Skip to main content

Regulation of Leaf Senescence: Role of Reactive Oxygen Species

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

Leaf senescence causes a genetically programmed decline in various cellular processes including photosynthesis and involves hydrolysis of macromolecules including proteins, ­lipids and nucleic acids. Environmental stresses and reproductive structures influence the rate of senescence. The process of senescence and abiotic stress response are associated with the overproduction of reactive oxygen species (ROS) which are highly reactive and toxic compounds, and ultimately result in oxidative stress. ROS contribute to the progression of leaf senescence, as the antioxidant capacity of the leaf declines. Arabidopsis mutants and transgenic plants, in which antioxidant enzymes were manipulated, substantiate direct involvement of the ROS in leaf senescence. Infact, there is an intrinsic link between oxidative damage and leaf senescence and the free radical theory of aging seems to apply to plant senescence. Chloroplasts may play a regulatory role during leaf senescence similar to that of mitochondria during animal programmed cell death. Peroxisomes have a ROS mediated cellular function in leaf senescence and stress response. Reproductive sinks act as a stress leading to higher oxidative damage to proteins, drive the mobilization of nitrogen to the developing seeds and hence regulate the rate of senescence. The photosynthetic organelles are the main targets of ROS linked damage in plants experiencing various environmental stresses and natural senescence with decline in ROS detoxification mechanisms. At the same time, ROS play an important signaling role in plants controlling the processes such as growth, development, senescence, responses to environmental stimuli and programmed cell death. Plants adapt to environmental stresses through the process of acclimation, which involves less ROS production coupled with an efficient antioxidant defence. Among the different ROS, H2O2 appears to be the key regulatory molecule involved both in senescence and stress acclimation. In addition to redox control of chloroplast, a considerable cross-talk is observed in the regulatory networks involving hormones, ROS and transcription factors both in natural and stress induced senescence and abiotic stress responses. In this chapter an attempt has been made to review and analyse the role of ROS in senescence and abiotic stress responses, since both involve oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

– Abscisic acid;

APX:

– Ascorbate peroxidase;

AsA:

– Ascorbic acid (reduced);

CAT:

– Catalase;

DHA:

– Ascorbic acid (oxidized);

DHAR:

– Dehydroascorbate reductase;

GPX:

– Glutathione peroxidase;

GR:

– Glutathione reductase;

GSH:

– Glutathione (reduced);

GSSG:

– Glutathione (oxidized);

MAPK:

– Mitogen activated protein kinase;

MDAR:

– Monodehydroascorbate reductase;

PCD:

– Programmed cell death;

ROS:

– Reactive oxygen ­species;

SA:

– Salicylic acid;

SAG:

– Senescence ­associated gene;

SOD:

– Superoxide dismutase

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philos Trans R Soc Lond B Biol Sci 355:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Balazadeh S, Riano-Pachon DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient mutant vitamin C-1. Plant Physiol 134:178–192

    Article  CAS  Google Scholar 

  • Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70n co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot. doi:10.1093/jxb/err450

  • Breusegem FV, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  CAS  Google Scholar 

  • Brosche M, Kangasjavri S, Overmyer K, Wrazaczek M, Kangasjaveri J (2010) Stress signaling III: reactive oxygen species (ROS). In: Pareek A, Sopory SK, Bonhert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 91–102

    Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  PubMed  CAS  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1292

    PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Pestori GM, Palma JM, Sandallio LM, Sevilla F, Corpus FJ, Jiamenez A, Lopaz-Huertas E, Hernandez A (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, BarROSo JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468

    Article  CAS  Google Scholar 

  • Desikan R, Hancock JT, Neill SJ (2003) Oxidative stress signaling. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stresses: topics in current genetics. Springer, Berlin/Heidelberg/New York, pp 121–148

    Chapter  Google Scholar 

  • Devletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  CAS  Google Scholar 

  • Dietz A-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Dufur E, Larsson N-G (2004) Understanding aging: revealing order out of chaos. Biochim Biophys Acta 1658:122–132

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reduc­tase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    PubMed  CAS  Google Scholar 

  • Feucht W, Treutter D, Polster J (2004) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430–436

    Article  PubMed  CAS  Google Scholar 

  • Filkowski J, Kovalchuk O, Kovalchuk I (2004) Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress. Plant J 38:60–69

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and ­antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    Article  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense out of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319

    PubMed  CAS  Google Scholar 

  • Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necROSis when levels of cellular ascorbate are low. Plant Mol Biol 65:627–644

    Article  PubMed  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damages in tobacco roots, but no DNA damage, somatic mutations or homologous recombinations in tobacco leaves. Mutat Res 559:49–57

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2007) Completing a pathway to plant vitamin C synthesis. Proc Natl Acad Sci USA 104(22):9109–9110

    Article  PubMed  CAS  Google Scholar 

  • Groten K, Dutilleul C, van Heerden PDR, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH (2006) Redoxregulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett 580:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Hamada AM (2000) Amelioration of drought stress by AA, thiamine or aspirin in wheat plants. Indian J Plant Physiol 5:358–364

    CAS  Google Scholar 

  • Han H, Li Y, Zhou S (2008) Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • He Y, Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  PubMed  CAS  Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressinga NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 35:12987–12992

    Article  CAS  Google Scholar 

  • Hu X, Zhang A, Zhang J, Jiang M (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–879

    Article  PubMed  CAS  Google Scholar 

  • Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol 161:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Jimènez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Jiménez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate–glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Jing H-C, Schippers JHM, Hiller J, Djikwel DP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  PubMed  CAS  Google Scholar 

  • Jing H-C, Hebelar R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP (2008) Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis crp5/old1 mutants. Plant Biol 10:85–98

    Article  PubMed  CAS  Google Scholar 

  • Jubany-Marí T, Munné-Bosch S, Lopez-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot 60:107–120

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30:101–110

    Article  CAS  Google Scholar 

  • Kukavica B, Veljovic-Jovanovic S (2004) senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant 122:321–327

    Article  CAS  Google Scholar 

  • Kurepa J, Smalle J, van Montagu M, Inźe D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Laing WA, Michele AW, Janine C, Sean MB (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104(22):9534–9539

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Z, Sun X, Tang K (2008) Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J Integr Plant Biol 50:1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  CAS  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  PubMed  CAS  Google Scholar 

  • Mariya K, Courtney S, Qian W, Imara YP, Wendy FB, Christopher SB, Heike WS (2010) Increasing inositol(1,4,5)-triphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. Plant Biotechnol J 8:170–183

    Article  CAS  Google Scholar 

  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence for mitochondrial involvement in transduction of signals required for the induction of genes associated pathogen attack and senescence. Plant J 29:269–279

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostatis in plant: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • McDermott JH (2000) Antioxidant nutrients: current dietary recommendations and research update. J Am Pharm Assoc 40:785–799

    CAS  Google Scholar 

  • Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57:57–68

    Article  CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65:63–76

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mǿller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  PubMed  CAS  Google Scholar 

  • Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, Li J (2002) Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell 14:2031–2043

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) Plant ageing increases oxidative stress in chloroplasts. Planta 214:608–615

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  Google Scholar 

  • Munné-Bosch S, Falara V, Pateraki I, Lopez-Carbonell M, Cela J, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Queval G, Gakieŕe B (2006) NAD (P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, NeukerMans J, Garcia BM, Queval G, Foyer CH (2012) Glutathione in plants: anintegrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Orendi G, Zimmermann P, Baar C, Zentgraf U (2001) Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci 161:301–314

    Article  PubMed  CAS  Google Scholar 

  • Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11(6):1297–1305

    Article  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Mullineaux P, Foyer CH (2000) Post ­transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize: implication on the sensitivity of maize to temperatures. Plant Physiol 122:667–675

    Article  PubMed  CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activate cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Hertle A, Pribi M, Schneider A, Kleine T, Leister D (2010) Optimizing photosynthesis under fluctuating light: the role of Arabidopsis STN7 kinase. Plant Signal Behav 5:21–25

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2010) Plastidial retrograde signaling-a true “plastid factor” or just metabolite signatures. Trends Plant Sci 15:427–435

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–629

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Fey V (2003) Chloroplast redox control of nuclear gene expression – A new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5(1):95–101

    Article  PubMed  CAS  Google Scholar 

  • Pitzke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MFKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    Article  CAS  Google Scholar 

  • Polidoros NA, Scandalios JG (1999) Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol Plant 106:112–120

    Article  CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  PubMed  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  PubMed  CAS  Google Scholar 

  • Queval G, Noctor G (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Nat Acad Sci USA 104:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser S, Mayak S, Friedman H (2006) Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of Pelargonium cuttings, and the effect of gibberellic acid. Plant Sci 170:873–879

    Article  CAS  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to ROS-related events during extended darkness. Plant Physiol 156:185–201

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, amaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Santos VCL, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Cheruth AJ, Mi HM (2008a) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008b) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi faceted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2011) G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2004) Ribulose −1, 5-bisphosphate carboxylase/oxygenase content and degradation in diploid, tetraploid and hexaploid wheat species during monocarpic senescence. Photosynthetica 42:393–398

    Article  CAS  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 207–225

    Chapter  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2009) Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem 47:663–670

    Article  PubMed  CAS  Google Scholar 

  • Srivalli B, Bharti S, Khanna-Chopra R (2001) Vacuolar cysteine proteases and ribulose-1,5-bisphosphate carboxylase/oxygenase degradation during monocarpic senescence in cowpea leaves. Photosynthetica 39:87–93

    Article  CAS  Google Scholar 

  • Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L, Guo W, Deng X (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843

    Article  PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, DÓczi F, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Tiwari RK, Kumar P, Kim S, Hahn E-J, Paek K-Y (2009) Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Physiol 28:267–279

    Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  PubMed  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Vanacker H, Sandalio LM, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrir M, Foyer CH, del Rio LA (2006) Role of redox regulation in leaf senescence of pea plants grown in different sources of nitrogen nutrition. J Exp Bot 57:1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Breusegem FV (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes. Mol Membr Biol 17:143–156

    Article  PubMed  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Dubey M, Schraudner M, Lanerbartels C, van Montagu M, Inźe D, van Camp W (1997) Catalase is a sink for hydrogen peroxide and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  PubMed  CAS  Google Scholar 

  • Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18:486–495

    Article  CAS  Google Scholar 

  • Xue-Xuan X, Hong-Bo S, Yuan-Yuan S, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R (2010) Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic stressed conditions. Crit Rev Biotech 30:222–230

    Article  CAS  Google Scholar 

  • Yamaguchi J, Iwamoto T, Kida S, Masushige S, Yamada K, Esashi T (2001) Tocopherol associated protein is a ligand dependent transcriptional activator. Biochem Biophys Res Commun 285:295–299

    Article  CAS  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling H-Q, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  PubMed  CAS  Google Scholar 

  • Ying W (2008) NAD/NADH and NADP/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  PubMed  CAS  Google Scholar 

  • Zapata JM, Guera A, Esteban-Carrasco A, Martin M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ 12:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Zimmermann P, Smykowski A (2012)Role of intracellular hydrogen peroxide as signalling molecule for plant senescence. In: Nagata T (eds) senescence. Rijeka, Croatia. ISBN: 978-953-51-0144-4, InTech, Available from: http://www.intechopen.com/books/senescence/role-of-intracellular-hydrogen-peroxide-as-signalling-molecule-for-plant-senescence, 7 Apr 2012

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalase in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1056

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RKC gratefully acknowledges the support of Indian Agricultural Research Institute (IARI) and Indian Council of Agricultural Research (ICAR) for research grants under National Fellow scheme and National project on transgenic crops (genomic component). AP acknowledges Department of Biotechnology (DBT) for research grants. KKN acknowledges fellowship from DBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khanna-Chopra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Khanna-Chopra, R., Nutan, K.K., Pareek, A. (2013). Regulation of Leaf Senescence: Role of Reactive Oxygen Species. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_17

Download citation

Publish with us

Policies and ethics