Modulation of Chlorophyll Biosynthesis by Environmental Cues

  • Baishnab C. TripathyEmail author
  • Vijay Dalal
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)


Environmental signals control diverse physiological processes in plant growth and development. Plants tend to adapt the structure of photosynthetic apparatus and pigment composition in response to several environmental factors. Tetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Expression of genes encoding enzymes of tetrapyrrol biosynthesis as well as the abundances and activities of the enzymes are severely impacted by availability of water, soil salinity, low or high temperature and low or high light intensity. Plastids share many cellular metabolic pathways and alterations of plastid functions by environmental signals are known to affect various aspects of plant development. The generation of reactive oxygen species (ROS) in plants is triggered by different kinds of environmental parameters, such as high light, high or low temperature, salinity, drought and nutrient deficiency. Imbalance between production of ROS and their detoxification by enzymatic and non-enzymatic reactions causes oxidative stress. Suitable genetic manipulation of the chlorophyll (Chl) biosynthetic pathway might lead to tolerance towards environmental stresses leading to oxidative stress at the cellular level, and efficient adaptation of the photosynthetic apparatus to low and high light intensities. The present review deals with environmental modulation of Chl biosynthesis and its impact on plant productivity.


Prolamellar Body Chloroplast Biogenesis Shibata Shift PPIX Synthesis Etiolate Barley Leave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



5-Aminolevulinic acid;


5-Aminolevulinic acid dehydratase;


Chloro­phyllide A oxygenase;






Coproporphyrinogen oxidase;


Coproporphyrinogen oxidase;




Divinyl protochlorophyllide;


Divinyl reductase;




Geranyl geranyl pyrophosphate;


Glutamyl-tRNA synthetase;


Glutamyl-tRNA reductase;


Glutamate 1-semialdehyde;


Glutamate 1-semialdehyde aminotransferase;


Genome uncoupled;


Light-harvesting complex II;


Lesion initiation 2;


Light-independent photomorphogenesis 1;


Mg-protoporphyrin IX monomethylester;


Mg-Protoporphyrin IX methyltransferase;




Monovinyl protochlorophyllide;




Porphobilinogen deaminase;




Phytyl diphosphate;


Prolamellar bodies;


Protochlorophyllide oxido-reductase;


Protoporphyrin IX;

Protogen IX

Protoporphyrinogen IX;


Protoporphyrinogen oxidase;


Reactive oxygen species;




Short chain dehydrogenases/reductases;


Glutamate conjugated tRNA;

Urogen III

Uroporphyrinogen III;


Uroporphyrinogen III synthase



Supported by a grant from the Department of Biotechnology, Government of India grant (BT/PR14827/BCE/08/841/2010), University Grants Commission capacity build up funds, and Department of Science and Technology purse grant from Jawaharlal Nehru University, New Delhi to BCT.


  1. Abdelkader AF, Aronsson H, Sundqvist C (2007a) High salt-stress in wheat leaves (Triticum aestivum) causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol Plant 130:157–166CrossRefGoogle Scholar
  2. Abdelkader AF, Aronsson H, Solymosi K, Böddi B, Sundqvist C (2007b) High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. J Exp Bot 58:2553–2564PubMedCrossRefGoogle Scholar
  3. Adhikari ND, Orler R, Chory J, Froehlich JE, Larkin RM (2009) Porphyrins promote the association of genomes uncoupled 4 and a MG-chelatase subunit with chloroplast membranes. J Biol Chem 284:24783–24796PubMedCrossRefGoogle Scholar
  4. Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM (2011) GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–1467PubMedCrossRefGoogle Scholar
  5. Alawady AE, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and proto heme synthesis. Plant J 41:282–290PubMedCrossRefGoogle Scholar
  6. Alawady AE, Reski R, Yaronskaya E, Grimm B (2005) Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol Biol 57:679–691PubMedCrossRefGoogle Scholar
  7. Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductase A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517PubMedCrossRefGoogle Scholar
  8. Arnould S, Camadro JM (1998) The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci USA 95:10553–10558PubMedCrossRefGoogle Scholar
  9. Aronsson H, Sundqvist C, Timko MP, Dahlin C (2001) The importance of the C-terminal region and Cys residues for the membrane association of the NADPH: protochlorophyllide oxidoreductase in pea. FEBS Lett 502:11–15PubMedCrossRefGoogle Scholar
  10. Ayliffe MA, Agostino A, Clarke BC, Furbank R, von Caemmerer S, Pryor AJ (2009) Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity. Plant Cell 21:814–831PubMedCrossRefGoogle Scholar
  11. Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49:1350–1363PubMedCrossRefGoogle Scholar
  12. Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC, Chua N-H (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8:601–615PubMedGoogle Scholar
  13. Bazzaz MB (1981) New chlorophyll chromophores isolate from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207Google Scholar
  14. Beale SI, Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of heme and chlorophyll. McGraw-Hill, New York, pp 287–291Google Scholar
  15. Begley TP, Young H (1989) Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 111:3095–3096CrossRefGoogle Scholar
  16. Bengtson C, Klockare B, Klockare R, Larsson S, Sundqvist C (1978) The after-effect of water stress on chlorophyll formation during greening and the levels of abscisic acid and proline in dark-grown wheat seedlings. Physiol Plant 43:205–212CrossRefGoogle Scholar
  17. Benz J, Rüdiger W (1981a) Incorporation of 1-14C-isopentenyldiphosphate, geraniol and farnesol into chlorophyll in plastid membrane fractions of Avena sativa L. Z Pflanzenphysiol 102:95–100Google Scholar
  18. Benz J, Rüdiger W (1981b) Chlorophyll biosynthesis: various chlorophyllides as exogenous substrates for chlorophyll synthetase. Z Naturforsch 36c:51–57Google Scholar
  19. Bhardwaj R, Singhal GS (1981) Effect of water stress on photochemical activity of chloroplasts during greening of etiolated barley seedlings. Plant Cell Physiol 22:155–162Google Scholar
  20. Bhattacharjee S, Mukherjee AK (2003) Heavy metals alter photosynthetic pigment profiles as well as activities of chlorophyllase and 5-aminolevulinic acid dehydratase (ALAD) in Amaranthus lividus seedlings. J Environ Biol 24:395–399PubMedGoogle Scholar
  21. Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee, Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase (CAO) in tobacco. Plant Physiol 159:433–449PubMedCrossRefGoogle Scholar
  22. Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-L-methionine: Mg-protoporphyrin IX methyl transferase is isolated in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269:240–248PubMedCrossRefGoogle Scholar
  23. Block MA, Douce R, Joyard J, Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244PubMedCrossRefGoogle Scholar
  24. Böddi B, Lindsten A, Ryberg M, Sundqvist C (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76:135–143CrossRefGoogle Scholar
  25. Böddi B, Lindsten A, Ryberg M, Sundqvist C (1990) Phototransformation of aggregated forms of protochlorophyllide in isolated etioplast inner membranes. Photochem Photobiol 52:83–87CrossRefGoogle Scholar
  26. Böddi B, Ryberg M, Sundqvist C (1991) The formation of a short-wavelength chlorophyllide form at partial phototransformation of protochlorophyllide in etioplast inner membranes. Photochem Photobiol 53:667–673CrossRefGoogle Scholar
  27. Böddi B, Ryberg M, Sundqvist C (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra. J Photochem Photobiol B Biol 12:389–401CrossRefGoogle Scholar
  28. Böddi B, Ryberg M, Sundqvist C (1993) Analysis of the 77 K fluorescence emission and excitation spectra of isolated etioplast inner membranes. J Photochem Photobiol B Biol 21:125–133CrossRefGoogle Scholar
  29. Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–2032PubMedCrossRefGoogle Scholar
  30. Bollivar DW (2006) Recent advances in chlorophyll biosynthesis. Photosynth Res 90:173–194PubMedCrossRefGoogle Scholar
  31. Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C (2008) Photoprotective role of NADPH: protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 105:12629–12634PubMedCrossRefGoogle Scholar
  32. Camadro JM, Matringe M, Scalla R, Labbe P (1991) Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem J 277:17–21PubMedGoogle Scholar
  33. Castelfranco PA, Beale SI (1981) Chlorophyll ­biosynthesis. In: Stumpf PK, Conn EE (eds) The biochemistry of plants: a comprehensive treatise, vol 8. Academic, New York, pp 375–421Google Scholar
  34. Castelfranco PA, Thayer SS, Wilkinson JQ, Bonner BA (1988) Labeling of porphobilinogen deaminase by radioactive 5-aminolevulinic acid in isolated developing pea chloroplasts. Arch Biochem Biophys 266:219–226PubMedCrossRefGoogle Scholar
  35. Chakraborty N, Tripathy BC (1992) Involvement of singlet oxygen in photodynamic damage of isolated chloroplasts of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol 98:7–11PubMedCrossRefGoogle Scholar
  36. Che FS, Watnabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A (2000) Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiol 124:59–70PubMedCrossRefGoogle Scholar
  37. Chen TC, Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15:993–1005Google Scholar
  38. Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role of cytokinins in de-etiolation in Arabidopsis det mutants have an altered response to cytokinins. Plant Physiol 104:339–347PubMedGoogle Scholar
  39. Crockett N, Alefounder PR, Battersby AR, Abell C (1991) Uroporphyrinogen III synthase: studies on its mechanism of action molecular biology and biochemistry. Tetrahedron 47:6003–6014CrossRefGoogle Scholar
  40. Dahlin C, Aronsson H, Wilks HM, Lebedev N, Sundqvist C, Timko MP (1999) The role of protein surface charge in catalytic activity and chloroplast membrane association of the pea NADPH: protochlorophyllide oxidoreductase (POR) as revealed by alanine scanning mutagenesis. Plant Mol Biol 39:309–323PubMedCrossRefGoogle Scholar
  41. Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02520.x
  42. Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612PubMedCrossRefGoogle Scholar
  43. Dayan FE, Ferreira D, Wang YH, Khan IA, McInroy JA, Pan Z (2008) A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol 147:1062–1071PubMedCrossRefGoogle Scholar
  44. Dutta S, Mohanty S, Tripathy BC (2009) Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol 150:1050–1061PubMedCrossRefGoogle Scholar
  45. Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A, Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4:5–21PubMedCrossRefGoogle Scholar
  46. El Hamouri B, Brouers M, Sironval C (1981) Pathway from photoinactive P663–628 protocholorphyllide to the P696–682 chlorophyllide in cucumber etioplast suspensions. Plant Sci Lett 21:375–379CrossRefGoogle Scholar
  47. Eskins K, McCarthy SA, Dybas L, Duysen M (1986) Corn chloroplast development in weak fluence rate red light and in weak fluence rate red plus far-red light. Physiol Plant 67:242–246CrossRefGoogle Scholar
  48. Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507–10511PubMedCrossRefGoogle Scholar
  49. Eullaffroy P, Popovic R (1997) Effect of heat treatment on protochlorophyllide phototransformation initiated by different light intensities. J Plant Physiol 151:293–298CrossRefGoogle Scholar
  50. Eullaffroy P, Salvetat R, Franck F, Popovic R (1995) Temperature dependence of chlorophyspectral shifts and photoactive protochlorophyllide regeneration after flash in etiolated barley leaves. J Photochem Photobiol B Biol 62:751–756CrossRefGoogle Scholar
  51. Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122PubMedCrossRefGoogle Scholar
  52. Forreiter C, van Cleve B, Schmidt A, Apel K (1991) Evidence for a general light-dependent negative control of NADPH–protochlorophyllide oxidoreductase in angiosperms. Planta 183:126–132CrossRefGoogle Scholar
  53. Franck F (1993) On the formation of photosystem II chlorophyll-proteins after a short light flash in etiolated barley leaves, as monitored by in vivo fluorescence spectroscopy. J Photochem Photobiol B Biol 18:35–40CrossRefGoogle Scholar
  54. Franck F, Bereza B, Böddi B (1999) Protochlorophyllide-NADP  +  and protochlorophyllide-NADPH complexes and their regeneration after flash illumination in leaves and etioplast membranes of dark-grown wheat. Photosynth Res 59:53–61CrossRefGoogle Scholar
  55. Frick G, Su Q, Apel K, Armstrong GA (2003) An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35:141–153PubMedCrossRefGoogle Scholar
  56. Frustaci JM, Sangwan I, O’Brian MR (1995) gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem 270:7387–7393PubMedCrossRefGoogle Scholar
  57. Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H, Takamiya K (2000) NADPH–protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is ­transcriptionally enhanced by illumination. Photosynth Res 64:147–154PubMedCrossRefGoogle Scholar
  58. Fusada N, Masuda T, Kuroda H, Shimada H, Ohta H, Takamiya K (2005) Identification of a novel cis-element exhibiting cytokinin-dependent protein binding in vitro in the 5′-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Mol Biol 59:631–645PubMedCrossRefGoogle Scholar
  59. Gaubier P, Wu HJ, Laudie M, Delseny M, Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:673–676CrossRefGoogle Scholar
  60. Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D (2004) The gene geranylgeranyl reductase of peach (Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. J Exp Bot 55:2063–2073PubMedCrossRefGoogle Scholar
  61. Gibson KD, Neuberger A, Tait GH (1963) Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheriodes. 4. S-adenosylmethionine-magnesium protoporphyrin methyltransferase. Biochem J 88:325–334PubMedGoogle Scholar
  62. Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M, Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol 111:61–71PubMedCrossRefGoogle Scholar
  63. Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967PubMedCrossRefGoogle Scholar
  64. Gough SP, Kannangara CG, von Wettestein D (1992) Glutamate 1-semialdehyde aminotransferase as a target for herbicides. In: Boger P, Sandmann G (eds) Target assays for modern herbicides and related phytotoxic compounds. Lewis, Chelesa, pp 21–27Google Scholar
  65. Gray JC, Sullivan JA, Wang JH, Jerome CA, MacLean D (2003) Coordination of plastid and nuclear gene expression. Philos Trans R Soc Lond B Biol Sci 358:135–144PubMedCrossRefGoogle Scholar
  66. Guo R, Luo M, Weinstein JD (1998) Magnesium-chealatse from developing pea leaves. Plant Physiol 116:605–615CrossRefGoogle Scholar
  67. Hansson A, Jensen PE (2009) Chlorophyll limitation in plants remodels and balances the photosynthetic apparatus by changing the accumulation of photosystems I and II through two different approaches. Physiol Plant 135:214–228PubMedCrossRefGoogle Scholar
  68. Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96:1744–1749PubMedCrossRefGoogle Scholar
  69. Harper AL, von Gesjen SE, Linford AS, Peterson MP, Faircloth RS, Thissen MM, Brusslan JA (2004) Chlorophyllide a oxygenase mRNA and protein levels correlate with the chlorophyll a/b ratio in Arabidopsis thaliana. Photosynth Res 79:149–159PubMedCrossRefGoogle Scholar
  70. Havaux M, Lutz C, Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310PubMedCrossRefGoogle Scholar
  71. He ZH, Li J, Sundqvist C, Timko MP (1994) Leaf development age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106:537–546PubMedGoogle Scholar
  72. Helfrich M, Schoch S, Lempert U, Cmiel E, Rudiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a. Eur J Biochem 219:267–275PubMedCrossRefGoogle Scholar
  73. Heyes DJ, Hunter CN (2004) Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Biochemistry 43:8265–8271PubMedCrossRefGoogle Scholar
  74. Heyes DJ, Ruban AV, Wilks HM, Hunter CN (2002) Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci USA 99:11145–11150PubMedCrossRefGoogle Scholar
  75. Heyes DJ, Ruban AV, Hunter CN (2003) Protochlorophyllide oxidoreductase: spectroscopic characterization of the ‘dark’ reactions. Biochemistry 42:523–528PubMedCrossRefGoogle Scholar
  76. Heyes DJ, Kruk J, Hunter CN (2006) Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates. Biochem J 394:243–248PubMedCrossRefGoogle Scholar
  77. Heyes DJ, Menon BR, Sakuma M, Scrutton NS (2008) Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 47:10991–10998PubMedCrossRefGoogle Scholar
  78. Higuchi M, Bogorad L (1975) The purification and properties of uroporphyrinogen I synthase and uroporphyrinogen III cosynthase. Interactions between the enzymes. Annu NY Acad Sci 244:401–418CrossRefGoogle Scholar
  79. Hirashima M, Satoh S, Tanaka R, Tanaka A (2006) Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J Biol Chem 281:15385–15393PubMedCrossRefGoogle Scholar
  80. Hiriart JB, Lehto K, Tyystjarvi E, Junttila T, Aro EM (2002) Suppression of a key gene involved in ­chlorophyll biosynthesis by means of virus-inducing gene silencing. Plant Mol Biol 50:213–224PubMedCrossRefGoogle Scholar
  81. Hodgins RR, Oquist G (2006) Porphyrin metabolism in chill-stressed seedlings of Scots pine (Pinus sylvestris). Physiol Plant 77:620–624CrossRefGoogle Scholar
  82. Hodgins RR, Van Huystee RB (1986) Delta-aminolevulinic acid metabolism in chill stressed maize (Zea mays L.). J Plant Physiol 126:257–268CrossRefGoogle Scholar
  83. Holtorf H, Apel K (1996) Transcripts of the two NADPH–protochlorophyllide oxidoreductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31:387–392PubMedCrossRefGoogle Scholar
  84. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258PubMedCrossRefGoogle Scholar
  85. Hoober JK, Kahn A, Ash DE, Gough SP, Kannagara CG (1988) Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of Glutamate-1-semialdehyde aminotransferase. Carlsberg Res Commun 53:11–25PubMedCrossRefGoogle Scholar
  86. Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456PubMedCrossRefGoogle Scholar
  87. Hsu WP, Miller GW (1970) Coproporphyrinogenase in tobacco (Nicotiana tabacum L.). Biochem J 117:215–220PubMedGoogle Scholar
  88. Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645PubMedCrossRefGoogle Scholar
  89. Huang DD, Wang WY, Gough SP, Kannangara CG (1984) Delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225:1482–1484PubMedCrossRefGoogle Scholar
  90. Hukmani P, Tripathy BC (1994) Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv IB 65) Leaves. Plant Physiol 105:1295–1300PubMedGoogle Scholar
  91. Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291PubMedCrossRefGoogle Scholar
  92. Ilag LL, Kumar AM, Soll D (1994) Light reduction of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275PubMedGoogle Scholar
  93. Ishikawa A, Okamoto H, Iwasaki Y, Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27:89–99PubMedCrossRefGoogle Scholar
  94. Jacobs NJ, Jacobs JM (1979) Microbial oxidation of protoporphyrinogen: an intermediate in heme and chlorophyll biosynthesis. Arch Biochem Biophys 197:396–403PubMedCrossRefGoogle Scholar
  95. Jacobs JM, Jacobs NJ (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J 244:219–224PubMedGoogle Scholar
  96. Jain M, Gadre RP (2004) Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J Plant Physiol 161:251–255PubMedCrossRefGoogle Scholar
  97. Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D, Henningsen KW (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g, and -h. Mol Gen Genet 250:383–394PubMedGoogle Scholar
  98. Jensen PE, Gibson LCD, Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and MgATP dependent interaction of ChlI and ChlD subunits. Biochem J 339:127–134PubMedCrossRefGoogle Scholar
  99. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472PubMedCrossRefGoogle Scholar
  100. Kannangara CG, Gough SP, Oliver RP, Rasmussen SK (1984) Biosynthesis of d-aminolevulinate in greening barley leaves VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49:417–437CrossRefGoogle Scholar
  101. Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A, Wettestein DV (1988) tRNAglu as a cofactor on δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biol Sci 13:139–143CrossRefGoogle Scholar
  102. Kannangara CG, Andersen RV, Pontoppidan B, Willows R, von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolaevulinate. Ciba Found Symp 180:3–20PubMedGoogle Scholar
  103. Keller Y, Bouvier F, D’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251:413–417PubMedCrossRefGoogle Scholar
  104. Kervinen J, Dunbrack R Jr, Litwin S, Martins J, Scarrow RC, Volin M, Yeung AT, Yoon E, Jaffe EK (2000) Porphobilinogen synthase from pea: expression from an artificial gene, kinetic characterisation and novel implication for subunit interactions. Biochemistry 39:9018–9029PubMedCrossRefGoogle Scholar
  105. Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728PubMedCrossRefGoogle Scholar
  106. Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219PubMedCrossRefGoogle Scholar
  107. Kruse E, Mock HP, Grimm B (1995a) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14:3712–3720PubMedGoogle Scholar
  108. Kruse E, Mock HP, Grimm B (1995b) Coproporphyrinogen III oxidase from barley and tobacco-sequence analysis and initial expression studies. Planta 196:796–803PubMedCrossRefGoogle Scholar
  109. Kruse E, Mock HP, Grimm B (1997) Isolation and characterization of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Mol Biol 35:1053–1056PubMedCrossRefGoogle Scholar
  110. Kuroda H, Masuda T, Ohta H, Shioi Y, Takamiya K (1995) Light-enhanced gene expression of NADPH–protochlorophyllide oxidoreductase in cucumber. Biochem Biophys Res Commun 210:310–316PubMedCrossRefGoogle Scholar
  111. Kuroda H, Masuda T, Fusada N, Ohta H, Takamiya K (2001) Cytokinin-induced transcriptional activation of NADPH–protochlorophyllide oxidoreductase gene in cucumber. J Plant Res 114:1–7CrossRefGoogle Scholar
  112. Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375PubMedCrossRefGoogle Scholar
  113. Kusnetsov V, Herrmann RG, Kulaeva ON, Oelmüller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Genet 259:21–28PubMedGoogle Scholar
  114. Kusumi J, Sato A, Tachidi H (2006) Relaxation of functional constraint on light-independent protochlorophyllide reductase in Thuja. Mol Biol Evol 23:941–948PubMedCrossRefGoogle Scholar
  115. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906PubMedCrossRefGoogle Scholar
  116. Le Lay P, Eullaffroy P, Juneau P, Popovic D (2000) Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves. Plant Cell Physiol 41:565–570PubMedCrossRefGoogle Scholar
  117. Le Lay P, Boddi B, Kovacevic D, Juneau P, Dewez D, Popovic P (2001) Spectroscopic analysis of ­desiccation-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves. Plant Physiol 127:202–211PubMedCrossRefGoogle Scholar
  118. Lebedev N, Timko MP (1999) Protochlorophyllide oxidoreductase B-catalysed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96:9954–9959PubMedCrossRefGoogle Scholar
  119. Lebedev N, Carcinoma O, McIvor W, Timko MP (2001) Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH: protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 40:12562–12574PubMedCrossRefGoogle Scholar
  120. Lee KP, Kim C, Lee DW, Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553:119–124PubMedCrossRefGoogle Scholar
  121. Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805–818PubMedCrossRefGoogle Scholar
  122. Leon P, Arroyo A, Mackenzie S (1998) Nuclear control of plastid and mitochondrial developments in higher plants. Annu Rev Plant Physiol Plant Mol Biol 49:453–480PubMedCrossRefGoogle Scholar
  123. Lermontova I, Kruse E, Mock HP, Grimm B (1997) Cloning and characterisation of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900PubMedCrossRefGoogle Scholar
  124. Li J, Spano AJ, Timko MP (1991) Isolation and characterisation of nuclear genes encoding the ALA dehydratase of pea (Pisum sativum L.). Plant Physiol 96:125–127Google Scholar
  125. Liedgens W, Grutzmann R, Schneider HAW (1980) Highly efficient purification of the labile plant enzyme 5-aminolevulinate dehydratase (EC by means of monoclonal antibodies. Z Naturforsch 35c:958–962Google Scholar
  126. Lim SH, Witty M, Wallace-Cook AD, Ilag LI, Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol Biol 26:863–872PubMedCrossRefGoogle Scholar
  127. Lindstein A, Welch CJ, Schoch S, Ryberg M, Rüdiger W, Sundqvist C (1990) Chlorophyll synthatase is latent in well preserved prolamellar bodies of etiolated wheat. Physiol Plant 80:277–285CrossRefGoogle Scholar
  128. Lindsten A, Ryberg M, Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (Tritium aestivum) as revealed by silver staining. Physiol Plant 72:167–176CrossRefGoogle Scholar
  129. Liu N, Yang YT, Liu HH, Yang GD, Zhang NH, Zheng CC (2004) NTZIP antisense plants show reduced chlorophyll levels. Plant Physiol Biochem 42:321–327PubMedCrossRefGoogle Scholar
  130. Luo J, Lim CK (1993) Order of urogen III decarboxylation on incubation of PBG and urogen III with erythrocyte UDC. Biochem J 289:529–532PubMedGoogle Scholar
  131. Madsen O, Sandal L, Sandal NN, Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23:35–43PubMedCrossRefGoogle Scholar
  132. Manohara MS, Tripathy BC (2000) Regulation of protoporphyrin IX biosynthesis by intraplastidic compartmentalization and adenosine triphosphate. Planta 212:52–59PubMedCrossRefGoogle Scholar
  133. Martin BM, Grimm B, Mock HP, Huber R, Messerschmidt A (2001) Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J Biol Chem 276:44108–44116CrossRefGoogle Scholar
  134. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedCrossRefGoogle Scholar
  135. Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143PubMedCrossRefGoogle Scholar
  136. Masuda T, Takamiya K (2004) Novel insights into enzymology, regulation and physiological functions of light-dependant protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29PubMedCrossRefGoogle Scholar
  137. Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H, Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74:165–172PubMedCrossRefGoogle Scholar
  138. Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974PubMedCrossRefGoogle Scholar
  139. Masuda S, Ikeda R, Masuda T, Hashimoto H, Tsuchiya T, Kojima H, Nomata J, Fujita Y, Mimuro M, Ohta H, Takamiya K (2009) Prolamellar bodies formed by cyanobacterial protochlorophyllide oxidoreductase in Arabidopsis. Plant J 58:952–960PubMedCrossRefGoogle Scholar
  140. Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992a) Localisation within the chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether like herbicides. J Biol Chem 267:4646–4651PubMedGoogle Scholar
  141. Matringe M, Mornet R, Scalla R (1992b) Characterization of [3H] acifluorfen binding to purified pea etioplasts and evidence that protogen oxidase specifically binds acifluorfen. Eur J Biochem 209:861–868PubMedCrossRefGoogle Scholar
  142. Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391PubMedCrossRefGoogle Scholar
  143. Meskauskiene R, Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl–tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532:27–30PubMedCrossRefGoogle Scholar
  144. Meskauskiene R, Nater M, Goslings D, Kessler F, Op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCrossRefGoogle Scholar
  145. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastidto-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCrossRefGoogle Scholar
  146. Mock HP, Trainotti L, Kruse E, Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28:245–256PubMedCrossRefGoogle Scholar
  147. Mohanty S, Tripathy BC (2011) Early and late plastid development in response to chill stress and heat stress in wheat seedlings. Protoplasma 248:725–736PubMedCrossRefGoogle Scholar
  148. Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699PubMedCrossRefGoogle Scholar
  149. Mosinger E, Batschauer A, Schafer E, Apel K (1985) Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). Eur J Biochem 147:137–142PubMedCrossRefGoogle Scholar
  150. Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, Sasaki-Sekimoto Y, Ohta H, Takamiya K-I, Masuda T (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physio­logical functions in Arabidopsis. Plant Physiol 144:1039–1051PubMedCrossRefGoogle Scholar
  151. Nagata N, Satoh S, Tanaka R, Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218:1019–1025PubMedCrossRefGoogle Scholar
  152. Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell 17:233–240PubMedCrossRefGoogle Scholar
  153. Nagata N, Tanaka R, Tanaka A (2007) The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiol 48:1803–1808PubMedCrossRefGoogle Scholar
  154. Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J 49:800–809PubMedCrossRefGoogle Scholar
  155. Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol 46:467–473PubMedCrossRefGoogle Scholar
  156. Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg++ concentration-dependent chlH protein within the chloroplast. Plant Cell Physiol 39:275–284PubMedCrossRefGoogle Scholar
  157. Narita S, Tanaka R, Ito T, Okada K, Taketani S, Inokuchi H (1996) Molecular cloning and characterisation of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182:169–175PubMedCrossRefGoogle Scholar
  158. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  159. Oliver RP, Griffiths WT (1982) Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol 70:1019–1025PubMedCrossRefGoogle Scholar
  160. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-photochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:133–136PubMedCrossRefGoogle Scholar
  161. Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310PubMedCrossRefGoogle Scholar
  162. Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis-studies for interacellular signaling involved in metabolic and developmental control of plastids. Planta 213:667–681PubMedCrossRefGoogle Scholar
  163. Papenbrock J, Gräfe S, Kruse E, Hanel F, Grimm B (1997) Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12:981–990PubMedCrossRefGoogle Scholar
  164. Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies on tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208:264–273CrossRefGoogle Scholar
  165. Papenbrock J, Pfundel E, Mock HP, Grimm B (2000a) Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduced chlorophyll synthesis in transgenic tobacco plants. Plant J 22:155–164PubMedCrossRefGoogle Scholar
  166. Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000b) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169PubMedCrossRefGoogle Scholar
  167. Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231:164–169PubMedCrossRefGoogle Scholar
  168. Pattanayak GK, Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291:921–924PubMedCrossRefGoogle Scholar
  169. Pattanayak GK, Tripathy BC (2011) Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS One 6:e26532PubMedCrossRefGoogle Scholar
  170. Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun 326:466–471PubMedCrossRefGoogle Scholar
  171. Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ, Grimm B (2010) Mg protoporphyrin monomethylester cyclase deficiency and effects on the tetrapyrrole metabolism in different light conditions. Plant Cell Physiol 51:1229–1241PubMedCrossRefGoogle Scholar
  172. Phung T, Jung HI, Park J-H, Kim J-G, Back K, Jung S (2012) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 57:1746–1764Google Scholar
  173. Plöscher M, Granvogl B, Reisinger V, Eichacker LA (2009) Identification of the N-termini of NADPH: protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.). FEBS J 276:1074–1081PubMedCrossRefGoogle Scholar
  174. Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282:2297–2304PubMedCrossRefGoogle Scholar
  175. Pontoppidan B, Kannangara CG (1994) Purification and partial characterization of barley ­glutamyl-tRNAglu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537PubMedCrossRefGoogle Scholar
  176. Pontoppodian B, Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAglu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537CrossRefGoogle Scholar
  177. Popperl G, Oster U, Blos I, Rudiger W (1997) Magnesium chelatase of Hordeum vulgare L. is not activated by light but inhibited by pheorphorbide. Z Naturforsch 52c:144–152Google Scholar
  178. Porra RJW, Schäfer E, Cmiel IK, Scheer H (1993) Derivation of the formyl group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett 371:21–24CrossRefGoogle Scholar
  179. Poulson R, Polglasse WJ (1974) Aerobic and anaerobic coproporphyrinogen oxidase activities in extract from Saccharomyces cerevisiae. J Biol Chem 249:6367–6371PubMedGoogle Scholar
  180. Rebeiz CA, Parham R, Fasoula DA, Ioannides IM (1994) Chlorophyll biosynthetic heterogeneity. In: The biosynthesis of the tetrapyrrole pigments. Ciba symposium 180. Wiley, New York, pp 177–193Google Scholar
  181. Reinbothe C, Lebedev N, Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397:80–84CrossRefGoogle Scholar
  182. Reinbothe C, Buhr F, Bartsch S, Desvignes C, Quigley F, Pesey H, Reinbothe S (2006) In vitro-mutagenesis of NADPH: protochlorophyllide oxidoreductase B: two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly. Mol Genet Genomics 275:540–552PubMedCrossRefGoogle Scholar
  183. Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779PubMedCrossRefGoogle Scholar
  184. Rüdiger W, Benz J, Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200PubMedCrossRefGoogle Scholar
  185. Runge S, Sperling U, Frick G, Apel K, Armstrong GA (1996) Distinct roles for light-dependent NADPH: protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9:513–523PubMedCrossRefGoogle Scholar
  186. Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891PubMedCrossRefGoogle Scholar
  187. Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiol Biochem 45:740–749PubMedCrossRefGoogle Scholar
  188. Sakuraba Y, Yokono M, Akimoto S, Tanaka R, Tanaka A (2010) Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol 51:1055–1065PubMedCrossRefGoogle Scholar
  189. Sangwan I, O’Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehtde aminotransferase gene in symbiotic root nodules. Plant Physiol 102:829–834PubMedCrossRefGoogle Scholar
  190. Santel HJ, Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 120:95–103PubMedCrossRefGoogle Scholar
  191. Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scienia Horticulturae 103:93–99CrossRefGoogle Scholar
  192. Santos C, Caldeira G (1999) Comparative responses of Helianthus annuus plants and calli exposed to NaCl: I. Growth rate and osmotic regulation in intact plants and calli. J Plant Physiol 155:769–777CrossRefGoogle Scholar
  193. Santos C, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360PubMedCrossRefGoogle Scholar
  194. Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131PubMedCrossRefGoogle Scholar
  195. Satoh S, Ikeuchi M, Mimuro M, Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. J Biol Chem 276:4293–4297PubMedCrossRefGoogle Scholar
  196. Scheumann V, Ito H, Tanaka A, Schoch S, Rüdiger W (1996) Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L.). Eur J Biochem 242:163–170PubMedCrossRefGoogle Scholar
  197. Scheumann V, Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445:445–448PubMedCrossRefGoogle Scholar
  198. Schmid HC, Oster U, Kögel J, Lenz S, Rüdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. J Biol Chem 382:903–911Google Scholar
  199. Schmid HC, Rassadina V, Oster U, Schoch S, Rüdiger W (2002) Pre-loading of chlorophyll synthase with tetraprenyl diphosphate is an obligatory step in chlorophyll biosynthesis. J Biol Chem 383:1769–1778Google Scholar
  200. Schoefs B, Franck F (1993) Photoreduction of ­protochlorophyllide to chlorophyllide in 2-d-old ­dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. J Expt Bot 44:1053–1057CrossRefGoogle Scholar
  201. Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78:543–557PubMedCrossRefGoogle Scholar
  202. Schoefs B, Garnir HP, Bertrand M (1994) Comparison of the photoreduction protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown beans as a function of age. Photosynth Res 41:405–417CrossRefGoogle Scholar
  203. Schoefs B, Bertrand M, Franck F (2000a) Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves. Photochem Photobiol 72:85–93PubMedCrossRefGoogle Scholar
  204. Schoefs B, Bertrand M, Franck F (2000b) Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants. Photochem Photobiol 72:660–668PubMedCrossRefGoogle Scholar
  205. Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284PubMedCrossRefGoogle Scholar
  206. Schon A, Kannangara CG, Gough S, Soll D (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331:187–190PubMedCrossRefGoogle Scholar
  207. Scolnik P, Bartley GE (1996) A table of some cloned plant genes involved in isoprenoid biosynthesis. Plant Mol Biol Report 14:305–319CrossRefGoogle Scholar
  208. Seyedi M, Selstam E, Timko MP, Sundqvist C (2001a) The cytokinin 2-isopentenyladenine causes partial reversion to skotomorphogenesis and induces formation of prolamellar bodies and protochlorophyllide657 in the lip1 mutant of pea. Physiol Plan 112:261–272CrossRefGoogle Scholar
  209. Seyedi M, Timko MP, Sundqvist C (2001b) The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of pea. Plant Cell Physiol 42:931–941PubMedCrossRefGoogle Scholar
  210. Shalygo N, Czarnecki O, Peter E, Grimm B (2009) Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Mol Biol 71:425–436PubMedCrossRefGoogle Scholar
  211. Shashidhara LS, Smith AG (1991) Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Proc Natl Acad Sci USA 88:63–67PubMedCrossRefGoogle Scholar
  212. Shemin D (1976) 5-Aminolevulinic acid dehydratase: structure, function and mechanism. Philos Trans R Soc Lond 273:109–115CrossRefGoogle Scholar
  213. Shetty AS, Miller GW (1969) Purification and general properties of 5-aminolevulinate dehydratase from Nicotiana tabaccum L. Biochem J 114:331–337PubMedGoogle Scholar
  214. Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44:147–173Google Scholar
  215. Shibata H, Ochiai H (1977) Purification and properties of δ-aminolevulinic acid dehydratase from radish cotyledons. Plant Cell Physiol 18:420–429Google Scholar
  216. Smeller L, Solymosi K, Fidy J, Böddi B (2003) Activation parameters of the blue shift (Shibata shift) subsequent to protochlorophyllide phototransformation. Biochim Biophys Acta 1651:130–138PubMedCrossRefGoogle Scholar
  217. Smith AG (1988) Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 249:423–428PubMedGoogle Scholar
  218. Smith AG, Francis JE (1981) Investigations of rat liver uroporphyrinogen decarboxylase. comparisons of porphyrinogens I and III as substrate and inhibition by porphyrins. Biochem J 195:241–250PubMedGoogle Scholar
  219. Soll J, Schultz G, Rüdiger W, Benz J (1983) Hydro­genation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71:849–854PubMedCrossRefGoogle Scholar
  220. Solymosi K, Böddi B (2006) Optical properties of bud scales and protochlorophyll(ide) forms in leaf primodia of closed and opened buds. Tree Physiol 26:1075–1085PubMedCrossRefGoogle Scholar
  221. Solymosi K, Bóka K, Böddi B (2006) Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26:1087–1096PubMedCrossRefGoogle Scholar
  222. Sood S, Tyagi AK, Tripathy BC (2004) Inhibition of Photosystem I and Photosystem II in wheat seedlings with their root–shoot transition zones exposed to red light. Photosynth Res 81:31–40PubMedCrossRefGoogle Scholar
  223. Sood S, Gupta V, Tripathy BC (2005) Photoregulation of the greening process of wheat seedlings grown in red light. Plant Mol Biol 59:269–287PubMedCrossRefGoogle Scholar
  224. Spano AJ, Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.). Biochim Biophys Acta 1076:29–36PubMedCrossRefGoogle Scholar
  225. Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972PubMedCrossRefGoogle Scholar
  226. Spencer P, Jordan PM (1995) Characterization of the two 5-aminolevulinic acid binding sites of 5-aminolevulinic acid dehydratase from Escherichia coli. Biochem J 305:151–158PubMedGoogle Scholar
  227. Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658PubMedCrossRefGoogle Scholar
  228. Sperling U, Franck F, Cleve BV, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in Arabidopsis: Both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296PubMedGoogle Scholar
  229. Staehelin LA, Newcomb EH (2000) Membrane structure and membrane organelles. In: Buchanan B, Gruissem W, Jones RJ (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 19–22Google Scholar
  230. Stephenson PG, Terry MJ (2008) Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana. Photochem Photobiol Sci 7:1243–1252PubMedCrossRefGoogle Scholar
  231. Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813PubMedCrossRefGoogle Scholar
  232. Sytina OA, Heyes DJ, Hunter CN, Alexandre MT, van Stokkum IH, van Grondelle R, Groot ML (2008) Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456:1001–1004PubMedCrossRefGoogle Scholar
  233. Tan FC, Cheng Q, Saha K, Heinemann IU, Jahn M, Jahn D, Smith AG (2008) Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Biochem J 410:291–299PubMedCrossRefGoogle Scholar
  234. Tanaka R, Tanaka A (2005) Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth Res 85:327–340PubMedCrossRefGoogle Scholar
  235. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  236. Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110:1223–1230PubMedCrossRefGoogle Scholar
  237. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723PubMedCrossRefGoogle Scholar
  238. Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120:695–704PubMedCrossRefGoogle Scholar
  239. Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K, Tanaka A (2001) Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J 26:365–373PubMedCrossRefGoogle Scholar
  240. Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858CrossRefGoogle Scholar
  241. Tewari AK, Tripathy BC (1999) Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). Planta 208:431–437CrossRefGoogle Scholar
  242. Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100:16119–16124PubMedCrossRefGoogle Scholar
  243. Townley HE, Sessions RB, Clarke AR, Dafforn TR, Griffiths WT (2001) Protochlorophyllide oxidoreductase: a homology model examined by site-directed mutagenesis. Proteins 44:329–335PubMedCrossRefGoogle Scholar
  244. Tripathy BC, Pattanayak G (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Advances in photosynthesis and photorespiration, vol 34. Springer, Dordrecht, pp 63–94CrossRefGoogle Scholar
  245. Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal Biochem 149:43–61PubMedCrossRefGoogle Scholar
  246. Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564PubMedGoogle Scholar
  247. Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60: conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94PubMedCrossRefGoogle Scholar
  248. Tsai S, Bishop DF, Desnick RJ (1987) Purification and properties of uroporphyrinogen III synthase from human erythrocytes. J Biol Chem 262:1268–1273PubMedGoogle Scholar
  249. Virgin HI (1965) Chlorophyll formation and water deficit. Physiol Plant 18:994–1000CrossRefGoogle Scholar
  250. Walker CJ, Weinstein JD (1994) The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299:277–284PubMedGoogle Scholar
  251. Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333PubMedGoogle Scholar
  252. Walker CJ, Mansfield KE, Smith KM, Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257:599–602PubMedGoogle Scholar
  253. Walker CJ, Castelfranco PA, Whyte BJ (1991) Synthesis of divinyl protochlorophyllide. Enzymological ­properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276:691–697PubMedGoogle Scholar
  254. Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X (2010) Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003PubMedCrossRefGoogle Scholar
  255. Watanabe N, Che F-S, Iwano M, Takayama S, Yoshida S, Isogai A (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplast by alternative use in-frame initiation codons. J Biol Chem 276:20474–20481PubMedCrossRefGoogle Scholar
  256. Waters M, Pyke K (2005) Plastid development and differentiation. In: Moller SG (ed) Plastids. Blackwell, Oxford, pp 30–59Google Scholar
  257. Whyte BJ, Castelfranco PA (1993) Further observations on the Mg-protoporphryin IX monomethyl ester (oxidative) cyclase system. Biochem J 290:355–359PubMedGoogle Scholar
  258. Wiktorsson B, Engdahl S, Zhong LB, Böddi B, Ryberg M, Sundqvist C (1993) The effect of cross-linking of the subunits of NADPH-protochlorophyllide oxidoreductase of the aggregational state of protochlorophyllide. Photosynthtica 29:205–218Google Scholar
  259. Wilks HM, Timko MP (1995) A light-dependent complementation system for analysis of NADPH: protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92:724–728PubMedCrossRefGoogle Scholar
  260. Williams P, Hardeman K, Fowler J, Rivin C (2006) Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. Plant J 45:727–739PubMedCrossRefGoogle Scholar
  261. Witty M, Wallace-Cook AD, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP, Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol 103:139–147PubMedCrossRefGoogle Scholar
  262. Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40PubMedCrossRefGoogle Scholar
  263. Xu H, Vavilin D, Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc Natl Acad Sci USA 98:14168–14173PubMedCrossRefGoogle Scholar
  264. Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–1597PubMedCrossRefGoogle Scholar
  265. Yamasato A, Tanaka R, Tanaka A (2008) Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings. BMC Plant Biol 8:64PubMedCrossRefGoogle Scholar
  266. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709PubMedCrossRefGoogle Scholar
  267. Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations