Skip to main content

Chloroplast Protein Degradation: Involvement of Senescence-Associated Vacuoles

  • Chapter
  • First Online:
Plastid Development in Leaves during Growth and Senescence

Summary

Senescence, the last developmental phase in the life of a leaf, is characterized by massive degradation of chloroplast proteins and redistribution of the released amino acids and peptides to other parts of the plant. Chloroplast protein degradation plays an important role in the nitrogen economy of plants.

Loss of chloroplast proteins is associated with cessation of protein synthesis and an increase in rates of protein degradation. For some photosynthesis-associated proteins, there is clear evidence for degradation within the plastid itself. For example, chloroplastic FtsH metalloproteases and DegP serine-proteases are involved in the breakdown of the D1 protein upon photoinhibition of photosystem II, and these same proteases might degrade D1 during senescence. The involvement of chloroplast proteases in the degradation of Rubisco, the most abundant leaf protein, is less clear.

Senescence-associated vacuoles (SAVs) are a class of small, acidic, lytic vacuoles that occur in senescing leaf cells. They develop in chloroplast-containing cells (i.e., mesophyll and guard cells) and are characterized by high peptidase activity, particularly of cysteine-type proteases. SAVs seem to be different from “Rubisco Containing Bodies”, and development of SAVs does not depend on the operation of the autophagic pathway. A role for SAVs in chloroplast protein degradation can be implied from the fact that stromal proteins of the chloroplast and PSI are re-located to SAVs during senescence. In vitro, cysteine-type proteases within SAVs degrade the chloroplast proteins contained in these vacuoles. SAVs may be part of an extra-plastidial degradation pathway for chloroplast stroma and PSI proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GFP:

Green fluorescent protein;

Lhcb:

Apoproteins of the light-harvesting complex associated to photosystem II;

PCD:

Programed cell death;

PSI:

Photosystem I;

PSII:

Photosystem II;

RCBs:

Rubisco-containing bodies;

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase;

SAGs :

Senescence associated genes;

SAVs:

Senescence-associated vacuoles

References

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Article  PubMed  CAS  Google Scholar 

  • Andersson A, Keskistalo J, Sjödin A et al (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosynthesis: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Björkbacka H, Jonsson Birve S, Karlsson J, Gardeström P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442

    Article  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navadpour S, Page T, Pink D (2003) The molecular analysis of senescence – a genomics approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921

    Article  PubMed  CAS  Google Scholar 

  • De DN (2000) Plant cell vacuoles. An introduction. CSIRO, Collingwood, 288pp

    Google Scholar 

  • Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

    PubMed  CAS  Google Scholar 

  • Ding L, Wang KJ, Jiang JM, Liu MZ, Niu SL, Gao LM (2005) Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res 93:108–115

    Article  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D (1996) Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol 30:755–767

    Article  PubMed  CAS  Google Scholar 

  • Droillard MJ, Bates NJ, Rothstein SJ, Thompson JE (1992) Active translation of the D1 protein of photosystem II in senescing leaves. Plant Physiol 99:589–594

    Article  PubMed  CAS  Google Scholar 

  • Epimashko S, Meckel T, Fischer-Schliebs E, Lüttge U, Thiel G (2004) Two functional different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37:294–300

    Article  PubMed  Google Scholar 

  • Evans M, Rus AM, Belanger EM, Kimoto M, Brusslan JA (2010) Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence. Plant Biol 12:1–12

    Article  PubMed  CAS  Google Scholar 

  • Feller U (2004) Proteolysis. In: Noodén LD (ed) Plant cell death processes. Academic, San Diego, pp 107–123

    Chapter  Google Scholar 

  • Gepstein S (1988) Photosynthesis. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 85–109

    Google Scholar 

  • Gietl C, Schmid M (2001) Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften 88:49–58

    Article  PubMed  CAS  Google Scholar 

  • Giunta F, Motzo R, Pruneddu G (2008) Has long-term selection for yield in durum wheat also induced changes in leaf and canopy traits? Field Crops Res 106:68–76

    Article  Google Scholar 

  • Grbic V (2003) SAG2 and SAG12 protein expression in senescing Arabidopsis plants. Physiol Plant 119:1–7

    Article  Google Scholar 

  • Greenbaum D, Medzihradsky K, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7:569–581

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilization in barley and wheat. Plant Biol 10:37–49

    Article  PubMed  CAS  Google Scholar 

  • Guiamet JJ, Tyystjärvi E, Tyystjärvi T, John I, Kairavuo M, Pichersky P, Noodén LD (2002) Photoinhibition and loss of photosystem II reaction center proteins during senescence of soybean leaves. Enhancement of photoinhibition by the “stay-green” mutation cytG. Physiol Plant 115:468–478

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging and tip shedding. Protoplasma 225:33–42

    Article  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Satterzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155:1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    PubMed  CAS  Google Scholar 

  • Hidema J, Makino A, Mae T, Ojima K (1991) Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiol 97:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Hidema J, Makino A, Kurita Y, Mae T, Ojima K (1992) Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PSII in rice leaves aged under different irradiances from full expansion through senescence. Plant Cell Physiol 33:1209–1214

    CAS  Google Scholar 

  • Holloway PJ, Maclean DJ, Scott KJ (1983) Rate-limiting steps of electron transport in chloroplasts during ontogeny and senescence of barley. Plant Physiol 72:795–801

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Humbeck K, Krupinska K (2003) The abundance of minor chlorophyll a/b binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. J Exp Bot 54:375–383

    Article  PubMed  CAS  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Hwang Y, Bethke PC, Gubler F, Jones RL (2003) cPrG-HCl a potential H+/Cl symporter prevents acidification of storage vacuoles in aleurone cells and inhibits GA-dependent hydrolysis of storage proteins and phytate. Plant J 35:154–163

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplast to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    Article  PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Hayakawa T, Mae T, Ojima K (1992) Changes in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiol 98:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Kapri-Pardes E, Naveh L, Adam Z (2007) The thylakoid lumen protease DegP1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19:1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Yamamoto Y, Murakami S, Sato F (2005) Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta 222:643–651

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W (2009) The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol 151:1790–1801

    Article  PubMed  CAS  Google Scholar 

  • Keech O, Pesquet E, Ahad A, Askne A, Nordrvall D, Vodnala SM, Tuominen H, Hurry V, Dizengremel P, Gardeström P (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell Environ 30:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Killingbeck KT (2004) Nutrient resorption. In: Noodén LD (ed) Plant cell death processes. Academic, San Diego, pp 215–226

    Chapter  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Kokubun N, Ishida H, Makino A, Mae T (2002) The degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into the 44 kDa fragment in the lysates of chloroplasts incubated in darkness. Plant Cell Physiol 43:1390–1395

    Article  PubMed  CAS  Google Scholar 

  • Krupinska K (2007) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Netherlands, pp 433–449

    Chapter  Google Scholar 

  • Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING 1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, Pont-Lezica R, Conde R (1985) Protein metabolism in senescing wheat leaves. Plant Physiol 77:587–590

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lohman KN, Gan S, John LM, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328

    Article  CAS  Google Scholar 

  • Lu C, Lu Q, Zhang J, Kuang T (2001) Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. J Exp Bot 52:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Mae T (2004) Leaf senescence and nitrogen metabolism. In: Noodén LD (ed) Plant cell death processes. Academic, San Diego, pp 157–168

    Chapter  Google Scholar 

  • Martínez DE, Bartoli CG, Grbic V, Guiamet JJ (2007) Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J Exp Bot 58:1099–1107

    Article  PubMed  Google Scholar 

  • Martínez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008a) “Senescence-associated vacuoles” are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206

    Article  PubMed  Google Scholar 

  • Martínez DE, Costa ML, Guiamet JJ (2008b) Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol 10:15–22

    Article  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36

    Article  PubMed  CAS  Google Scholar 

  • Matile P (1997) The vacuole and cell senescence. Adv Bot Res 25:87–112

    Article  CAS  Google Scholar 

  • May JD, Killingbeck KT (1992) Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology 73:1868–1878

    Article  Google Scholar 

  • Miersch I, Heise J, Zelmer I, Humbeck K (2000) Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biol 2:618–623

    Article  Google Scholar 

  • Minimikawa T, Toyooka K, Okamoto T, Hara-Nishimura I, Nishimura M (2001) Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: immunocytochemical and ultrastructural observations. Protoplasma 218:144–153

    Article  Google Scholar 

  • Müntz K (2007) Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58:2391–2407

    Article  PubMed  Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue Y, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40:504–514

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Nagato N, Kimura T, Sekimoto M, Kawaide H, Murakami S, Kaneko Y, Matsushima H, Kamiya J, Sato F, Yoshida S (2003) CND41, a chloroplast nucleoid protein that regulates plastid development, causes reduced gibberellin content and dwarfism in tobacco. Physiol Plant 117:130–136

    Article  CAS  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erd1, encoding a chloroplast targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana. Plant J 12:851–861

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Kato T, Tabata S, Seki M, Kobayashi M, Shinozaki K, Moriyasu Y (2004) Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma 223:229–232

    Article  PubMed  Google Scholar 

  • Noodén LD (1988) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 1–50

    Google Scholar 

  • Noodén LD, Schneider MJ (2004) Light control of senescence. In: Noodén LD (ed) Plant cell death processes. Academic, San Diego, pp 375–383

    Chapter  Google Scholar 

  • Noodén LD, Guiamet JJ, John I (2004) Whole plant senescence. In: Noodén LD (ed) Plant cell death processes. Academic, San Diego, pp 227–244

    Chapter  Google Scholar 

  • Otegui M, Noh Y-S, Martínez D, Vila-Petroff M, Staehelin A, Amasino R, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in senescing leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  PubMed  CAS  Google Scholar 

  • Parrott DL, Martin JM, Fischer AM (2010) Analysis of barley (Hordeum vulgare L.) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytol 187:313–331

    Article  PubMed  CAS  Google Scholar 

  • Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 181–217

    Google Scholar 

  • Roulin S, Feller U (1998) Light-independent degradation degradation of stromal proteins in intact chloroplasts isolated from Pisum sativum L.: requirement for divalent cations. Planta 205:297–304

    Article  CAS  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206:466–475

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci 96:14159–14164

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson D, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci 98:5353–5358

    Article  PubMed  CAS  Google Scholar 

  • Schmutz D, Wyss H-R, Brunold C (1983) Activity of sulfate-assimilating enzymes in primary leaves of Phaseolus vulgaris L. during dark-induced senescence. Z Pflanzenphysiol 110:211–219

    CAS  Google Scholar 

  • Senatore A, Trobacher CP, Greenwood JS (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol 149:775–790

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC functional homologs of Escherichia coli ClpP and ClpA: an archetypal two components ATP-dependent protease. Plant Cell 7:1713–1722

    PubMed  CAS  Google Scholar 

  • Srivalli B, Bharti S, Khanna-Chopra N (2001) Vacuolar cysteine proteases and ribulose-1,5-bisphosphate carboxylase/oxygenase degradation during monocarpic senescence in cowpea leaves. Photosynthetica 39:87–93

    Article  CAS  Google Scholar 

  • Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L (2007) Formation of Deg5 and Deg8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Fu T, Chen N, Guo J, Ma J, Zou M, Lu C, Zhang L (2010) The stromal chloroplast Deg7 protease participates in the repair of photosystem II after photoinhibition in Arabidopsis. Plant Physiol 152:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Swanson SJ, Bethke PC, Jones RL (1998) Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles by means of fluorescent probes. Plant Cell 10:685–698

    PubMed  CAS  Google Scholar 

  • Tang Y, Wen X, Lu C (2005) Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem 43:193–201

    Article  PubMed  CAS  Google Scholar 

  • Thoenen M, Herrmann B, Feller U (2007) Senescence in wheat leaves: is a cysteine endopeptidase involved in the degradation of the large subunit of Rubisco? Acta Physiol Plant 29:339–350

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcosky J (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • van der Hoorn RAL, Leeuwenbergh MA, Bogyo M, Joosten MHA, Peck SC (2004) Activity profiling of papain-like cystein proteases in plants. Plant Physiol 135:1170–1178

    Article  PubMed  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Aigner H, Pruzinská A, Johanson Jänkänpää H, Jansson S, Funk C (2011) Fitness analysis of Arabidopsis thaliana mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling. New Phytol. 191:449–458

    Google Scholar 

  • Weaver LM, Froehlich JE, Amasino RM (1999) Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Plant Physiol 119:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) Ore 9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    PubMed  CAS  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Minimikawa T (1996) Successive amino-terminal proteolysis of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase by vacuolar enzymes from French bean leaves. Eur J Biochem 238:317–324

    Article  PubMed  CAS  Google Scholar 

  • Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Franklin KA, Ougham HJ, Thomas H, Scott IM (1999) Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll a/b-binding protein. J Exp Bot 50:1677–1682

    CAS  Google Scholar 

  • Zelisko A, Jackowski G (2004) Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease. J Plant Physiol 161:1157–1170

    Article  PubMed  CAS  Google Scholar 

  • Zelisko A, García-Lorenzo M, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci 102:13690–13704

    Article  Google Scholar 

  • Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Planta 224:1103–1115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 11885 and PICT 0784), Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional de La Plata (Argentina) and the DAAD (Deutscher Akademischer Austausch Dienst, Germany) – Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) collaborative program. MLC and DEM are researchers, and CC and FMG hold fellowships, of Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. JJG is a researcher of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Guiamet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Costa, M.L., Martínez, D.E., Gomez, F.M., Carrión, C.A., Guiamet, J.J. (2013). Chloroplast Protein Degradation: Involvement of Senescence-Associated Vacuoles. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_18

Download citation

Publish with us

Policies and ethics