Skip to main content

Plastoglobuli, Thylakoids, Chloroplast Structure and Development of Plastids

  • Chapter
  • First Online:
Plastid Development in Leaves during Growth and Senescence

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

The overview provides basic information on the appearance and biosynthesis of thylakoids and osmiophilic plastoglobuli and their association with chloroplast development and senescence. The light-induced formation of sun chloroplasts at high irradiation with a different thylakoid arrangement, grana stacking and plastoglobuli content as compared to shade chloroplasts at low irradiation is reviewed. During the light-induced biosynthesis of thylakoids from etioplasts of dark-grown seedlings the osmiophilic plastoglobuli disappear. Young chloroplasts are actually free of osmiophilic plastoglobuli. With increasing age of chloroplasts osmiophilic plastoglobuli appear again and are either fairly frequent at a small diameter or show up in a lower number with rather large size. In senescing chloroplasts and in their final form, gerontoplasts, thylakoids and chlorophylls are successively broken down with formation of large plastoglobuli. In addition to the plastoglobuli of chloroplasts, the occurrence and role of plastoglobuli during the development of chlorophyll-free plastid forms, such as proplastids, leucoplasts, and chromoplasts are presented. The main function of plastoglobuli as stores for plastidic lipids, such as plastoquinone-9, plastoquinol-9 and α-tocopherol and in certain plastid stages also other lipids is discussed. Recent observations suggest that plastoglobuli contain on their outer surface certain functional chloroplast proteins participating in biosynthesis and the channeling of lipid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-T –:

α-tocopherol;

Chl a/b –:

Ratio chlorophyll;

LHCPs –:

Light-harvesting chlorophyll proteins;

P –:

Osmiophilic plastoglobuli;

PQ-9 and PQ-9•H2 –:

Plastoquinone-9 (oxidized and reduced form);

PTB –:

Protubular body;

st –:

Starch

References

  • Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  CAS  Google Scholar 

  • Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein suncompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Bailey JL, Whyborn AG (1963) The osmiophilic globules of chloroplasts – II. Globules of the spinach-beet chloroplast. Biochim Biophys Acta 78:163–174

    Article  CAS  Google Scholar 

  • Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light harvesting chlorophyll a/b proteins. Biochem J 212:1–13

    PubMed  CAS  Google Scholar 

  • Boardman N (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Bréhélin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry. Photochem Photobiol 84:1388–1394

    Article  PubMed  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobule: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    Article  PubMed  Google Scholar 

  • Dahlin C, Ryberg H (1986) Accumulation of phytoene in plastoglobuli of SAN-9789 (Norflurazon)-treated dark-grown wheat. Physiol Plant 68:39–45

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Falk H (1960) Magnoglobuli in Chloroplasten von Ficus elastica Roxb. Planta 55:525–532

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun vs. shade: a whole plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–715

    Article  PubMed  CAS  Google Scholar 

  • Greenwood AD, Leech RM, Williams JP (1963) The osmiophilic globules of chloroplasts – I. Osmiophilic globules as a normal component of chloroplasts and their isolation and composition in Vicia faba L. Biochim Biophys Acta 78:148–162

    Article  CAS  Google Scholar 

  • Grennan AK (2008) Plastoglobule proteome. Plant Physiol 147:443–445

    Article  PubMed  CAS  Google Scholar 

  • Grumbach HK, Lichtenthaler HK (1974) Photo-oxidation of the plastohydroquinone-9 pool in plastoglobuli during onset of photosynthesis. In: Avron M (ed) Proceedings of the 3rd international congress on photosynthesis, Weizmann Institute of Science, Rehovot, vol I. Elsevier Scientific Publishing Company, Amsterdam, pp 514–523

    Google Scholar 

  • Heath MC (1974) Chloroplast ultrastructure and ethylene production of senescing and rust-infected cowpea leaves. Can J Bot 52:2591–2597

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1962) Evanescent and persistant modifications of chloroplast ultrastructure induced by an unnatural pyrimidine. Planta 58:237–256

    Article  CAS  Google Scholar 

  • Holopainen T, Anttonen S, Wulff A, Palomäki V, Kärenlampi L (1992) Comparative evaluation of the effects of gaseous pollutants, acidic deposition and mineral deficiencies: structural changes in the cells of forest plants. Agr Ecosyst Environ 42:365–398

    Article  CAS  Google Scholar 

  • Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113

    Article  PubMed  CAS  Google Scholar 

  • Krupinska K (2007) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Berlin, pp 433–449

    Chapter  Google Scholar 

  • Lamprecht I (1961) Die Feinstruktur der Plastiden von Tradescantia albiflora bei Eisenmangelchlorose. Protoplasma 53:162–199

    Article  Google Scholar 

  • Lichtenthaler HK (1964) Untersuchungen über die osmiophilen Globuli der Chloroplasten. Ber Deutsch Botan Ges 78:398–402

    Google Scholar 

  • Lichtenthaler HK (1966) Plastoglobuli und Plastiden­struktur. Ber Deutsch Botan Ges 78:82–88

    Google Scholar 

  • Lichtenthaler HK (1967) Beziehungen zwischen Zusam­men­setzung und Struktur der Plastiden in grünen und etiolierten Keimlingen von Hordeum vulgare L. Z Pflanzenphys 56:273–281

    CAS  Google Scholar 

  • Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour XXVII:144–149

    Google Scholar 

  • Lichtenthaler HK (1969a) Die Plastoglobuli von Spinat, ihre Größe, Isolierung und Lipochinonzu­sammenset­zung. Protoplasma 68:65–77

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1969b) Die Plastoglobuli von Spinat, ihre Größe und Zusammensetzung während der Chloroplastendegeneration. Protoplasma 68:315–326

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1969c) Zur Synthese der lipophilen Plastidenchinone und Sekundär-carotinoide während der Chromoplastenentwicklung. Ber Dtsch Bot Ges 82:483–497

    CAS  Google Scholar 

  • Lichtenthaler HK (1969d) Light-stimulated synthesis of plastid quinones and pigments in etiolated barley seedlings. Biochim Biophys Acta 184:164–172

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1969e) Plastoglobuli und Lipochinongehalt der Chloroplasten von Cereus peruvianus (L.) Mill. Planta 87:304–310

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1970a) Die Lokalisation der Plastidenchinone und Carotinoide in den Chromoplasten der Petalen von Sarothamnus scoparius (L.) Wimm ex Koch. Planta 90:142–152

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1970b) Die Feinstruktur der Chromo­plasten in plasmochromen Perigon-Blättern von Tulipa. Planta 93:143–151

    Article  Google Scholar 

  • Lichtenthaler HK (1981) Adaptation of leaves and chloroplasts to high quanta fluence rates. In: Akoyunoglou G (ed) Photosynthesis VI. Balaban Internat Science Service, Philadelphia, pp 273–287

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods enzymol, vol 148. Academic, New York, pp 350–382

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:787–792

    Article  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high irradiance. Photosynth Res 92:163–179

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2010) The DOXP/MEP pathway of chloroplast isoprenoid biosynthesis. In: Rebeiz C, Bohnert H, Benning C, Daniell H, Hoober K, Lichtenthaler HK, Portis AR, Tripathy BC (eds) The chloroplast: basics and applications, vol 31, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 95–118, Chapter 7

    Chapter  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 713–736

    Chapter  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids – measurement and characterisation by UV–VIS. Current protocols in food analytical chemistry (CPFA), (Supplement 1). John Wiley, New York, pp F4.3.1–F 4.3.8

    Google Scholar 

  • Lichtenthaler HK, Calvin M (1964) Quinone and pigment composition of chloroplasts and quantasome aggregates from Spinacia oleracea. Biochim Biophys Acta 79:30–40

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Meier D (1984) Inhibition by sethoxydim of chloroplast biogenesis, development and replication in barley seedlings. Z Naturforsch 39c:115–122

    CAS  Google Scholar 

  • Lichtenthaler HK, Park RB (1963) Chemical composition of chloroplast lamellae from spinach. Nature 198:1070–1072

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Peveling E (1966) Osmiophile Lipidein­schlüsse in den Chloroplasten und im Cytoplasma von Hoya carnosa R. Naturwiss 53:534

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Peveling E (1967a) Plastoglobuli und osmiophile cytoplasmatische Lipid-einschlüsse in grünen Blättern von Hoya carnosa R. Br Z Pflanzenphys 56:153–165

    CAS  Google Scholar 

  • Lichtenthaler HK, Peveling E (1967b) Plastoglobuli in verschiedenen Differenzierungs- tadien der Plastiden bei Allium cepa L. Planta 72:1–13

    Article  Google Scholar 

  • Lichtenthaler HK, Sprey B (1966) Über die osmiophilen globulären Lipideinschlüsse der Chloroplasten. Z Naturforsch 21b:690–697

    Google Scholar 

  • Lichtenthaler HK, Weinert H (1970) Die Beziehungen zwischen Lipochinonsynthese und Plastoglobulibildung in den Chloroplasten von Ficus elastica Roxb. Z Naturforsch 25b:619–623

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz H-J, Bach T, Kozel U, Meier D, Rahmsdorf U (1981a) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981b) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U, Kuhn G (1982a) Carotenoid composition of chlorophyll-carotenoid-proteins from radish chloroplasts. Z Naturforsch 37c:10–12

    CAS  Google Scholar 

  • Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982b) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch 37c:464–475

    CAS  Google Scholar 

  • Lichtenthaler HK, Meier D, Buschmann C (1984) Development of chloroplasts at high and low light quanta fluence rates. Isr J Bot 33:185–194

    CAS  Google Scholar 

  • Meier D, Lichtenthaler HK (1981) Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. Protoplasma 107:195–207

    Article  CAS  Google Scholar 

  • Menke W (1961) Über die Chloroplasten von Anthoceros punctatus. Mitteilungen zur Entwicklungsgeschichte der Plastiden. Z Naturforsch 16b:334–336

    Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  PubMed  CAS  Google Scholar 

  • Park RB, Pon NG (1961) Correlation of structure with function in Spinacea oleracea chloroplasts. J Mol Biol 3:1–19

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew WT, McCarty JC, Vaughn KC (2000) Leaf senescence-like characteristics contribute to cotton’s premature photosynthetic decline. Photosynth Res 65:187–195

    Article  PubMed  CAS  Google Scholar 

  • Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field-grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412

    Article  CAS  Google Scholar 

  • Schnepf E (1964) Über die Zusammenhänge zwischen Heitz-Leyonschen-Kristallen und Thylakoiden. Planta 61:371–373

    Article  Google Scholar 

  • Smith MD, Licatalosi DD, Thompson JE (2000) Co-association of cytochrom f catabolites and plastid-lipid-associated protein with chloroplast lipid particles. Plant Physiol 124:211–221

    Article  PubMed  CAS  Google Scholar 

  • Sprey B, Lichtenthaler HK (1966) Zur Frage der Bezie­hungen zwischen Plastoglobuli und Thylakoid­genese in Gerstenkeimlingen. Z Naturforsch 21b:697–699

    Google Scholar 

  • Stumpf PK (1984) Fatty acid biosynthesis in higher plants. In: Numa S (ed) Fatty acid metabolism and its regulation. Elsevier Science Publishers BV, Amsterdam, pp 155–179

    Chapter  Google Scholar 

  • Sutinen S (1987) Ultrastructure of mesophyll cells of spruce needles exposed to O3 alone and together with SO2. Euro J Forest Pathol 17:362–368

    Article  CAS  Google Scholar 

  • Tevini M, Steinmüller D (1985) Composition and function of plastoglobuli: II. Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163:91–96

    Article  CAS  Google Scholar 

  • Thompson WW, Weier TE, Drever H (1964) Electron-microscopic studies on chloroplasts from phosphorus-deficient plants. Amer J Bot 51:933–938

    Article  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    Article  CAS  Google Scholar 

  • Toyoma S, Ueda R (1965) Electron microscopic studies on the morphogenesis of plastids. II. Changes in fine structure and pigment composition of the plastids in autumn leaves of Ginkgo biloba. The Science Report of Tokyo Kyoiku Daigaku, Section B, 12, pp 31–37

    Google Scholar 

  • Tuba Z, Lichtenthaler HK (2011) Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, Berlin/Heidelberg, pp 179–183

    Chapter  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Maroti I, Csintalan Z (1993) Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J Plant Physiol 142:742–748

    Article  CAS  Google Scholar 

  • Wettstein D von (1957) Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–506

    Article  Google Scholar 

  • Whatley JM (1977) Variations in the basic pathway of chloroplast development. New Phytol 78:407–420

    Article  Google Scholar 

  • Wild A, Höpfner M, Rühle W, Richter M (1986) Changes in the stoichiometry of photosystem II components as an adaptive response to high-light and low-light conditions during growth. Z Naturforsch C 41:597–603

    CAS  Google Scholar 

  • Wulff A, Ahonen J, Kärenlampi L (1996) Cell ultrastructural evidence of accelerated ageing of Norway spruce needles in industrial areas. New Phytol 133:553–561

    Article  CAS  Google Scholar 

  • Yamamoto HY (1985) Xanthophyll cycles. Methods Enzymol 110:303–312

    Article  CAS  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Peltier J, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Zelling G, Gailhofer M (1989) Feinstruktur der Chloroplasten von Picea abies verschiedener Standorte im Höhenprofil “Zillertal”. Phyton 29 (special issue “Zillertal”): 147–161

    Google Scholar 

Download references

Acknowledgments

I wish to thank Ms Gabrielle Johnson for English language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut K. Lichtenthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lichtenthaler, H.K. (2013). Plastoglobuli, Thylakoids, Chloroplast Structure and Development of Plastids. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_15

Download citation

Publish with us

Policies and ethics