Skip to main content

Response of Mature, Developing and Senescing Chloroplasts to Environmental Stress

  • Chapter
  • First Online:
Plastid Development in Leaves during Growth and Senescence

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

The composition, organization and function of the photosynthetic apparatus of higher plants change in response to different environmental stress conditions. The changes include disorganization of thylakoid membranes, alteration in the composition and function of ­light-harvesting complexes (LHC), impairment of electron transport chain and inactivation of reaction centers of photosystems (PSI and PSII), ATP synthase and enzymes of the Calvin-Benson cycle. It is believed that these changes bring about imbalances in photostasis of photosynthesis, redox homeostasis, and endogenous sugar status. These imbalances are responsible for the metabolism of reactive oxygen species (ROS) and play important regulatory roles in the process of acclimation of plants to various environments. There is convincing evidence that such imbalances modulate the expression of many plastid and nuclear genes encoding photosynthetic components. However, with respect to both damage and acclimation, the responses to environmental stress factors of mature, developing and sene­scing chloroplasts are different. This chapter discusses the evidences for the different aspects of acclimation and provides an understanding of the underlying mechanisms of damage and acclimation of chloroplasts during different phases of leaf development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid;

b Zip:

Basic leucine zipper;

Car:

Carotenoids;

Chl:

Chlorophyll;

GSH:

Glutathione;

JA:

Jasmonic acid;

LHC:

Light harvesting complex;

LHCP:

Light harvesting chlorophyll protein complex;

PLB:

Prolamellar body;

POR:

Protochlorophyllide oxidoreductase;

PSI (II):

Photosystem I (II);

ROS:

Reactive oxygen species;

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase;

SA:

Salicylic acid;

SAGs :

Senescence associated genes;

SDG :

Senescence down-regulating genes;

SnRK 1:

Sucrose non-fermenting 1-related kinase 1

References

  • Agüera E, Cabello P, de la Haba P (2010) Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiol Plant 138:256–267

    Article  PubMed  CAS  Google Scholar 

  • Alberte RS, Fiscus EL, Naylor AW (1975) The effects of water stress on the development of the photosynthetic apparatus in greening leaves. Plant Physiol 55:317–321

    Article  PubMed  CAS  Google Scholar 

  • Albrecht V, Estavillo GM, Cuttriss AJ, Pogson BJ (2011) Identifying chloroplast biogenesis and signalling mutants in Arabidopsis thaliana. Methods Mol Biol 684:257–272

    Article  PubMed  CAS  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Andersson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13:351–355

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR (ed) Photosynthesis and environment. Kluwer, Dordrecht, pp 101–121

    Google Scholar 

  • Antal TK, Lo W, Armstrong WH, Tyystjärvi E (2009) Illumination with ultraviolet or visible light induces chemical changes in water-soluble manganese complex, [Mn4O6(bpea)4]Br4. Photochem Photobiol 85:663–668

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  PubMed  CAS  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  PubMed  CAS  Google Scholar 

  • Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482

    Article  PubMed  CAS  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–943

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Frizzo A, Friso G, Rigoni F, Giacometti GM (1995) Degradation of the D1 protein of photosystem II reaction centre by ultraviolet-B light requires the presence of functional manganese on the donor side. Eur J Biochem 227:723–729

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1998) Photosystem II. Biochim Biophys Acta 1365:269–277

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Sharma J (2000) Application of mass spectrometry to the study of photosystem II. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 413–425

    Google Scholar 

  • Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008

    Article  PubMed  CAS  Google Scholar 

  • Barros T, Royant A, Standfuss J, Dreuw A, Kuhlbrandt W (2009) Crystal structure of plant light harvesting complex shows the active energy transmitting state. EMBO J 28:298–306

    Article  PubMed  CAS  Google Scholar 

  • Becker W, Apel K (1993) Differences in gene expression between natural and artificially induced leaf senescence. Planta 189:74–79

    Article  CAS  Google Scholar 

  • Behera S, Nayak L, Biswal B (2003) Senescing leaves possess potential for stress adaptation: the developing leaves acclimated to high light exhibit increased tolerance to osmotic stress during senescence. J Plant Physiol 160:125–131

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bischof K, Krabs G, Wiencke C, Hanelt D (2002) Solar ultraviolet radiation affects the activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L. Planta 215:502–509

    Article  PubMed  CAS  Google Scholar 

  • Biswal B (1997) Chloroplasts, pigments and molecular responses of photosynthesis under Stress. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 877–885

    Google Scholar 

  • Biswal B, Biswal UC (1999) Photosynthesis under stress: stress signals and adaptive response of chloroplasts. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 315–336

    Chapter  Google Scholar 

  • Biswal B, Joshi PN, Kulandaivelu G (1997) Changes in leaf protein and pigment contents and photosynthetic activities during senescence of detached maize leaves: influence of different ultraviolet radiations. Photosynthetica 34:37–44

    Article  CAS  Google Scholar 

  • Biswal B, Raval MK, Biswal UC, Joshi PN (2008) Response of photosynthetic organelles to environmental stress: modulation by sulfur metabolism. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin/Heidelberg, pp 167–192

    Chapter  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Biswal B, Mohapatra PK, Raval MK, Biswal UC (2012) Photosynthetic regulation of senescence in green leaves: involvement of sugar signaling. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress and future prospectives. IK International Publishing House, New Delhi, pp 245–260

    Google Scholar 

  • Biswal UC, Biswal B, Raval MK (2003) Chloroplast biogenesis: from proplastid to gerontoplast. Springer, Dordrecht

    Book  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Bondada BR, Syverstein JP (2003) Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol 23:553–559

    Article  PubMed  CAS  Google Scholar 

  • Bosl B, Grimminger V, Walter S (2006) The molecular chaperone Hsp104 – a molecular machine for protein disaggregation. J Struct Biol 156:139–148

    Article  PubMed  CAS  Google Scholar 

  • Bourque DP, McMillan PN, Clingenpeel WJ, Naylor AW (1975) Ultrastructural effects of water stress on chloroplast development in jack bean (Canavalia ensiformis [L.] DC). Plant Physiol 56:160–163

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Mialoundama AS, Camara B (2009) A sentinel role for plastids. In: Sandelius AS, Aronsson H (eds) The chloroplast. Springer, Heidelberg, pp 267–292

    Chapter  Google Scholar 

  • Brösche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  Google Scholar 

  • Bu Q, Zhu L, Dennis MD, Yu L, Lu SX, Person MD, Tobin EM, Browning KS, Huq E (2011) Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J Biol Chem 286:12066–12074

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence – a genomic approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative ­transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and darkstarvation induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Canaani C, Havaux M, Malkin S (1986) Hydroxylamine, hydrazine and methylamine donate electrons to the photo-oxidizing side of PSII in leaves inhibited in oxygen evolution due to water stress. Biochim Biophys Acta 851:151–155

    Article  CAS  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Google Scholar 

  • Carpentier R (1999) Effect of high temperature stress on photosynthetic apparatus. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 337–348

    Chapter  Google Scholar 

  • Casano LM, Martin M, Sabater B (1994) Sensitivity of super oxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol 106:1033–1039

    PubMed  CAS  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    Article  PubMed  CAS  Google Scholar 

  • Causin HF, Jauregui RN, Barneix AJ (2006) The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Sci 171:24–33

    Article  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129:747–755

    Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Over expression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    PubMed  CAS  Google Scholar 

  • Dau H, Iuzzolino L, Dittmer J (2001) The tetra manganese complex of photosystem II during its redox cycle – X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503:24–39

    Article  PubMed  CAS  Google Scholar 

  • De Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2000) Harvesting sunlight safely. Nature 403:371–374

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis book, vol 9, The American Society of Plant Biologists, Rockville, pp 1–24

    Google Scholar 

  • Deo PM, Biswal B (2001) Response of senescing cotyledons of clusterbean to water stress in moderate and low light: possible photoprotective role of β-carotene. Physiol Plant 112:47–54

    Article  PubMed  CAS  Google Scholar 

  • Deo PM, Biswal UC, Biswal B (2006) Water stress sensitized photoinhibition in senescing cotyledons of clusterbean: changes in thylakoid structure and inactivation of photosystem II. Photosynthetica 44:187–192

    Article  CAS  Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHC II phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Earl HJ, Tollenaar M (1999) Using chlorophyll fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the field. Field Crop Res 61:201–210

    Article  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley G, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23(11):3992–4012

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Chen YB (2003) Photoacclimation of light harvesting system in eukaryotic algae. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration: light harvesting antennas in photosynthesis, vol 13. Kluwer, Dordrecht, pp 423–447

    Chapter  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  PubMed  CAS  Google Scholar 

  • Flint SD, Caldwell MM (1996) Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighing factors. J Plant Physiol 148:107–114

    Article  CAS  Google Scholar 

  • Forreiter C, Apel K (1993) Light independent and light dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta 190:536–545

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Friso G, Spetea C, Giacometti GM, Vass I, Barbato R (1994a) Degradation of photosystem II reaction centre D1 protein induced by UVB radiation in isolated thylakoid: identification and characterization of C- and N-terminal breakdown products. Biochim Biophys Acta 1184:78–84

    Article  CAS  Google Scholar 

  • Friso G, Barbato R, Giacometti GM, Barbar J (1994b) Degradation of D2 protein due to UVB irradiation of the reaction centre of PSII. FEBS Lett 339:217–221

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark inducible gene from Arabidopsis thaliana are associated with leaf senescence and repressed by sugar. Physiol Plant 111:345–352

    Article  PubMed  CAS  Google Scholar 

  • Gartia S, Pradhan MK, Joshi PN, Biswal UC, Biswal B (2003) UV-A irradiation guards the photosynthetic apparatus against UV-B induced damage. Photosynthetica 41:545–549

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Vieira Da Silva JB (1987) Effects of drought on primary photosynthetic process of cotton leaves. Plant Physiol 83:360–364

    Article  PubMed  CAS  Google Scholar 

  • Ghasemzadeh A, Jaffar HZE, Rahamat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15:7907–7922

    Article  PubMed  CAS  Google Scholar 

  • Giardi MT, Cona A, Geiken B, Kucera T, Masojidek J, Mattoo AK (1996) Long-term drought stress induces structural and functional reorganization of photosystem II. Planta 199:118–125

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle dependent photoprotection in higher plant chloroplasts. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Gounaris K, Brain ARR, Quinn PJ, Williams WP (1984) Structural re-organization of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta 766:198–208

    Article  CAS  Google Scholar 

  • Govindjee, Kern JF, Messinger J, Whitmarsh J (2010) Photosystem II. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester. doi:10.1002/9780470015902.a0000669.pub2

  • Graan T, Boyer JS (1990) Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Planta 181:378–384

    Article  CAS  Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Matto AK, Edelman M (1989) Separate photosensitizers mediate degradation of the 32 kDa photosystem II reaction centre protein in the visible and UV spectral regions. Proc Natl Acad Sci USA 86:2865–2869

    Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, Tissue DT, Turnbull MH, Whitehead D (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98:2473–2478

    Article  PubMed  CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  PubMed  CAS  Google Scholar 

  • Haendeler J, Klotz LO (2008) Highlight: oxidative stress and senescence. Biol Chem 389:201–212

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1998) Dissecting the roles of osmolytes accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Havaux M, Dall’ Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    Article  PubMed  CAS  Google Scholar 

  • He Y, Gan S (2001) Identical promoter elements are involved in regulation of the OPR1gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol 47:595–605

    Article  PubMed  CAS  Google Scholar 

  • He JX, Wang J, Liang HG (1995) Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant 93:771–777

    Article  CAS  Google Scholar 

  • Helsper JPFG, Ric de Vos CH, Maas FM, Jonker HH, van den Broeck HC, Jordi W, Pot CS, Keizer LCP, Schapendonk AHCM (2003) Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiol Plant 117:171–178

    Article  CAS  Google Scholar 

  • Hu WH, Song XS, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46:581–588

    Article  CAS  Google Scholar 

  • Huner NPA, Oquist G, Hurry VM, Krol M, Falk S, Griffin M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant 98:358–364

    Article  CAS  Google Scholar 

  • Jegerschold C, Styring S (1996) Spectroscopic characterisation of intermediate steps involved in donor side induced photoinhibition of photosystem II. Biochemistry 35:7794–7801

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Wood AJ (2010) Genes for plant abiotic stress. Wiley-Blackwell, Oxford

    Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductase. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  • John CF, Morris K, Jordan BR, Thomas B, A-H-Mackerness S (2001) Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. J Exp Bot 52:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Jordan BR (1996) The effects of UV-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    Article  CAS  Google Scholar 

  • Jordan BR (2002) Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909–918

    Article  CAS  Google Scholar 

  • Jordan BR, He J, Chow WS, Anderson JM (1992) Changes in mRNA levels and subunits of ribulose-1, 5-bisphosphate carboxylase in response to supplementary UV-B radiation. Plant Cell Environ 15:91–98

    Article  CAS  Google Scholar 

  • Joshi PN, Biswal B, Biswal UC (1991) Effect of UV-A on ageing of wheat leaves and role of phytochrome. Environ Exp Bot 31:267–276

    Article  Google Scholar 

  • Joshi PN, Biswal B, Kulandaivelu G, Biswal UC (1994) Response of senescing wheat leaves to ultraviolet-A light: changes in energy transfer efficiency and PSII photochemistry. Radiat Environ Biophys 33:167–176

    Article  PubMed  CAS  Google Scholar 

  • Joshi PN, Ramaswamy NK, Raval MK, Desai TS, Nair PM, Biswal UC (1997) Response of senescing leaves of wheat seedlings to UV-A radiation: inhibition of PSII activity in light and darkness. Environ Exp Bot 38:237–242

    Article  CAS  Google Scholar 

  • Joshi PN, Ramaswamy NK, Iyer RK, Nair JS, Pradhan MK, Gartia S, Biswal B, Biswal UC (2007) Partial protection of photosynthetic apparatus from UV-B induced damage by UV-A radiation. Environ Exp Bot 59:166–172

    Article  CAS  Google Scholar 

  • Joshi PN, Gartia S, Pradhan MK, Biswal B (2011) Photosynthetic response of clusterbean chloroplasts to UV-B radiation: energy imbalance and loss in redox homeostasis between QA and QB of photosystem II. Plant Sci 181:90–95

    Article  PubMed  CAS  Google Scholar 

  • Jung HS, Chory J (2010) Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152:453–459

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46:522–530

    Article  PubMed  CAS  Google Scholar 

  • Kolb CA, Kaser MA, Kopecky J, Zotz G, Riederer M, Pf ündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  PubMed  CAS  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33:199–210

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed  CAS  Google Scholar 

  • Krause GH, Santarius KA (1975) Relative thermostability of the chloroplast envelope. Planta 127:285–299

    Article  CAS  Google Scholar 

  • Kutik J, Lubomir N, Demmers-Derks HH, Lawlor DW (1995) Chloroplast ultrastructure of sugar beet (Beta vulgaris L.) cultivated in normal and elevated CO2 concentrations with two contrasted nitrogen supplies. J Exp Bot 46:1797–1802

    Article  CAS  Google Scholar 

  • Kwak MJ, Lee SH, Woo SY (2011) Growth and anatomical characteristics of different water and light intensities on cork oak (Quercus suber L.) seedlings. Afr J Biotechnol 10:10964–10979

    Article  CAS  Google Scholar 

  • Laganowsky A, Gomez SM, Whitelegge JP, Nishio JN (2009) Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome. J Proteomics 72:397–415

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pom TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Larbi A, Abadia A, Abadia J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2009) Musings about the effects of environment on photosynthesis. Ann Bot 103:543–549

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Koizumi N, Sano H (2004) Identification of genes that are upregulated in concert during sugar depletion in Arabidopsis. Plant Cell Environ 27:337–345

    Article  CAS  Google Scholar 

  • Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2006) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49:115–127

    Article  PubMed  CAS  Google Scholar 

  • Lehner G, Lutz C (2003) Photosynthetic functions of cembran pines and dwarf pines during winter at ­timberline as regulated by different temperature, snow curve and light. J Plant Physiol 160:153–166

    Article  PubMed  CAS  Google Scholar 

  • Lepistö A, Rintämaki E (2012) Coordination of plastid and light signaling pathways upon development of Arabidopsis leaves under various photoperiods. Mol Plant 5:799–816

    Google Scholar 

  • Li J, Li G, Wang H, Deng XW (2011) Phytochrome signaling mechanisms. The Arabidopsis book, vol 9, The American Society of Plant Biologists, Rockville, pp 1–26

    Google Scholar 

  • Lichtenthaler HK, Babani F (2000) Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol Biochem 38:889–895

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Burkart S (1999) Photosynthesis and high light stress. Bulg J Plant Physiol 25:3–16

    CAS  Google Scholar 

  • Lidon FJC, Reboredo FH, Leitão AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV- B radiation on photosynthesis-an overview. Emir J Food Agric 24:546–556

    Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • López-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Schubert A, Restagno M (1996) Photosynthesis of grapevine leaves of different age at high and low light intensity. Acta Hort (ISHS) 427:171–176

    Google Scholar 

  • Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206

    CAS  Google Scholar 

  • Maksymiec W, Bednara J, Baszynski T (1995) Responses of runner bean plants to excess copper as a function of plant growth stages. Effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica 31:427–435

    CAS  Google Scholar 

  • Mauchamp A, Methy M (2004) Submergence-induced damage of photosynthetic apparatus in Phragmites australis. Environ Exp Bot 51:227–235

    Article  CAS  Google Scholar 

  • Mc Donald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NP (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    Article  CAS  Google Scholar 

  • Mishra SK, Patro L, Mohapatra PK, Biswal B (2008) Response of senescing rice leaves to flooding stress. Photosynthetica 46:315–317

    Article  CAS  Google Scholar 

  • Misra AN, Misra M (1987) Effect of age and rehydration on greening of wheat leaves. Plant Cell Physiol 28:47–51

    CAS  Google Scholar 

  • Misra AN, Dilnawaz F, Misra M, Biswal AK (2001) Thermoluminescence in chloroplasts as an indicator of alterations in photosystem II reaction center by biotic and abiotic stress. Photosynthetica 39:1–9

    Article  CAS  Google Scholar 

  • Misra AN, Biswal AK, Misra M (2002) Physiological, biochemical and molecular aspects of water stress responses in plants, and the biotechnologicalapplications. Proc Natl Acad Sci (India) 72 B(II):115–134

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mohanty S, Tripathy BC (2011) Early and late plastid development in response to chill stress and heat stress in wheat seedlings. Protoplasma 248:725–736

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra A, Tripathy BC (2007) Differential distribution of chlorophyll intermediates in stroma, envelope and thylakoid membrane in Beta Vulgaris. Photosynth Res 94:401–410

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) Senescence induced loss in photosynthesis enhances activity of cell wall β-glucosidase. Physiol Plant 138:348–355

    Article  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Moussa HR, Mohamed MAH (2011) Role of nitric acid or H2O2 in antioxidant defense system of Pisum sativum L. under drought stress. Nat Sci 9:211–216

    Google Scholar 

  • Mozzo M, Dall’ Osto L, Hienerwadel R, Bassi R, Croce R (2008) Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J Biol Chem 283:6184–6192

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  Google Scholar 

  • Munné-Bosch S, Jubany-Mari T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24:1319–1327

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, Mackerness SA, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in res­ponse to oxidative stress. J Exp Bot 54:2285–2292

    Article  PubMed  CAS  Google Scholar 

  • Nayak L, Biswal B, Ramaswamy NK, Iyer RK, Nair JS, Biswal UC (2003) Ultraviolet-A induced changes in photosystem II of thylakoids: effects of senescence and high growth temperature. J Photochem Photobiol (B: Biol) 70:59–65

    Article  CAS  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807(8):856–863

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Barber J (2006) Refinement of the structural model for the Photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Nishi Y, Watanabe A, Terashima I (2001) Possible mechanisms of adaptive leaf senescence. Curr Opin Plant Biol 3:234–243

    CAS  Google Scholar 

  • Op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg È, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  PubMed  CAS  Google Scholar 

  • Panda D, Rao DN, Sharma SG, Strasser RJ, Sarkar RK (2006) Submergence effects on rice genotypes during seedling stage: probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transients. Photosynthetica 44:69–75

    Article  CAS  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

    Google Scholar 

  • Pastenes C, Pimentel P, Lillo J (2005) Leaf movements and photoinhibition in relation to water stress in field grown beans. J Exp Bot 56:425–433

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  PubMed  CAS  Google Scholar 

  • Peschke F, Kretsch T (2011) Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant Physiol 155:1353–1366

    Google Scholar 

  • Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    Article  PubMed  CAS  Google Scholar 

  • Pfündel EE, Pan RS, Dilley A (1992) Inhibition of violaxanthin de-epoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol 98:1372–1380

    Article  PubMed  Google Scholar 

  • Piacentini MP, Fraternale D, Piatti E, Ricci D, Vetrano F, Dacha M, Accorsi A (2001) Senescence delay and change of antioxidant enzyme levels in Cucumis sativus (L.) etiolated seedlings by ELF magnetic fields. Plant Sci 161:45–53

    Article  CAS  Google Scholar 

  • Pieters AJ, Tezara W, Herrera A (2003) Operation of xanthophyll cycle and degradation of D1 protein in inducible CAM plant, Talinum triangulare, under water deficit. Ann Bot 92:393–399

    Article  PubMed  CAS  Google Scholar 

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  PubMed  CAS  Google Scholar 

  • Pospisil P, Tyystjärvi E (1999) Molecular mechanism of high temperature induced inhibition of acceptor side of photosystem II. Photosynth Res 62:55–66

    Article  CAS  Google Scholar 

  • Pradhan MK, Joshi PN, Nair JS, Ramaswamy NK, Iyer RK, Biswal B, Biswal UC (2006) UV-B exposure enhances senescence of wheat leaves: modulation by photosynthetically active radiation. Radiat Environ Biophys 45:221–229

    Article  PubMed  CAS  Google Scholar 

  • Procházková D, Wilhelmová N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  Google Scholar 

  • Qiao J, Ma C, Wimmelbacher M, Börnke F, Luo M (2011) Two novel proteins, MRL7 and its paralog MRL7-L have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis. Plant Cell Physiol 52:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley. http://www.life.illinois.edu/govindjee/photosynBook.html Accessed on 1 Jan, 2013

  • Rai AK, Takabe T (eds) (2006) Abiotic stress tolerance in plants. Springer, Dordrecht

    Google Scholar 

  • Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (Role of antioxidant enzymes). Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekananda M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Robertson EJ, Leech RM (1995) Significant changes in cell and chloroplast development in young wheat leaves (Triticum aestivum cv Hereward) grown in elevated CO2. Plant Physiol 107:63–71

    PubMed  CAS  Google Scholar 

  • Robertson EJ, Baker NR, Leech RM (1993) Chloroplast thylakoid protein changes induced by low growth temperature in maize revealed by immunocytology. Plant Cell Environ 16:809–818

    PubMed  CAS  Google Scholar 

  • Rodrigues GC, Jansen MAK, van den Noort ME, van Rensen JJS (2006) Evidences for the semireduced primary quinone electron acceptor of photosystem II being a photosensitizer for UV-B damage to the photosynthetic apparatus. Plant Sci 170:283–290

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Murthy D, Ezhilmathi K, Chinnaswamy V, Meena RC (2009) Water-logging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant 53:493–504

    Article  CAS  Google Scholar 

  • Sakamoto W, Miyagishima S, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. The Arabidopsis book, vol 6, The American Society for Plant Biologists, Rockville, pp 1–30

    Google Scholar 

  • Sarvikas P, Tyystjärvi T, Tyystjärvi E (2010) Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem II centre do not protect the active ones against loss of oxygen evolution. Photosynth Res 103:7–17

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    Article  PubMed  CAS  Google Scholar 

  • Schildhauer J, Wiedemuth K, Humbeck K (2008) Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol 10:76–84

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200

    Article  PubMed  CAS  Google Scholar 

  • Shanker A, Venkateswarlu E (eds) (2011) Abiotic stress response in plants – mechanism and adaptation. Intech Publishers, Agricultural and Biological Sciences, Hyderabad

    Google Scholar 

  • Shaohui W, Yun K, Jie Z, Yuncong Y (2008) Influence of low light on photosynthesis rate and carbohydrates in peach leaves. Acta Hort (ISHS) 772:283–286

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki N, Hattori I, Gajo R, Tezuka T (1999) Activation of growth and nodulation in a symbiotic system between pea plants and leguminous bacteria by near UV radiation. J Photochem Photobiol (B: Biol) 50:33–37

    Article  CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  PubMed  CAS  Google Scholar 

  • Siew D, Klein S (1968) The effect of sodium chloride on some metabolic and fine structural changes during the greening of etiolated leaves. J Cell Biol 37:590–596

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Reddy KR (2011) Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata L. Walp) under drought. J Photochem Photobiol (B: Biol) 105:40–50

    Article  CAS  Google Scholar 

  • Sun W, van Motangu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2011) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125. doi:10.1186/1471-2164-8-125

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Evans JR (1988) Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol 29:143–155

    CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  PubMed  CAS  Google Scholar 

  • Toivonen P, Vidaver W (1988) Variable chlorophyll a fluorescence and CO2 uptake in water stressed white spruce seedlings. Plant Physiol 86:744–748

    Article  PubMed  CAS  Google Scholar 

  • Tuncz-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432

    Article  CAS  Google Scholar 

  • Turcasanyi E, Vass I (2000) Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem-II complex. Photochem Photobiol 72:513–520

    Article  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Article  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya K (2011) Crystal structure of oxygen evolving PSII at a resolution of 1.9 A. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Valkov VT, Scotti N, Kahlau S, MacLean D, Grillo S, Gray JC, Bock R, Cardi T (2009) Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol 150:2030–2044

    Article  PubMed  CAS  Google Scholar 

  • Vani B, Saradhi PP, Mohanty P (2001) Characterization of high temperature induced stress impairments in thylakoids of rice seedlings. Indian J Biochem Biophys 38:220–229

    PubMed  CAS  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Turcsanyi E, Touloupakis E, Ghanotakis D, Petrouleas V (2002) The mechanism of UV-A radiation induced inhibition of photosystem II electron transport studied by EPR and Chl fluorescence. Biochemistry 41:10200–10208

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Tsonev T, Barta C, Centritto M, Koleva D, Stefanova M, Busheva M, Loreto F (2009) BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ Pollut 157:2629–2637

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824

    PubMed  CAS  Google Scholar 

  • Vinti G, Fourier N, Bowyer JR, López-Juez E (2005) Arabidopsis cue mutants with defective plastids are impaired primarily in the photocontrol of expression of photosynthesis-associated nuclear genes. Plant Mol Biol 57:343–357

    Google Scholar 

  • Vollenweider P, Ottiger M, Gunthardt-Goerg MS (2003) Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environ Pollut 124:101–118

    Article  PubMed  CAS  Google Scholar 

  • Waditee-Sirisattha R, Shibato J, Rakwal R, Sirisattha S, Hattori A, Nakano T, Takabe T, Tsujimoto M (2011) The Arabidopsis aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytol 191:958–969

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Przybyla D, Op den Camp RGL, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff C, Bramke I, Breeze E, Thornber S, Harrison E, Thomas B, Buchanan-Wollaston V, Stead T, Rogers H (2010) A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence patterns. J Exp Bot 61:2905–2921

    Article  PubMed  CAS  Google Scholar 

  • Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873

    Article  PubMed  CAS  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. In: Long SP, Wood N, Ward FI (eds) Plants and temperature. The Company of Biologists, Cambridge, UK, pp 329–346

    Google Scholar 

  • Wen X, Qiu N, Lu Q, Lu C (2005) Enhanced thermotolerance of photosystem II in salt adapted plants of the halophyte Artemisia anethifolia. Planta 220:486–497

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interaction of sugar signaling with biotic and abiotic stress responses. Plant Biol 10:50–62

    Article  PubMed  CAS  Google Scholar 

  • Wollman FA (2001) State transition reveals the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  PubMed  CAS  Google Scholar 

  • Wormuth D, Baier MK, Ibinder A, Scheibe R, Hartung W, Deitz KJ (2006) Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability. BMC Plant Biol 6:15–21

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski TJ (2008) Photosystem II – where do we go from here? Photosynth Res 98:43–51

    Article  PubMed  CAS  Google Scholar 

  • Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125:738–751

    Article  PubMed  CAS  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP 29 antenna complexes. Biochemistry 42:608–613

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Young AJ, Frank HA (1996) Energy transfer reactions involving carotenoids – quenching of chlorophyll fluorescence. J Photochem Photobiol (B: Biol) 36:3–15

    Article  CAS  Google Scholar 

  • Zapata JM, Guéra A, Esteban-Carrasco A, Martín M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ 12:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Zhang FF, Wang YL, Huang ZZ, Zhu XC, Zhang FJ, Chen FD, Fang WM, Teng NJ (2012) Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci World J, Article ID 601263, 9pp, doi:10.1100/2012/601263

  • Zhang S, Keping M, Lingzhi C (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environment. Environ Exp Bot 49:121–133

    Article  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:1–14

    Article  Google Scholar 

  • Zhou X, Fei Z, Thannhauser TW, Li L (2011) Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis). BMC Plant Biol 11:169. doi:10.1186/1471-2229-11-169

    Article  PubMed  CAS  Google Scholar 

  • Zinth W, Wachtveitl J (2005) The first picoseconds in bacterial photosynthesis − ultrafast electron transfer for the efficient conversion of light energy. Chem Physchem 6:871–880

    Article  CAS  Google Scholar 

  • Zuo BY, Zhang Q, Jiang GZ, Bai KZ, Kuang TY (2002) Effects of doubled CO2 concentration on ultrastructure, supramolecular architecture and spectral characteristics of chloroplasts from wheat. Acta Botanica Sinica 44:908–912

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Udaya C. Biswal and Bartolomé Sabater for valuable suggestions and critical reading of this manuscript. Financial support by University Grants Commission (UGC), New Delhi to PJ [No. 35-161/2008 (SR)], to ANM [No.36-302/2008 (SR)] and by Depart­ment of Science and Technology (DST), Govt. of Odisha to BB (ST-Bio-19/2008/1149/ST) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basanti Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Joshi, P., Nayak, L., Misra, A.N., Biswal, B. (2013). Response of Mature, Developing and Senescing Chloroplasts to Environmental Stress. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_28

Download citation

Publish with us

Policies and ethics