Advertisement

Plastid Signaling During the Plant Life Cycle

Plastid Function as Developmental Reporter and Environmental Sensor in Plant Growth and Acclimation
  • Thomas PfannschmidtEmail author
  • Sergi Munné-Bosch
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)

Summary

Plastids are semi-autonomous organelles of endosymbiotic origin. They possess their own DNA and a complete machinery to express the encoded information on it. However, the genome size is limited to about 120 genes encoding mainly components of the gene expression and photosynthesis machineries. For complete functionality, therefore, plastids largely depend on the import of cytosolic proteins since all plastid protein complexes are comprised of a mosaic of plastid and nuclear encoded components. Proper development and function of plastids, thus, requires a tight coordination of gene expression in the genetic compartments of a plant cell. This coordination is obtained by (1) nucleus-to-plastid signals which guarantee an appropriate establishment of the plastid type according to the tissues context of the plant cell, and by (2) plastid-to-nucleus signals which report the actual developmental and functional stage of the plastids to the nucleus. This mutual communication controls the expression of appropriate genes providing the right gene products required for the respective condition. Plastidial signals can be distinguished into distinct classes covering signals from (1) plastid gene expression, (2) pigment biosynthesis pathways, (3) pools of reactive oxygen species, (4) redox states of photosynthetic components and (5) metabolic intermediates such as sugars. This classification is mainly focused on the experimental system in which the respective plastid signal has been analyzed rather than describing the signal itself. In this review we follow a different strategy and summarize the current knowledge on plastid signaling according to the developmental stage of the plastids. We distinguish between signals from early plastid development, from mature plastids and from plastids being degraded during senescence. This also includes the action of three important plant hormones synthesized partly in the plastids, jasmonic acid, salicylic acid and abscisic acid. By this way we follow the plant’s life cycle and put the roles of plastidial signals into a functional and developmental context which provides novel insights into the fascinating research field of intracellular signaling.

Keywords

Salicylic Acid Guard Cell Jasmonic Acid Leaf Senescence Carotenoid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

ABA

Abscisic acid;

ALA

Amino levulinic acid;

GSH

Reduced glutathione;

JA

Jasmonic acid;

Mg-proto-IX

Magnesium-protoporphyrin IX;

NF

Norflurazon;

ROS

Reactive oxygen species;

SA

Salicylic acid

Notes

Acknowledgments

Work in the laboratories of the authors has been supported by grants from the “Deutsche Forschungsgemeinschaft” to T.P. (PF 323-4, PF 323-5) and from the Spanish Government and Generalitat de Catalunya to S.M.B. (BFU2009-07294-E, BFU2009-06045, CSD2008-00040 and ICREA Academia prize).

References

  1. Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142PubMedCrossRefGoogle Scholar
  2. Abreu ME, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271PubMedCrossRefGoogle Scholar
  3. Acevedo-Hernández GJ, León P, Herrera-Estrella LR (2005) Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J 43:506–519PubMedCrossRefGoogle Scholar
  4. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  5. Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60:507–518PubMedCrossRefGoogle Scholar
  6. Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42:482–492PubMedCrossRefGoogle Scholar
  7. Ankele E, Kindgren P, Pesquet E, Strand A (2007) In vivo visualization of Mg-Protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979PubMedCrossRefGoogle Scholar
  8. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  9. Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515PubMedCrossRefGoogle Scholar
  10. Asensi-Fabado MA, Munné-Bosch S (2011) The aba3-1 mutant of Arabidopsis thaliana withstands moderate doses of salt stress by modulating leaf growth and salicylic acid levels. J Plant Growth Regul 30:456–466CrossRefGoogle Scholar
  11. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefGoogle Scholar
  12. Baier M, Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449–1462PubMedCrossRefGoogle Scholar
  13. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462PubMedCrossRefGoogle Scholar
  14. Beck CF (2001) Signaling pathways in chloroplast-to-nucleus communication. Protist 152:175–182PubMedCrossRefGoogle Scholar
  15. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756PubMedCrossRefGoogle Scholar
  16. Blomqvist LA, Ryberg M, Sundqvist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50PubMedCrossRefGoogle Scholar
  17. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182PubMedCrossRefGoogle Scholar
  18. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449PubMedCrossRefGoogle Scholar
  19. Bouwmeester HJ, Roux C, López Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  20. Bradbeer JW, Atkinson YE, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid synthesized RNA. Nature 279:816–817CrossRefGoogle Scholar
  21. Bräutigam K, Dietzel L, Pfannschmidt T (2007) Plastid-nucleus communication: anterograde and retrograde signalling in development and function of plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19, Topics in current genetics. Springer, Berlin, pp 409–455CrossRefGoogle Scholar
  22. Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 21:2715–2732PubMedCrossRefGoogle Scholar
  23. Bräutigam K, Dietzel L, Pfannschmidt T (2010) Hypothesis – a binary redox control mode as universal regulator of photosynthetic light acclimation. Plant Signal Behav 5:81–85PubMedCrossRefGoogle Scholar
  24. Buchanan BB, Gruissem W, Jones RL (2002) Biochemistry and molecular biology of plants. Wiley, SomersetGoogle Scholar
  25. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585PubMedCrossRefGoogle Scholar
  26. Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB (1999) Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17:427–431PubMedCrossRefGoogle Scholar
  27. Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847CrossRefGoogle Scholar
  28. Cazzonelli CI, Yin K, Pogson BJ (2009) Potential implications for epigenetic regulation of carotenoid biosynthesis during root and shoot development. Plant Signal Behav 4:339–341PubMedCrossRefGoogle Scholar
  29. Cazzonelli CI, Roberts AC, Carmody ME, Pogson BJ (2010) Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Mol Plant 3:174–191PubMedCrossRefGoogle Scholar
  30. Chamovitz D, Pecker I, Hirschberg J (1991) The molecular basis of resistance to the herbicide norflurazon. Plant Mol Biol 16:967–974PubMedCrossRefGoogle Scholar
  31. Chandok MR, Sopory SK, Oelmüller R (2001) Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids: evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol Gen Genet 264:819–826PubMedCrossRefGoogle Scholar
  32. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195PubMedCrossRefGoogle Scholar
  33. Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219PubMedCrossRefGoogle Scholar
  34. Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPB, Rockville, pp 1044–1100Google Scholar
  35. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281PubMedCrossRefGoogle Scholar
  36. Demmig-Adams B, Adams WW III (2000) Photosynthesis – harvesting sunlight safely. Nature 403:373–374CrossRefGoogle Scholar
  37. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  38. Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–241CrossRefGoogle Scholar
  39. Enami K, Ozawa T, Motohashi N, Nakamura M, Tanaka K, Hanaoka M (2011) Plastid-to-nucleus retrograde signals are essential for the expression of nuclear starch biosynthesis genes during amyloplast differentiation in tobacco BY-2 cultured cells. Plant Physiol 157:518–530PubMedCrossRefGoogle Scholar
  40. Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241PubMedCrossRefGoogle Scholar
  41. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012PubMedCrossRefGoogle Scholar
  42. Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328PubMedCrossRefGoogle Scholar
  43. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCrossRefGoogle Scholar
  44. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905PubMedCrossRefGoogle Scholar
  45. Frechilla S, Talbott LD, Bogomolni RA, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol 41:171–176PubMedCrossRefGoogle Scholar
  46. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705PubMedCrossRefGoogle Scholar
  47. García-Heredia JM, Hervás M, De la Rosa MA, Navarro JA (2008) Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. Planta 228:89–97PubMedCrossRefGoogle Scholar
  48. Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149PubMedCrossRefGoogle Scholar
  49. Gómez-Roldán V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  50. Gray JC, Sornarajah R, Zabron AA, Duckett CM, Khan MS (1995) Chloroplast control of nuclear gene expression. Photosynthesis, from light to biosphere. Kluwer, DordrechtGoogle Scholar
  51. Gray JC, Sullivan JA, Wang JH, Jerome CA, MacLean D (2003) Coordination of plastid and nuclear gene expression. Philos T Roy Soc B 358:135–144CrossRefGoogle Scholar
  52. Hanaoka M, Kanamaru K, Takahashi H, Tanaka K (2003) Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res 31:7090–7098PubMedCrossRefGoogle Scholar
  53. He YH, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–713PubMedCrossRefGoogle Scholar
  54. He YH, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884PubMedCrossRefGoogle Scholar
  55. Heiber I, Stroher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M (2007) The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes. Plant Physiol 143:1774–1788PubMedCrossRefGoogle Scholar
  56. Hoober JK (2006) Chloroplast development: whence and whither. In: Wise RR, Hoober JK (eds) The structure and function of plastids, vol 23. Springer, Dordrecht, pp 27–51CrossRefGoogle Scholar
  57. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988PubMedCrossRefGoogle Scholar
  58. Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop H-U, Krupinska K (2012) Plastid encoded Whirly 1 is translocated to the nucleus. FEBS Lett 586:85–88PubMedCrossRefGoogle Scholar
  59. Jarvis P (2007) Intracellular signalling: chloroplast backchat. Curr Biol 17:R552–R555PubMedCrossRefGoogle Scholar
  60. Johanningmeier U, Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein messenger-RNA accumulation in Chlamydomonas reinhardtii – possible involvement of chlorophyll synthesis precursors. J Biol Chem 259:3541–3549Google Scholar
  61. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640PubMedGoogle Scholar
  62. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  63. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362PubMedCrossRefGoogle Scholar
  64. Kleine T, Voigt C, Leister D (2009) Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 25:185–190PubMedCrossRefGoogle Scholar
  65. Koncz C, Mayerhofer R, Konczkalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9:1337–1346PubMedGoogle Scholar
  66. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim IJ, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719PubMedCrossRefGoogle Scholar
  67. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945PubMedCrossRefGoogle Scholar
  68. Kropat J, Oster U, Rudiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94:14168–14172PubMedCrossRefGoogle Scholar
  69. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906PubMedCrossRefGoogle Scholar
  70. Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275PubMedCrossRefGoogle Scholar
  71. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136PubMedCrossRefGoogle Scholar
  72. Lonosky PM, Zhang XS, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574PubMedCrossRefGoogle Scholar
  73. López Ráez JA, Bouwmeester H (2008) Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signal Behav 3:963–965PubMedGoogle Scholar
  74. Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577PubMedCrossRefGoogle Scholar
  75. López Ráez JA, Charnikhova T, Gómez Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedCrossRefGoogle Scholar
  76. Lukens JH, Mathews DE, Durbin RD (1987) Effect of tagetitoxin on the levels of ribulose 1,5-bisphosphate carboxylase, ribosomes, and RNA in plastids of wheat leaves. Plant Physiol 84:808–813PubMedCrossRefGoogle Scholar
  77. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedCrossRefGoogle Scholar
  78. Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedCrossRefGoogle Scholar
  79. Maxwell DP, Laudenbach DE, Huner NPA (1995) Redox regulation of light-harvesting complex-II and cab messenger-RNA abundance in Dunaliella salina. Plant Physiol 109:787–795PubMedGoogle Scholar
  80. Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding-protein (Lhcb) messenger-RNA. Eur J Biochem 144:79–84PubMedCrossRefGoogle Scholar
  81. Mayfield SP, Nelson T, Taylor WC (1986) The fate of chloroplast proteins during photooxidation in carotenoid-deficient maize leaves. Plant Physiol 82:760–764PubMedCrossRefGoogle Scholar
  82. McCourt P, Creelman R (2008) The ABA receptor – we report you decide. Curr Opin Plant Biol 11:474–478PubMedCrossRefGoogle Scholar
  83. Meskauskiene R, Nater M, Goslings D, Kessler F, den Camp RO, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCrossRefGoogle Scholar
  84. Métraux JP (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 7:332–334PubMedCrossRefGoogle Scholar
  85. Milanowska J, Gruczecki W (2005) Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin. J Photochem Photobiol B Biol 80:178–186CrossRefGoogle Scholar
  86. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  87. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefGoogle Scholar
  88. Miura K, Lee J, Miura T, Hasegawa P (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51:103–113PubMedCrossRefGoogle Scholar
  89. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCrossRefGoogle Scholar
  90. Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189PubMedCrossRefGoogle Scholar
  91. Morris K, AH-Mackerness S, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685PubMedCrossRefGoogle Scholar
  92. Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K (2007) Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol 64:481–497PubMedCrossRefGoogle Scholar
  93. Moulin M, McCormac AC, Terry MJ, Smith AC (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183PubMedCrossRefGoogle Scholar
  94. Mullineaux PM, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48PubMedCrossRefGoogle Scholar
  95. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474PubMedCrossRefGoogle Scholar
  96. Munné-Bosch S (2008) Do perennials really senesce? Trends Plant Sci 13:216–220PubMedCrossRefGoogle Scholar
  97. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57Google Scholar
  98. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–213CrossRefGoogle Scholar
  99. Mur LA, Aubry S, Mondhe M, Kingston-Smith A, Gallagher J, Timms-Taravella E, James C, Papp I, Hörtensteiner S, Thomas H, Ougham H (2010) Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol 188:161–174PubMedCrossRefGoogle Scholar
  100. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  101. Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460PubMedCrossRefGoogle Scholar
  102. Noctor G, Veljovic-Jovanovic S, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos T Roy Soc B 355:1465–1475CrossRefGoogle Scholar
  103. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  104. Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene-expression and extraplastidic enzyme levels. Photochem Photobiol 49:229–239CrossRefGoogle Scholar
  105. Oelmüller R, Mohr H (1986) Photooxidative destruction of chloroplasts and its consequences for expression of nuclear genes. Planta 167:106–113CrossRefGoogle Scholar
  106. Oelmüller R, Levitan I, Bergfeld R, Rajasekhar VK, Mohr H (1986) Expression of nuclear genes as affected by treatments acting on the plastids. Planta 168:482–492CrossRefGoogle Scholar
  107. op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim CH, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332PubMedCrossRefGoogle Scholar
  108. Oswald O, Martin T, Dominy PJ, Graham IA (2001) Plastid redox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci USA 98:2047–2052PubMedCrossRefGoogle Scholar
  109. Paolicchi F, Lombardi L, Ceccarelli N, Lorenzi R (2005) Are retinal and retinal-binding proteins involved in stomatal response to blue light? Funct Plant Biol 32:1135–1141CrossRefGoogle Scholar
  110. Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis – studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681PubMedCrossRefGoogle Scholar
  111. Parvathi K, Raghavendra AS (1997) Blue light-promoted stomatal opening in abaxial epidermis of Commelina benghalensis is maximal at low calcium. Physiol Plant 101:861–864CrossRefGoogle Scholar
  112. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734PubMedCrossRefGoogle Scholar
  113. Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991PubMedCrossRefGoogle Scholar
  114. Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606PubMedCrossRefGoogle Scholar
  115. Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt T, Leister D (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–2423PubMedCrossRefGoogle Scholar
  116. Petracek ME, Dickey LF, Huber SC, Thompson WF (1997) Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis. Plant Cell 9:2291–2300PubMedGoogle Scholar
  117. Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci USA 95:9009–9013PubMedCrossRefGoogle Scholar
  118. Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41PubMedCrossRefGoogle Scholar
  119. Pfannschmidt T (2010) Plastidial retrograde signalling – a true “plastid factor” or just metabolite signatures? Trends Plant Sci 15:427–435PubMedCrossRefGoogle Scholar
  120. Pfannschmidt T, Link G (1997) The A and B forms of plastid DNA-dependent RNA polymerase from mustard (Sinapis alba L.) transcribe the same genes in a different developmental context. Mol Gen Genet 257:35–44PubMedCrossRefGoogle Scholar
  121. Pfannschmidt T, Schutze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130PubMedCrossRefGoogle Scholar
  122. Pfannschmidt T, Schutze K, Fey V, Sherameti I, Oelmüller R (2003) Chloroplast redox control of nuclear gene expression – a new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5:95–101PubMedCrossRefGoogle Scholar
  123. Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607PubMedCrossRefGoogle Scholar
  124. Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta UM, Battchikova N, Aro EM (2006) Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress. Physiol Genomics 25:142–152PubMedCrossRefGoogle Scholar
  125. Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551PubMedCrossRefGoogle Scholar
  126. Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609PubMedCrossRefGoogle Scholar
  127. Pursiheimo S, Mulo P, Rintamaki E, Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and Lhcb mRNA accumulation in winter rye. Plant J 26:317–327PubMedCrossRefGoogle Scholar
  128. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626PubMedCrossRefGoogle Scholar
  129. Rapp JC, Mullet JE (1991) Chloroplast transcription is required to express the nuclear genes RbcS and Cab. Plastid DNA copy number is regulated independently. Plant Mol Biol 17:813–823PubMedCrossRefGoogle Scholar
  130. Rodermel S (2001) Pathways of plastid-to-nucleus signaling. Trends Plant Sci 6:471–478PubMedCrossRefGoogle Scholar
  131. Rüdiger W, Grimm B (2006) Chlorophyll metabolism, an overview. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Advances in photosynthesis and respiration. Springer, Dordrecht, pp 133–146Google Scholar
  132. Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot 52:11–23PubMedCrossRefGoogle Scholar
  133. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874PubMedCrossRefGoogle Scholar
  134. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  135. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedCrossRefGoogle Scholar
  136. Shen Y-Y, Wang X-F, Wu F-O, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y, Fan R-C, Xu Y-H, Zhang D-P (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826PubMedCrossRefGoogle Scholar
  137. Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmüller R (2002a) Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport – a crucial cis element in the spinach PsaD gene is located in the 5′-untranslated region. Plant J 32:631–639PubMedCrossRefGoogle Scholar
  138. Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmüller R (2002b) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600PubMedCrossRefGoogle Scholar
  139. Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:418–449CrossRefGoogle Scholar
  140. Steiner S, Schröter Y, Pfalz J, Pfannschmidt T (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157:1–13CrossRefGoogle Scholar
  141. Stoebe B, Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130PubMedCrossRefGoogle Scholar
  142. Strand A (2004) Plastid-to-nucleus signalling. Curr Opin Plant Biol 7:621–625PubMedCrossRefGoogle Scholar
  143. Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83PubMedCrossRefGoogle Scholar
  144. Strand A, Kleine T, Chory J (2006) Plastid-to-nucleus signaling. In: Wise RR, Hoober JK (eds) The structure and function of plastids, vol 23. Springer, Dordrecht, pp 183–197CrossRefGoogle Scholar
  145. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168PubMedCrossRefGoogle Scholar
  146. Sullivan JA, Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11:901–910PubMedGoogle Scholar
  147. Sullivan JA, Gray JC (2002) Multiple plastid signals regulate the expression of the pea plastocyanin gene in pea and transgenic tobacco plants. Plant J 32:763–774PubMedCrossRefGoogle Scholar
  148. Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477Google Scholar
  149. Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14:S327–S338PubMedGoogle Scholar
  150. Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear Cab and RbcS gene-expression from chloroplast development. Cell 74:787–799PubMedCrossRefGoogle Scholar
  151. Talbot LD, Hammad JW, Harn LC, Nguyen VH, Patel J, Zeiger E (2006) Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. Plant Cell Physiol 47:332–339CrossRefGoogle Scholar
  152. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240PubMedCrossRefGoogle Scholar
  153. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  154. Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol 40:211–233Google Scholar
  155. Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited – a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793PubMedCrossRefGoogle Scholar
  156. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135PubMedCrossRefGoogle Scholar
  157. Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100:16119–16124PubMedCrossRefGoogle Scholar
  158. Tsuzuki T, Takahashi K, Inoue S, Okigaki Y, Tomiyama M, Hossain MA, Shimazaki K, Murata Y, Kinoshita T (2011) Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res 124:527–538PubMedCrossRefGoogle Scholar
  159. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  160. Van Norman JM, Sieburth LE (2007) Dissecting the biosynthetic pathway for the bypass1 root-derived signal. Plant J 49:619–628PubMedCrossRefGoogle Scholar
  161. Van Wijk KJ, Baginsky S (2011) Update on plastid proteomics in higher plants; current state and future goals. Plant Physiol 15:1578–1588Google Scholar
  162. Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inze D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58PubMedCrossRefGoogle Scholar
  163. Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821PubMedCrossRefGoogle Scholar
  164. von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20:552–567CrossRefGoogle Scholar
  165. Wagner D, Przybyla D, Camp ROD, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefGoogle Scholar
  166. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17PubMedCrossRefGoogle Scholar
  167. Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447PubMedCrossRefGoogle Scholar
  168. Weber AP, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77PubMedCrossRefGoogle Scholar
  169. Wilde A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B (2004) The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett 571:119–123PubMedCrossRefGoogle Scholar
  170. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565PubMedCrossRefGoogle Scholar
  171. Woitsch S, Römer S (2003) Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol 132:1508–1517PubMedCrossRefGoogle Scholar
  172. Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395PubMedCrossRefGoogle Scholar
  173. Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903PubMedCrossRefGoogle Scholar
  174. Wu FQ, Xin Q, Cao Z, Liu ZQ, Du SY, Mei C, Zhao CX, Wang XF, Shang Y, Jiang T, Zhang XF, Yan L, Zhao R, Cui ZN, Liu R, Sun HL, Yang XL, Su Z, Zhang DP (2009) The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150:1940–1954PubMedCrossRefGoogle Scholar
  175. Yang DH, Andersson B, Aro EM, Ohad I (2001) The redox state of the plastoquinone pool controls the level of the light-harvesting chlorophyll a/b binding protein complex II (LHC II) during photoacclimation – cytochrome b(6)f deficient Lemna perpusilla plants are locked in a state of high-light acclimation. Photosynth Res 68:163–174PubMedCrossRefGoogle Scholar
  176. Yoshida R, Sato T, Kanno A, Kameya T (1998) Streptomycin mimics the cool temperature response in rice plants. J Exp Bot 49:221–227Google Scholar
  177. Zeiger E, Talbott LD, Frechilla S, Srivastava A, Zhu J (2002) The guard cell chloroplast: a perspective for the twenty-first century. New Phytol 153:415–424Google Scholar
  178. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448Google Scholar
  179. Zhang X, Tan L, Guo Z, Lu S, He S, Shu W, Zhou B (2009) Increased abscisic acid levels in transgenic tobacco over-expressing 9-cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519PubMedCrossRefGoogle Scholar
  180. Zhou Y, Wang H, Gilmer S, Whitwill S, Fowke LC (2003) Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta 216:604–613PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Université Joseph Fourier Grenoble, Laboratoire de Physiologie et Végétale (LPCV)UJF/CNRS (UMR5168)/INRA (USC1359)/CEA GRENOBLEGrenoble CEDEX9France
  2. 2.Departament de Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations