Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31:10859–10871PubMedCrossRefGoogle Scholar
  91. Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16PubMedCrossRefGoogle Scholar
  92. Nowaczyk MM, Heberler R, Schlodder E, Meyer HE, Warscheid B, Rogner M (2006) Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18:3121–3131PubMedCrossRefGoogle Scholar
  93. Ossenbühl F, Hartmann K, Nickelsen J (2002) A chloroplast RNA binding protein from stromal thylakoid membranes specifically binds to the 5′ untranslated region of the psbA mRNA. Eur J Biochem 269:3912–3919PubMedCrossRefGoogle Scholar
  94. Ossenbühl F, Gohre V, Meurer J, Krieger-Liszkay A, Rochaix JD, Eichacker LA (2004) Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. Plant Cell 16:1790–1800PubMedCrossRefGoogle Scholar
  95. Park S, Khamai P, Garcia-Cerdan JG, Melis A (2007) REP27, a tetratricopeptide repeat nuclear-encoded and chloroplast-localized protein, functions in D1/32-kD reaction center protein turnover and photosystem II repair from photodamage. Plant Physiol 143:1547–1560PubMedCrossRefGoogle Scholar
  96. Pasch JC, Nickelsen J, Schunemann D (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol 69:440–447PubMedCrossRefGoogle Scholar
  97. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, vonHeijne G, vanWijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236PubMedCrossRefGoogle Scholar
  98. Peng L, Ma J, Chi W, Guo J, Zhu S, Lu Q, Lu C, Zhang L (2006) LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 18:955–969PubMedCrossRefGoogle Scholar
  99. Ploscher M, Granvogl B, Zoryan M, Reisinger V, Eichacker LA (2009) Mass spectrometric characterization of membrane integral low molecular weight proteins from photosystem II in barley etioplasts. Proteomics 9:625–635PubMedCrossRefGoogle Scholar
  100. Plücken H, Müller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90PubMedCrossRefGoogle Scholar
  101. Rattanachaikunsopon P, Rosch C, Kuchka MR (1999) Cloning and characterization of the nuclear AC115 gene of Chlamydomonas reinhardtii. Plant Mol Biol 39:1–10PubMedCrossRefGoogle Scholar
  102. Reisinger V, Eichacker LA (2007) How to analyze protein complexes by 2D blue native SDS-PAGE. Proteomics 7(Suppl 1):6–16PubMedCrossRefGoogle Scholar
  103. Richter CV, Bals T, Schunemann D (2010) Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport. Eur J Cell Biol 89:965–973PubMedCrossRefGoogle Scholar
  104. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230PubMedCrossRefGoogle Scholar
  105. Rochaix JD (1996) Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Plant Mol Biol 32:327–341PubMedCrossRefGoogle Scholar
  106. Rochaix JD (2007) The role of nucleus- and chloroplast-encoded factors in the synthesis of the photosynthetic apparatus. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht/Boston/London, pp 145–165CrossRefGoogle Scholar
  107. Rochaix JD (2011) Regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:375–383PubMedCrossRefGoogle Scholar
  108. Rochaix JD, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8:1013–1021PubMedGoogle Scholar
  109. Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV (2000) Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol 123:1525–1536PubMedCrossRefGoogle Scholar
  110. Rokka A, Suorsa M, Saleem A, Battchikova N, Aro EM (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 388:159–168PubMedCrossRefGoogle Scholar
  111. Romano P, Gray J, Horton P, Luan S (2005) Plant immunophilins: functional versatility beyond protein maturation. New Phytol 166:753–769PubMedCrossRefGoogle Scholar
  112. Roose JL, Pakrasi HB (2004) Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J Biol Chem 279:45417–45422PubMedCrossRefGoogle Scholar
  113. Roose JL, Pakrasi HB (2008) The Psb27 protein facilitates manganese cluster assembly in photosystem II. J Biol Chem 283:4044–4050PubMedCrossRefGoogle Scholar
  114. Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of Photosystem II. Photosynth Res 92:369–387PubMedCrossRefGoogle Scholar
  115. Sane AP, Stein B, Westhoff P (2005) The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J 42:720–730PubMedCrossRefGoogle Scholar
  116. Schottkowski M, Gkalympoudis S, Tzekova N, Stelljes C, Schunemann D, Ankele E, Nickelsen J (2009) Interaction of the periplasmic PratA factor and the PsbA (D1) protein during biogenesis of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 284:1813–1819PubMedCrossRefGoogle Scholar
  117. Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365PubMedCrossRefGoogle Scholar
  118. Schult K, Meierhoff K, Paradies S, Toller T, Wolff P, Westhoff P (2007) The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell 19:1329–1346PubMedCrossRefGoogle Scholar
  119. Schunemann D (2004) Structure and function of the chloroplast signal recognition particle. Curr Genet 44:295–304PubMedCrossRefGoogle Scholar
  120. Schwarz C, Elles I, Kortmann J, Piotrowski M, Nickelsen J (2007) Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Plant Cell 19:3627–3639PubMedCrossRefGoogle Scholar
  121. Shen Y, Danon A, Christopher DA (2001) RNA binding-proteins interact specifically with the Arabidopsis chloroplast psbA mRNA 5′ untranslated region in a redox-dependent manner. Plant Cell Physiol 42:1071–1078PubMedCrossRefGoogle Scholar
  122. Shi LX, Schroder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608:75–96PubMedCrossRefGoogle Scholar
  123. Shimojima M, Ohta H, Nakamura Y, Wada H, Murata N (2010) Biosynthesis and function of chloroplast lipids. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Dordrecht, pp 35–55Google Scholar
  124. Sirpio S, Allahverdiyeva Y, Suorsa M, Paakkarinen V, Vainonen J, Battchikova N, Aro EM (2007) TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle. Biochem J 406:415–425PubMedCrossRefGoogle Scholar
  125. Sirpio S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM (2008) AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J 55:639–651PubMedCrossRefGoogle Scholar
  126. Somanchi A, Barnes D, Mayfield SP (2005) A nuclear gene of Chlamydomonas reinhardtii, Tba1, encodes a putative oxidoreductase required for translation of the chloroplast psbA mRNA. Plant J 42:341–352PubMedCrossRefGoogle Scholar
  127. Stampacchia O, Girard-Bascou J, Zanasco JL, Zerges W, Bennoun P, Rochaix JD (1997) A nuclear-encoded function essential for translation of the chloroplast psaB mRNA in Chlamydomonas. Plant Cell 9:773–782PubMedGoogle Scholar
  128. Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553PubMedCrossRefGoogle Scholar
  129. Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301PubMedCrossRefGoogle Scholar
  130. Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155PubMedCrossRefGoogle Scholar
  131. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168PubMedCrossRefGoogle Scholar
  132. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730PubMedGoogle Scholar
  133. Suorsa M, Aro EM (2007) Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res 93:89–100PubMedCrossRefGoogle Scholar
  134. Sveshnikov D, Funk C, Schroder WP (2007) The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilises the donor side of photosystem II. Photosynth Res 93:101–109PubMedCrossRefGoogle Scholar
  135. Takasaka K, Iwai M, Umena Y, Kawakami K, Ohmori Y, Ikeuchi M, Takahashi Y, Kamiya N, Shen JR (2010) Structural and functional studies on Ycf12 (Psb30) and PsbZ-deletion mutants from a thermophilic cyanobacterium. Biochim Biophys Acta 1797:278–284PubMedCrossRefGoogle Scholar
  136. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135PubMedCrossRefGoogle Scholar
  137. Trebitsh T, Levitan A, Sofer A, Danon A (2000) Translation of chloroplast psbA mRNA is modulated in the light by counteracting oxidizing and reducing activities. Mol Cell Biol 20:1116–1123PubMedCrossRefGoogle Scholar
  138. Trebitsh T, Meiri E, Ostersetzer O, Adam Z, Danon A (2001) The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts. J Biol Chem 276:4564–4569PubMedCrossRefGoogle Scholar
  139. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473:55–60PubMedCrossRefGoogle Scholar
  140. Uniacke J, Zerges W (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19:3640–3654PubMedCrossRefGoogle Scholar
  141. Uniacke J, Zerges W (2009) Chloroplast protein targeting involves localized translation in Chlamydomonas. Proc Natl Acad Sci USA 106:1439–1444PubMedCrossRefGoogle Scholar
  142. Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix JD (2000) Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J 21:469–482PubMedCrossRefGoogle Scholar
  143. van de Meene AM, Hohmann-Marriott MF, Vermaas WF, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270PubMedCrossRefGoogle Scholar
  144. van Wijk KJ, Bingsmark S, Aro EM, Andersson B (1995) In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J Biol Chem 270:25685–25695PubMedCrossRefGoogle Scholar
  145. Vener AV, Rokka A, Fulgosi H, Andersson B, Herrmann RG (1999) A cyclophilin-regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. Biochemistry 38:14955–14965PubMedCrossRefGoogle Scholar
  146. von Wettstein D (1959) The effect of genetic factors on the submicroscopic structures of the chloroplasts. J Ultrastruct Res 3:235–239Google Scholar
  147. Wang P and Dalbey RE (2011) Inserting membrane proteins: The YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim Biophys Acta 1808:866–875Google Scholar
  148. Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136:3594–3604PubMedCrossRefGoogle Scholar
  149. Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L (2010) LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 285:21391–21398PubMedCrossRefGoogle Scholar
  150. Westhoff P, Grüne H, Schrubar H, Oswald A, Streubel M, Ljungberg U, Herrmann RG (1988) Mechanisms of plastid and nuclear gene expression during thylakoid membrane biogenesis in higher plants. In: Scheer H, Schneider S (eds) Photosynthetic light-harvesting systems- structure and function. Walter de Gruyter Verlag, Berlin, pp 261–276Google Scholar
  151. White RA, Hoober JK (1994) Biogenesis of thylakoid membranes in Chlamydomonas reinhardtii y1 (a kinetic study of initial greening). Plant Physiol 106:583–590PubMedCrossRefGoogle Scholar
  152. Wollman FA, Minai L, Nechushtai R (1999) The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim Biophys Acta 1411:21–85PubMedCrossRefGoogle Scholar
  153. Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y (2004) Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 23:2696–2705PubMedCrossRefGoogle Scholar
  154. Wu HY, Kuchka MR (1995) A nuclear suppressor overcomes defects in the synthesis of the chloroplast psbD gene product caused by mutations in two distinct nuclear genes of Chlamydomonas. Curr Genet 27:263–269PubMedCrossRefGoogle Scholar
  155. Wydrzynski T, Satoh K, Freeman J (eds) (2005) Photo­system II. The light-driven water: plastoquinone oxidoreductase. Springer, DordrechtCrossRefGoogle Scholar
  156. Yamamoto T, Burke J, Autz G, Jagendorf AT (1981) Bound ribosomes of Pea chloroplast thylakoid membranes: location and release in Vitro by high salt, Puromycin, and RNase. Plant Physiol 67:940–949PubMedCrossRefGoogle Scholar
  157. Yi L, Dalbey RE (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review). Mol Membr Biol 22:101–111PubMedCrossRefGoogle Scholar
  158. Yohn CB, Cohen A, Danon A, Mayfield SP (1996) Altered mRNA binding activity and decreased translation initiation in a nuclear mutant lacking translation of the chloroplast psbA mRNA. Mol Cell Biol 16:3560–3566PubMedGoogle Scholar
  159. Yohn CB, Cohen A, Danon A, Mayfield SP (1998a) A poly(A) binding protein functions in the chloroplast as a message-specific translation factor. Proc Natl Acad Sci USA 95:2238–2243PubMedCrossRefGoogle Scholar
  160. Yohn CB, Cohen A, Rosch C, Kuchka MR, Mayfield SP (1998b) Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol 142:435–442PubMedCrossRefGoogle Scholar
  161. Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448PubMedCrossRefGoogle Scholar
  162. Zerges W, Rochaix JD (1998) Low density membranes are associated with RNA-binding proteins and thylakoids in the chloroplast of Chlamydomonas reinhardtii. J Cell Biol 140:101–110PubMedCrossRefGoogle Scholar
  163. Zerges W, Girard-Bascou J, Rochaix JD (1997) Translation of the chloroplast psbC mRNA is controlled by interactions between its 5′ leader and the nuclear loci TBC1 and TBC3 in Chlamydomonas reinhardtii. Mol Cell Biol 17:3440–3448PubMedGoogle Scholar
  164. Zerges W, Wang SW, Rochaix JD (2002) Light activates binding of membrane proteins to chloroplast RNAs in Chlamydomonas reinhardtii. Plant Mol Biol 50:573–585PubMedCrossRefGoogle Scholar
  165. Zhang LX, Paakkarinen V, Van Wijk KJ, Aro EM (1999) Co-translational assembly of the D1 protein into photosystem II. J Biol Chem 274:16062–16067PubMedCrossRefGoogle Scholar
  166. Zhang LX, Paakkarinen V, Van Wijk KJ, Aro EM (2000) Biogenesis of the chloroplast-encoded D1 protein: regulation of translation elongation, insertion, and assembly into photosystem II. Plant Cell 12:1769–1781PubMedGoogle Scholar
  167. Zhelyazkova P, Hammani K, Rojas M, Voelker R, Vargas-Suarez M, Borner T et al. (2012) Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nuc Acids Res 40:3092–3105Google Scholar
  168. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Developmental and Molecular Biology of PlantsHeinrich-Heine-University of DüsseldorfDüsseldorfGermany

Personalised recommendations