The Pathway of Chlorophyll Degradation: Catabolites, Enzymes and Pathway Regulation

  • Stefan HörtensteinerEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)


During leaf senescence and fruit ripening, chlorophyll is broken down to colorless linear tetrapyrroles, which are stored in the vacuoles of degreened cells. The pathway of chlorophyll degradation that is active in these developmental processes is fairly well known regarding its biochemistry and cell biology. It comprises at least six enzymatic and one non-enzymatic reaction and the chemical structures of several intermediary and final chlorophyll catabolites have been elucidated. In the last few years, genes coding for a number of chlorophyll catabolic enzymes have been characterized and mutants in these genes have been analyzed. This includes pheophorbide a oxygenase (PAO), the key enzyme of the pathway, which is responsible for opening of the chlorine macrocycle present in chlorophyll, thereby providing the characteristic structural basis of all further downstream breakdown products. The pathway is therefore nowadays termed the ‘PAO pathway’. This review summarizes information on the structures of chlorophyll breakdown products and the reactions involved in their formation. In addition cell biological and regulatory aspects of the PAO pathway are discussed.


Leaf Senescence Senescent Leaf Chloroplast Envelope Chlorophyll Breakdown Accelerate Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ATP binding cassette;


Accelerated cell death;









hFCC –

Hypermodified fluorescent Chl catabo­lite;


Hydroxymethyl Chl reductase;


Light harvesting complex;


Metal chelating substance;

mFCC –

Modified fluorescent Chl catabolite;


Nonfluorescent Chl catabolite;




Non yellow coloring;


Non yellowing;


Pheophorbide a oxygenase;


Primary fluorescent Chl catabolite;










Red chl catabolite;


Red Chl catabolite reductase;


Reactive oxygen species



I would like to thank Bernhard Kräutler for many stimulating discussions and fruitful long-term collaboration. Many thanks also to my present and former group members for their important contributions in the area of chlorophyll breakdown. I thank Helen Ougham for critical reading and language editing of the manuscript. My work is financially supported by grants from the Swiss National Science Foundation and by the National Center of Competence in Research Plant Survival, a research program of the Swiss National Science Foundation.


  1. Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240PubMedCrossRefGoogle Scholar
  2. Aiamla-or S, Kaewsuksaeng S, Shigyo M, Yamauchi N (2010) Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chem 120:645–651CrossRefGoogle Scholar
  3. Amir-Shapira D, Goldschmidt EE, Altman A (1987) Chlorophyll catabolism in senescing plant tissues: in vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves. Proc Natl Acad Sci USA 84:1901–1905PubMedCrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  5. Arkus KAJ, Cahoon EB, Jez JM (2005) Mechanistic analysis of wheat chlorophyllase. Arch Biochem Biophys 438:146–155PubMedCrossRefGoogle Scholar
  6. Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2006) From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597PubMedCrossRefGoogle Scholar
  7. Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2007) Cross-species identification of Mendel’s I locus. Science 315:73PubMedCrossRefGoogle Scholar
  8. Aubry S, Mani J, Hörtensteiner S (2008) Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256PubMedCrossRefGoogle Scholar
  9. Azoulay Shemer T, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V, Standing KG, Goldschmidt EE, Eyal Y (2008) Citrus chlorophyllase dynamics at ethylene-induced fruit color-break; a study of chlorophyllase expression, post-translational processing kinetics and in-situ intracellular localization. Plant Physiol 148:108–118PubMedCrossRefGoogle Scholar
  10. Bachmann A, Fernández-López J, Ginsburg S, Thomas H, Bouwcamp JC, Solomos T, Matile P (1994) Stay-green genotypes of Phaseolus vulgaris L.: chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 126:593–600CrossRefGoogle Scholar
  11. Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10(suppl 1):63–75PubMedCrossRefGoogle Scholar
  12. Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958PubMedCrossRefGoogle Scholar
  13. Banala S, Moser S, Müller T, Kreutz CR, Holzinger A, Lütz C, Kräutler B (2010) Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177CrossRefGoogle Scholar
  14. Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147:179–187PubMedCrossRefGoogle Scholar
  15. Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci USA 105:4933–4938PubMedCrossRefGoogle Scholar
  16. Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S (2010) Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–2199PubMedCrossRefGoogle Scholar
  17. Berghold J, Breuker K, Oberhuber M, Hörtensteiner S, Kräutler B (2002) Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 74:109–119PubMedCrossRefGoogle Scholar
  18. Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers 1:657–668PubMedCrossRefGoogle Scholar
  19. Berghold J, Müller T, Ulrich M, Hörtensteiner S, Kräutler B (2006) Chlorophyll breakdown in maize: on the structure of two nonfluorescent chlorophyll catabolites. Monatsh Chem 137:751–763CrossRefGoogle Scholar
  20. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266PubMedCrossRefGoogle Scholar
  21. Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 465–489Google Scholar
  22. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585PubMedCrossRefGoogle Scholar
  23. Büchert AM, Civello PM, Martínez GA (2011) Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J Plant Physiol 168:337–343PubMedCrossRefGoogle Scholar
  24. Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008) Transgenic broccoli (Brassica oleracea var. italicia) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174:25–31CrossRefGoogle Scholar
  25. Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230PubMedCrossRefGoogle Scholar
  26. Costa ML, Civello PM, Chaves AR, Martinez GA (2002) Characterization of Mg-dechelatase activity obtained from Fragaria x ananassa fruit. Plant Physiol Biochem 40:111–118CrossRefGoogle Scholar
  27. Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42:1531–1536CrossRefGoogle Scholar
  28. Dammeyer T, Hofmann E, Frankenberg-Dinkel N (2008) Phycoerythrobilin synthase (PebS) of a marine virus – crystal structures of the biliverdin complex and the substrate-free form. J Biol Chem 283:27547–27554PubMedCrossRefGoogle Scholar
  29. Efrati A, Eyal Y, Paran I (2005) Molecular mapping of the chlorophyll retainer (cl) mutation in pepper (Capsicum spp.) and screening for candidate genes using tomato ESTs homologous to structural genes of the chlorophyll catabolism pathway. Genome 48:347–351PubMedCrossRefGoogle Scholar
  30. Engel N, Curty C, Gossauer A (1996) Chlorophyll catabolism in Chlorella protothecoides. 8. Facts and artefacts. Plant Physiol Biochem 34:77–83Google Scholar
  31. Feierabend J, Dehne S (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the photosystem II reaction-center protein D1 in mature rye leaves. Planta 198:413–422CrossRefGoogle Scholar
  32. Fiedor L, Rosenbach-Belkin V, Scherz A (1992) The stereospecific interaction between chlorophylls and chlorophyllase – possible implication for chlorophyll biosynthesis and degradation. J Biol Chem 267:22043–22047PubMedGoogle Scholar
  33. Folley P, Engel N (1999) Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274:21811–21816CrossRefGoogle Scholar
  34. Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978PubMedGoogle Scholar
  35. Frelet-Barrand A, Kolukisaoglu HU, Plaza S, Rüffer M, Azevedo L, Hörtensteiner S, Marinova K, Weder B, Schulz B, Klein M (2008) Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49:557–569PubMedCrossRefGoogle Scholar
  36. Gaude N, Brehelin C, Tischendorf G, Kessler F, Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739PubMedCrossRefGoogle Scholar
  37. Ginsburg S, Matile P (1993) Identification of catabolites of chlorophyll porphyrin in senescent rape cotyledons. Plant Physiol 102:521–527PubMedGoogle Scholar
  38. Ginsburg S, Schellenberg M, Matile P (1994) Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin and oxygen. Plant Physiol 105:545–554PubMedGoogle Scholar
  39. Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25–31PubMedCrossRefGoogle Scholar
  40. Gray J, Janick-Bruckner D, Bruckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907PubMedCrossRefGoogle Scholar
  41. Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1–related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54PubMedCrossRefGoogle Scholar
  42. Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341PubMedCrossRefGoogle Scholar
  43. Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563PubMedCrossRefGoogle Scholar
  44. Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801PubMedCrossRefGoogle Scholar
  45. Guiamét JJ, Schwartz E, Pichersky E, Noodén LD (1991) Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol 96:227–231PubMedCrossRefGoogle Scholar
  46. Guiamét JJ, Pichersky E, Noodén LD (1999) Mass exodus from senescing soybean chloroplasts. Plant Cell Physiol 40:986–992CrossRefGoogle Scholar
  47. Hagiwara Y, Sugishima M, Takahashi Y, Fukuyama K (2006) Crystal structure of phycocyanobilin: ferredoxin oxidoreductase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phycocyanobilin. Proc Natl Acad Sci USA 103:27–32PubMedCrossRefGoogle Scholar
  48. Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hörtensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022PubMedCrossRefGoogle Scholar
  49. Harrison MA, Nemson JA, Melis A (1993) Assembly and composition of the chlorophyll a-b light-harvesting complex of barley (Hordeum vulgare L.): immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants. Photosynth Res 38:141–151CrossRefGoogle Scholar
  50. Heaton JW, Marangoni AG (1996) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7:8–15CrossRefGoogle Scholar
  51. Hendry GAF, Stobart AK (1986) Chlorophyll turnover in greening barley. Phytochemistry 25:2735–2737Google Scholar
  52. Hendry GAF, Houghton JD, Brown SB (1987) The degradation of chlorophyll – a biological enigma. New Phytol 107:255–302CrossRefGoogle Scholar
  53. Hilditch P, Thomas H, Rogers LJ (1986) Two processes for the breakdown of the QB protein of chloroplasts. FEBS Lett 208:313–316CrossRefGoogle Scholar
  54. Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P, Hörtensteiner S (1996) How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271:27233–27236PubMedCrossRefGoogle Scholar
  55. Hirashima M, Tanaka R, Tanaka A (2009) Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol 50:719–729PubMedCrossRefGoogle Scholar
  56. Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem 284:17449–17456PubMedCrossRefGoogle Scholar
  57. Horn R, Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex – time-resolved fluorescence measurements. J Biol Chem 279:44400–44406PubMedCrossRefGoogle Scholar
  58. Hörtensteiner S (1998) NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49:953–956PubMedCrossRefGoogle Scholar
  59. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77PubMedCrossRefGoogle Scholar
  60. Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162PubMedCrossRefGoogle Scholar
  61. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochem Biophys Acta 1807:977–988PubMedCrossRefGoogle Scholar
  62. Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246CrossRefGoogle Scholar
  63. Hörtensteiner S, Wüthrich KL, Matile P, Ongania K-H, Kräutler B (1998) The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273:15335–15339PubMedCrossRefGoogle Scholar
  64. Hörtensteiner S, Rodoni S, Schellenberg M, Vicentini F, Nandi OI, Qiu Y-L, Matile P (2000) Evolution of chlorophyll degradation: the significance of RCC reductase. Plant Biol 2:63–67CrossRefGoogle Scholar
  65. Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105PubMedGoogle Scholar
  66. Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477PubMedCrossRefGoogle Scholar
  67. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155PubMedCrossRefGoogle Scholar
  68. Ishikawa A, Okamoto H, Iwasaki Y, Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27:89–99PubMedCrossRefGoogle Scholar
  69. Ito H, Ohysuka T, Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271:1475–1479PubMedCrossRefGoogle Scholar
  70. Iturraspe J, Engel N, Gossauer A (1994) Chlorophyll catabolism. Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochemistry 35:1387–1390CrossRefGoogle Scholar
  71. Iturraspe J, Moyano N, Frydman B (1995) A new 5-formylbilinone as the major chlorophyll a catabolite in tree senescent leaves. J Org Chem 60:6664–6665CrossRefGoogle Scholar
  72. Jakob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653–661CrossRefGoogle Scholar
  73. Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209PubMedCrossRefGoogle Scholar
  74. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180PubMedCrossRefGoogle Scholar
  75. Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294PubMedCrossRefGoogle Scholar
  76. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436PubMedGoogle Scholar
  77. Kräutler B (2003) Chlorophyll breakdown and chlorophyll catabolites. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Elsevier Science, Amsterdam, pp 183–209CrossRefGoogle Scholar
  78. Kräutler B (2008) Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit. Photochem Photobiol Sci 7:1114–1120PubMedCrossRefGoogle Scholar
  79. Kräutler B, Hörtensteiner S (2006) Chlorophyll catabolites and the biochemistry of chlorophyll breakdown. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 237–260CrossRefGoogle Scholar
  80. Kräutler B, Jaun B, Bortlik K-H, Schellenberg M, Matile P (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 30:1315–1318CrossRefGoogle Scholar
  81. Kräutler B, Mühlecker W, Anderl M, Gerlach B (1997) Breakdown of chlorophyll: partial synthesis of a putative intermediary catabolite. Helv Chim Acta 80:1355–1362CrossRefGoogle Scholar
  82. Kräutler B, Banala S, Moser S, Vergeiner C, Müller T, Lütz C, Holzinger A (2010) A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily (Spathiphyllum wallisii) and indicates a divergent path of chlorophyll breakdown. FEBS Lett 584:4215–4221PubMedCrossRefGoogle Scholar
  83. Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14:3712–3720PubMedGoogle Scholar
  84. Kunieda T, Amano T, Shioi Y (2005) Search for chlorophyll degradation enzyme, Mg-dechelatase, from extracts of Chenopodium album with native and artificial substrates. Plant Sci 169:177–183CrossRefGoogle Scholar
  85. Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375PubMedCrossRefGoogle Scholar
  86. Langmeier M, Ginsburg S, Matile P (1993) Chlorophyll breakdown in senescent leaves: demonstration of Mg-dechelatase activity. Physiol Plant 89:347–353CrossRefGoogle Scholar
  87. Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275PubMedCrossRefGoogle Scholar
  88. Liao Y, An K, Zhou X, Chen W-J, Kuai B-K (2007) AtCLH2, a typical but possibly distinctive chlorophyllase gene in Arabidopsis. J Integr Plant Biol 49:531–539CrossRefGoogle Scholar
  89. Lim PO, Kim HJ, Nam HG (2006) Leaf senescence. Annu Rev Plant Biol 58:115–136CrossRefGoogle Scholar
  90. Liu J, Wu YH, Yan JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol 51:11–19CrossRefGoogle Scholar
  91. Losey FG, Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L. J Biol Chem 276:27233–27236CrossRefGoogle Scholar
  92. Lu Y-P, Li Z-S, Drozdowicz Y-M, Hörtensteiner S, Martinoia E, Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282PubMedGoogle Scholar
  93. Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771–776PubMedCrossRefGoogle Scholar
  94. Martínez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206PubMedCrossRefGoogle Scholar
  95. Matile P, Schellenberg M (1996) The cleavage of pheophorbide a is located in the envelope of barley gerontoplasts. Plant Physiol Biochem 34:55–59Google Scholar
  96. Matile P, Ginsburg S, Schellenberg M, Thomas H (1988) Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells. Proc Natl Acad Sci USA 85:9529–9532PubMedCrossRefGoogle Scholar
  97. Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235CrossRefGoogle Scholar
  98. Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409PubMedGoogle Scholar
  99. Matile P, Schellenberg M, Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201:96–99CrossRefGoogle Scholar
  100. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95PubMedCrossRefGoogle Scholar
  101. Maunders MJ, Brown SB, Woolhouse HW (1983) The appearance of chlorophyll derivatives in senescing tissue. Phytochemistry 22:2443–2446CrossRefGoogle Scholar
  102. McFeeters RF (1975) Substrate specificity of chlorophyllase. Plant Physiol 55:377–381PubMedCrossRefGoogle Scholar
  103. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135PubMedCrossRefGoogle Scholar
  104. Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCrossRefGoogle Scholar
  105. Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498PubMedCrossRefGoogle Scholar
  106. Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2009) Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59:940–952PubMedCrossRefGoogle Scholar
  107. Moser D, Matile P (1997) Chlorophyll breakdown in ripening fruits of Capsicum annuum. J Plant Physiol 150:759–761CrossRefGoogle Scholar
  108. Moser S, Müller T, Ebert MO, Jockusch S, Turro NJ, Kräutler B (2008a) Blue luminescence of ripening bananas. Angew Chem Int Ed 47:8954–8957CrossRefGoogle Scholar
  109. Moser S, Ulrich M, Müller T, Kräutler B (2008b) A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 7:1577–1581PubMedCrossRefGoogle Scholar
  110. Moser S, Müller T, Holzinger A, Lutz C, Jockusch S, Turro NJ, Kräutler B (2009) Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. Proc Natl Acad Sci USA 106:15538–15543PubMedCrossRefGoogle Scholar
  111. Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75Google Scholar
  112. Mühlecker W, Kräutler B, Ginsburg S, Matile P (1993) Breakdown of chlorophyll: a tetrapyrrolic chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 76:2976–2980CrossRefGoogle Scholar
  113. Mühlecker W, Ongania K-H, Kräutler B, Matile P, Hörtensteiner S (1997) Tracking down chlorophyll breakdown in plants: elucidation of the constitution of a ‘fluorescent’ chlorophyll catabolite. Angew Chem Int Ed Engl 36:401–404CrossRefGoogle Scholar
  114. Mühlecker W, Kräutler B, Moser D, Matile P, Hörtensteiner S (2000) Breakdown of chlorophyll: a fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 83:278–286CrossRefGoogle Scholar
  115. Müller T, Moser S, Ongania K-H, Pružinská A, Hörtensteiner S, Kräutler B (2006) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. Chembiochem 7:40–42PubMedCrossRefGoogle Scholar
  116. Müller T, Ulrich M, Ongania KH, Kräutler B (2007) Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed 46:8699–8702CrossRefGoogle Scholar
  117. Mur LAJ, Aubry S, Mondhe M, Kingston-Smith A, Gallagher J, Timms-Taravella E, James C, Papp I, Hörtensteiner S, Thomas H, Ougham H (2010) Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol 188:161–174PubMedCrossRefGoogle Scholar
  118. Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991PubMedCrossRefGoogle Scholar
  119. Oberhuber M, Berghold J, Mühlecker W, Hörtensteiner S, Kräutler B (2001) Chlorophyll breakdown – on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84:2615–2627CrossRefGoogle Scholar
  120. Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kräutler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915PubMedCrossRefGoogle Scholar
  121. Oberhuber M, Berghold J, Kräutler B (2008) Chlorophyll breakdown by a biomimetic route. Angew Chem Int Ed 47:3057–3061CrossRefGoogle Scholar
  122. Oh MH, Moon YH, Lee CH (2003) Increased stability of LHCII by aggregate formation during dark-induced leaf senescence in the Arabidopsis mutant, ore10. Plant Cell Physiol 44:1368–1377PubMedCrossRefGoogle Scholar
  123. Okazawa A, Tang L, Itoh Y, Fukusaki E, Kobayashi A (2006) Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Z Naturforsch C 61:111–117PubMedGoogle Scholar
  124. op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332PubMedCrossRefGoogle Scholar
  125. Oster U, Tanaka R, Tanaka A, Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310PubMedCrossRefGoogle Scholar
  126. Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Andrew Staehelin L, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844PubMedCrossRefGoogle Scholar
  127. Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L (2008) The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. Plant Biol 10(suppl 1):4–14PubMedCrossRefGoogle Scholar
  128. Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J, Jeon J-S, Park Y-I, Paek N-C (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664PubMedCrossRefGoogle Scholar
  129. Peisker C, Düggelin T, Rentsch D, Matile P (1989) Phytol and the breakdown of chlorophyll in senescent leaves. J Plant Physiol 135:428–432CrossRefGoogle Scholar
  130. Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen allocation. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 181–217Google Scholar
  131. Pretty J, Peakock J, Hine R, Sellens M, South N, Griffin M (2007) Green exercise in the UK countryside: effects on health and physiological well-being, and implications for policy and planning. J Environ Plan Manag 50:211–231CrossRefGoogle Scholar
  132. Pružinská A, Anders I, Tanner G, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264PubMedCrossRefGoogle Scholar
  133. Pružinská A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania K-H, Kräutler B, Youn J-Y, Liljegren SJ, Hörtensteiner S (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63PubMedCrossRefGoogle Scholar
  134. Pružinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387PubMedCrossRefGoogle Scholar
  135. Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441PubMedCrossRefGoogle Scholar
  136. Ren GD, Zhou Q, Wu SX, Zhang YF, Zhang LG, Huang JR, Sun ZF, Kuai BK (2010) Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. J Integr Plant Biol 52:496–504PubMedGoogle Scholar
  137. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE (1989) Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol 89:1028–1030PubMedCrossRefGoogle Scholar
  138. Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol 170:677–699PubMedCrossRefGoogle Scholar
  139. Rodoni S, Mühlecker W, Anderl M, Kräutler B, Moser D, Thomas H, Matile P, Hörtensteiner S (1997a) Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115:669–676PubMedCrossRefGoogle Scholar
  140. Rodoni S, Vicentini F, Schellenberg M, Matile P, Hörtensteiner S (1997b) Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol 115:677–682PubMedCrossRefGoogle Scholar
  141. Rüdiger W (2002) Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth Res 74:187–193PubMedCrossRefGoogle Scholar
  142. Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621PubMedCrossRefGoogle Scholar
  143. Sakuraba Y, Yamasato A, Tanaka R, Tanaka A (2007) Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiol Biochem 45:740–749PubMedCrossRefGoogle Scholar
  144. Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009) Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 284:36689–36699PubMedCrossRefGoogle Scholar
  145. Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174PubMedCrossRefGoogle Scholar
  146. Sato Y, Moria R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131PubMedCrossRefGoogle Scholar
  147. Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785PubMedCrossRefGoogle Scholar
  148. Schellenberg M, Matile P, Thomas H (1990) Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. J Plant Physiol 136:564–568CrossRefGoogle Scholar
  149. Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dörmann P, Hörtensteiner S (2007) The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581:5517–5525PubMedCrossRefGoogle Scholar
  150. Scheumann V, Schoch S, Rüdiger W (1998) Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin. J Biol Chem 273:35102–35108PubMedCrossRefGoogle Scholar
  151. Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209:364–370PubMedCrossRefGoogle Scholar
  152. Schmidt CL, Shaw L (2001) A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr 33:9–26PubMedCrossRefGoogle Scholar
  153. Schoch S, Scheer H, Schiff JA, Rüdiger W, Siegelman HW (1981) Pyropheophytin a accompanies pheophytin a in darkened light grown cells of Euglena. Z Naturforsch C 36:827–833Google Scholar
  154. Schoch S, Rüdiger W, Lüthy B, Matile P (1984) 132_hydroxychlorophyll a, the first product of the reaction of chlorophyll-oxidase. J Plant Physiol 115:85–89PubMedCrossRefGoogle Scholar
  155. Shimokawa K, Hashizume A, Shioi Y (1990) Pyropheophorbide a, a catabolite of ethylene-induced chlorophyll a degradation. Phytochemistry 29:2105–2106CrossRefGoogle Scholar
  156. Shioi Y, Tatsumi Y, Shimokawa K (1991) Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol 32:87–93Google Scholar
  157. Shioi Y, Tomita N, Tsuchiya T, Takamiya K (1996a) Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiol Biochem 34:41–47Google Scholar
  158. Shioi Y, Watanabe K, Takamiya K (1996b) Enzymatic conversion of pheophorbide a to a precursor of pyropheophorbide a in leaves of Chenopodium album. Plant Cell Physiol 37:1143–1149CrossRefGoogle Scholar
  159. Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448CrossRefGoogle Scholar
  160. Soll J, Kemmerling M, Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplast subfractions. Arch Biochem Biophys 204:544–550PubMedCrossRefGoogle Scholar
  161. Spassieva S, Hille J (2002) A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue. Plant Sci 162:543–549CrossRefGoogle Scholar
  162. Stobart AK, Hendry GAF (1984) The turnover of chlorophyll in greening wheat leaves. Phytochemistry 23:27–30CrossRefGoogle Scholar
  163. Sugishima M, Kitamori Y, Noguchi M, Kohchi T, Fukuyama K (2009) Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family. J Mol Biol 389:376–387PubMedCrossRefGoogle Scholar
  164. Sugishima M, Okamoto Y, Noguchi M, Kohchi T, Tamiaki H, Fukuyama K (2010) Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction. J Mol Biol 402:879–891PubMedCrossRefGoogle Scholar
  165. Suzuki Y, Shioi Y (1999) Detection of chlorophyll breakdown products in the senescent leaves of higher plants. Plant Cell Physiol 40:909–915CrossRefGoogle Scholar
  166. Suzuki T, Shioi Y (2002) Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as substrate. Photosynth Res 74:217–223PubMedCrossRefGoogle Scholar
  167. Suzuki Y, Doi M, Shioi Y (2002) Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth Res 74:225–233PubMedCrossRefGoogle Scholar
  168. Suzuki T, Kunieda T, Murai F, Morioka S, Shioi Y (2005) Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a. Plant Physiol Biochem 43:459–464PubMedCrossRefGoogle Scholar
  169. Suzuki Y, Amano T, Shioi Y (2006) Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol 140:716–725PubMedCrossRefGoogle Scholar
  170. Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431PubMedCrossRefGoogle Scholar
  171. Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255PubMedCrossRefGoogle Scholar
  172. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  173. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723PubMedCrossRefGoogle Scholar
  174. Tanaka R, Hirashima M, Satoh S, Tanaka A (2003) The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of pheophorbide a oxygenase activity does not lead to the “stay-green” phenotype in Arabidopsis. Plant Cell Physiol 44:1266–1274PubMedCrossRefGoogle Scholar
  175. Tang L, Okazawa A, Itoh Y, Fukusaki E, Kobayashi A (2004) Expression of chlorophyllase is not induced during autumnal yellowing in Ginkgo biloba. Z Naturforsch C 59:415–420PubMedGoogle Scholar
  176. Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337PubMedCrossRefGoogle Scholar
  177. Thomas H, Schellenberg M, Vicentini F, Matile P (1996) Gregor Mendel’s green and yellow pea seeds. Bot Acta 109:3–4Google Scholar
  178. Thomas H, Huang L, Young M, Ougham H (2009) Evolution of plant senescence. BMC Evol Biol 9:163PubMedCrossRefGoogle Scholar
  179. Tommasini R, Vogt E, Fromenteau M, Hörtensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780PubMedCrossRefGoogle Scholar
  180. Trebitsh T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci USA 90:9441–9445PubMedCrossRefGoogle Scholar
  181. Tsuchiya T, Ohta H, Masuda T, Mikami B, Kita N, Shioi Y, Takamiya K (1997) Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium album. Plant Cell Physiol 38:1026–1031CrossRefGoogle Scholar
  182. Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367PubMedCrossRefGoogle Scholar
  183. Tu SL, Gunn A, Toney MD, Britt RD, Lagarias JC (2004) Biliverdin reduction by cyanobacterial phycocyanobilin: ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. J Am Chem Soc 126:8682–8693PubMedCrossRefGoogle Scholar
  184. Tu SL, Chen HC, Ku LW (2008) Mechanistic studies of the phytochromobilin synthase HY2 from Arabidopsis. J Biol Chem 283:27555–27564PubMedCrossRefGoogle Scholar
  185. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kazmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landsc Urban Plan 81:167–178CrossRefGoogle Scholar
  186. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224PubMedCrossRefGoogle Scholar
  187. Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792PubMedCrossRefGoogle Scholar
  188. Vavilin D, Vermaas W (2007) Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:920–929PubMedCrossRefGoogle Scholar
  189. Vicentini F, Hörtensteiner S, Schellenberg M, Thomas H, Matile P (1995a) Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol 129:247–252CrossRefGoogle Scholar
  190. Vicentini F, Iten F, Matile P (1995b) Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. Physiol Plant 94:57–63CrossRefGoogle Scholar
  191. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893PubMedCrossRefGoogle Scholar
  192. Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefGoogle Scholar
  193. Willstätter R, Stoll A (1913) Die Wirkungen der Chlorophyllase. In: Willstätter R, Stoll A (eds) Untersuchungen über Chlorophyll. Verlag Julius Springer, Berlin, pp 172–187Google Scholar
  194. Wüthrich KL, Bovet L, Hunziker PE, Donnison IS, Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198PubMedCrossRefGoogle Scholar
  195. Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521PubMedCrossRefGoogle Scholar
  196. Yang M, Wardzala E, Johal GS, Gray J (2004) The wound-inducible Lls1 gene from maize is an orthologue of the Arabidopsis Acd1 gene, and the LLS1 protein is present in non-photosynthetic tissues. Plant Mol Biol 54:175–191PubMedCrossRefGoogle Scholar
  197. Yang Y, Xu R, Ma CJ, Vlot AC, Klessig DF, Pichersky E (2008) Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol 147:1034–1045PubMedCrossRefGoogle Scholar
  198. Yao N, Greenberg JT (2006) Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397–411PubMedCrossRefGoogle Scholar
  199. Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion – an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610PubMedCrossRefGoogle Scholar
  200. Zeier J, Pink B, Mueller MJ, Berger S (2004) Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673–683PubMedCrossRefGoogle Scholar
  201. Ziegler R, Blaheta A, Guha N, Schönegge B (1988) Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca SHIRIA et KRAUS. J Plant Physiol 132:327–332CrossRefGoogle Scholar
  202. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Plant BiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations