Plastoglobuli, Thylakoids, Chloroplast Structure and Development of Plastids

  • Hartmut K. LichtenthalerEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 36)


The overview provides basic information on the appearance and biosynthesis of thylakoids and osmiophilic plastoglobuli and their association with chloroplast development and senescence. The light-induced formation of sun chloroplasts at high irradiation with a different thylakoid arrangement, grana stacking and plastoglobuli content as compared to shade chloroplasts at low irradiation is reviewed. During the light-induced biosynthesis of thylakoids from etioplasts of dark-grown seedlings the osmiophilic plastoglobuli disappear. Young chloroplasts are actually free of osmiophilic plastoglobuli. With increasing age of chloroplasts osmiophilic plastoglobuli appear again and are either fairly frequent at a small diameter or show up in a lower number with rather large size. In senescing chloroplasts and in their final form, gerontoplasts, thylakoids and chlorophylls are successively broken down with formation of large plastoglobuli. In addition to the plastoglobuli of chloroplasts, the occurrence and role of plastoglobuli during the development of chlorophyll-free plastid forms, such as proplastids, leucoplasts, and chromoplasts are presented. The main function of plastoglobuli as stores for plastidic lipids, such as plastoquinone-9, plastoquinol-9 and α-tocopherol and in certain plastid stages also other lipids is discussed. Recent observations suggest that plastoglobuli contain on their outer surface certain functional chloroplast proteins participating in biosynthesis and the channeling of lipid molecules.


Xanthophyll Cycle Shade Leave Chloroplast Stroma Prolamellar Body Secondary Carotenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


α-T –


Chl a/b –

Ratio chlorophyll;


Light-harvesting chlorophyll proteins;

P –

Osmiophilic plastoglobuli;

PQ-9 and PQ-9•H2

Plastoquinone-9 (oxidized and reduced form);


Protubular body;

st –




I wish to thank Ms Gabrielle Johnson for English language assistance.


  1. Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139CrossRefGoogle Scholar
  2. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein suncompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703PubMedCrossRefGoogle Scholar
  3. Bailey JL, Whyborn AG (1963) The osmiophilic globules of chloroplasts – II. Globules of the spinach-beet chloroplast. Biochim Biophys Acta 78:163–174CrossRefGoogle Scholar
  4. Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light harvesting chlorophyll a/b proteins. Biochem J 212:1–13PubMedGoogle Scholar
  5. Boardman N (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377CrossRefGoogle Scholar
  6. Bréhélin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry. Photochem Photobiol 84:1388–1394PubMedCrossRefGoogle Scholar
  7. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobule: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266PubMedCrossRefGoogle Scholar
  8. Dahlin C, Ryberg H (1986) Accumulation of phytoene in plastoglobuli of SAN-9789 (Norflurazon)-treated dark-grown wheat. Physiol Plant 68:39–45CrossRefGoogle Scholar
  9. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  10. Demmig-Adams B, Adams WW (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  11. Falk H (1960) Magnoglobuli in Chloroplasten von Ficus elastica Roxb. Planta 55:525–532CrossRefGoogle Scholar
  12. Givnish TJ (1988) Adaptation to sun vs. shade: a whole plant perspective. Aust J Plant Physiol 15:63–92CrossRefGoogle Scholar
  13. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–715PubMedCrossRefGoogle Scholar
  14. Greenwood AD, Leech RM, Williams JP (1963) The osmiophilic globules of chloroplasts – I. Osmiophilic globules as a normal component of chloroplasts and their isolation and composition in Vicia faba L. Biochim Biophys Acta 78:148–162CrossRefGoogle Scholar
  15. Grennan AK (2008) Plastoglobule proteome. Plant Physiol 147:443–445PubMedCrossRefGoogle Scholar
  16. Grumbach HK, Lichtenthaler HK (1974) Photo-oxidation of the plastohydroquinone-9 pool in plastoglobuli during onset of photosynthesis. In: Avron M (ed) Proceedings of the 3rd international congress on photosynthesis, Weizmann Institute of Science, Rehovot, vol I. Elsevier Scientific Publishing Company, Amsterdam, pp 514–523Google Scholar
  17. Heath MC (1974) Chloroplast ultrastructure and ethylene production of senescing and rust-infected cowpea leaves. Can J Bot 52:2591–2597CrossRefGoogle Scholar
  18. Heslop-Harrison J (1962) Evanescent and persistant modifications of chloroplast ultrastructure induced by an unnatural pyrimidine. Planta 58:237–256CrossRefGoogle Scholar
  19. Holopainen T, Anttonen S, Wulff A, Palomäki V, Kärenlampi L (1992) Comparative evaluation of the effects of gaseous pollutants, acidic deposition and mineral deficiencies: structural changes in the cells of forest plants. Agr Ecosyst Environ 42:365–398CrossRefGoogle Scholar
  20. Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113PubMedCrossRefGoogle Scholar
  21. Krupinska K (2007) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Berlin, pp 433–449CrossRefGoogle Scholar
  22. Lamprecht I (1961) Die Feinstruktur der Plastiden von Tradescantia albiflora bei Eisenmangelchlorose. Protoplasma 53:162–199CrossRefGoogle Scholar
  23. Lichtenthaler HK (1964) Untersuchungen über die osmiophilen Globuli der Chloroplasten. Ber Deutsch Botan Ges 78:398–402Google Scholar
  24. Lichtenthaler HK (1966) Plastoglobuli und Plastiden­struktur. Ber Deutsch Botan Ges 78:82–88Google Scholar
  25. Lichtenthaler HK (1967) Beziehungen zwischen Zusam­men­setzung und Struktur der Plastiden in grünen und etiolierten Keimlingen von Hordeum vulgare L. Z Pflanzenphys 56:273–281Google Scholar
  26. Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour XXVII:144–149Google Scholar
  27. Lichtenthaler HK (1969a) Die Plastoglobuli von Spinat, ihre Größe, Isolierung und Lipochinonzu­sammenset­zung. Protoplasma 68:65–77CrossRefGoogle Scholar
  28. Lichtenthaler HK (1969b) Die Plastoglobuli von Spinat, ihre Größe und Zusammensetzung während der Chloroplastendegeneration. Protoplasma 68:315–326CrossRefGoogle Scholar
  29. Lichtenthaler HK (1969c) Zur Synthese der lipophilen Plastidenchinone und Sekundär-carotinoide während der Chromoplastenentwicklung. Ber Dtsch Bot Ges 82:483–497Google Scholar
  30. Lichtenthaler HK (1969d) Light-stimulated synthesis of plastid quinones and pigments in etiolated barley seedlings. Biochim Biophys Acta 184:164–172PubMedCrossRefGoogle Scholar
  31. Lichtenthaler HK (1969e) Plastoglobuli und Lipochinongehalt der Chloroplasten von Cereus peruvianus (L.) Mill. Planta 87:304–310CrossRefGoogle Scholar
  32. Lichtenthaler HK (1970a) Die Lokalisation der Plastidenchinone und Carotinoide in den Chromoplasten der Petalen von Sarothamnus scoparius (L.) Wimm ex Koch. Planta 90:142–152CrossRefGoogle Scholar
  33. Lichtenthaler HK (1970b) Die Feinstruktur der Chromo­plasten in plasmochromen Perigon-Blättern von Tulipa. Planta 93:143–151CrossRefGoogle Scholar
  34. Lichtenthaler HK (1981) Adaptation of leaves and chloroplasts to high quanta fluence rates. In: Akoyunoglou G (ed) Photosynthesis VI. Balaban Internat Science Service, Philadelphia, pp 273–287Google Scholar
  35. Lichtenthaler HK (1987) Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods enzymol, vol 148. Academic, New York, pp 350–382Google Scholar
  36. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  37. Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:787–792CrossRefGoogle Scholar
  38. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high irradiance. Photosynth Res 92:163–179PubMedCrossRefGoogle Scholar
  39. Lichtenthaler HK (2010) The DOXP/MEP pathway of chloroplast isoprenoid biosynthesis. In: Rebeiz C, Bohnert H, Benning C, Daniell H, Hoober K, Lichtenthaler HK, Portis AR, Tripathy BC (eds) The chloroplast: basics and applications, vol 31, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 95–118, Chapter 7CrossRefGoogle Scholar
  40. Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 713–736CrossRefGoogle Scholar
  41. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids – measurement and characterisation by UV–VIS. Current protocols in food analytical chemistry (CPFA), (Supplement 1). John Wiley, New York, pp F4.3.1–F 4.3.8Google Scholar
  42. Lichtenthaler HK, Calvin M (1964) Quinone and pigment composition of chloroplasts and quantasome aggregates from Spinacia oleracea. Biochim Biophys Acta 79:30–40PubMedGoogle Scholar
  43. Lichtenthaler HK, Meier D (1984) Inhibition by sethoxydim of chloroplast biogenesis, development and replication in barley seedlings. Z Naturforsch 39c:115–122Google Scholar
  44. Lichtenthaler HK, Park RB (1963) Chemical composition of chloroplast lamellae from spinach. Nature 198:1070–1072CrossRefGoogle Scholar
  45. Lichtenthaler HK, Peveling E (1966) Osmiophile Lipidein­schlüsse in den Chloroplasten und im Cytoplasma von Hoya carnosa R. Naturwiss 53:534CrossRefGoogle Scholar
  46. Lichtenthaler HK, Peveling E (1967a) Plastoglobuli und osmiophile cytoplasmatische Lipid-einschlüsse in grünen Blättern von Hoya carnosa R. Br Z Pflanzenphys 56:153–165Google Scholar
  47. Lichtenthaler HK, Peveling E (1967b) Plastoglobuli in verschiedenen Differenzierungs- tadien der Plastiden bei Allium cepa L. Planta 72:1–13CrossRefGoogle Scholar
  48. Lichtenthaler HK, Sprey B (1966) Über die osmiophilen globulären Lipideinschlüsse der Chloroplasten. Z Naturforsch 21b:690–697Google Scholar
  49. Lichtenthaler HK, Weinert H (1970) Die Beziehungen zwischen Lipochinonsynthese und Plastoglobulibildung in den Chloroplasten von Ficus elastica Roxb. Z Naturforsch 25b:619–623Google Scholar
  50. Lichtenthaler HK, Buschmann C, Döll M, Fietz H-J, Bach T, Kozel U, Meier D, Rahmsdorf U (1981a) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141CrossRefGoogle Scholar
  51. Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981b) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105PubMedCrossRefGoogle Scholar
  52. Lichtenthaler HK, Prenzel U, Kuhn G (1982a) Carotenoid composition of chlorophyll-carotenoid-proteins from radish chloroplasts. Z Naturforsch 37c:10–12Google Scholar
  53. Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982b) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch 37c:464–475Google Scholar
  54. Lichtenthaler HK, Meier D, Buschmann C (1984) Development of chloroplasts at high and low light quanta fluence rates. Isr J Bot 33:185–194Google Scholar
  55. Meier D, Lichtenthaler HK (1981) Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon. Protoplasma 107:195–207CrossRefGoogle Scholar
  56. Menke W (1961) Über die Chloroplasten von Anthoceros punctatus. Mitteilungen zur Entwicklungsgeschichte der Plastiden. Z Naturforsch 16b:334–336Google Scholar
  57. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565PubMedCrossRefGoogle Scholar
  58. Park RB, Pon NG (1961) Correlation of structure with function in Spinacea oleracea chloroplasts. J Mol Biol 3:1–19PubMedCrossRefGoogle Scholar
  59. Pettigrew WT, McCarty JC, Vaughn KC (2000) Leaf senescence-like characteristics contribute to cotton’s premature photosynthetic decline. Photosynth Res 65:187–195PubMedCrossRefGoogle Scholar
  60. Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955PubMedCrossRefGoogle Scholar
  61. Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field-grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412CrossRefGoogle Scholar
  62. Schnepf E (1964) Über die Zusammenhänge zwischen Heitz-Leyonschen-Kristallen und Thylakoiden. Planta 61:371–373CrossRefGoogle Scholar
  63. Smith MD, Licatalosi DD, Thompson JE (2000) Co-association of cytochrom f catabolites and plastid-lipid-associated protein with chloroplast lipid particles. Plant Physiol 124:211–221PubMedCrossRefGoogle Scholar
  64. Sprey B, Lichtenthaler HK (1966) Zur Frage der Bezie­hungen zwischen Plastoglobuli und Thylakoid­genese in Gerstenkeimlingen. Z Naturforsch 21b:697–699Google Scholar
  65. Stumpf PK (1984) Fatty acid biosynthesis in higher plants. In: Numa S (ed) Fatty acid metabolism and its regulation. Elsevier Science Publishers BV, Amsterdam, pp 155–179CrossRefGoogle Scholar
  66. Sutinen S (1987) Ultrastructure of mesophyll cells of spruce needles exposed to O3 alone and together with SO2. Euro J Forest Pathol 17:362–368CrossRefGoogle Scholar
  67. Tevini M, Steinmüller D (1985) Composition and function of plastoglobuli: II. Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163:91–96CrossRefGoogle Scholar
  68. Thompson WW, Weier TE, Drever H (1964) Electron-microscopic studies on chloroplasts from phosphorus-deficient plants. Amer J Bot 51:933–938CrossRefGoogle Scholar
  69. Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158CrossRefGoogle Scholar
  70. Toyoma S, Ueda R (1965) Electron microscopic studies on the morphogenesis of plastids. II. Changes in fine structure and pigment composition of the plastids in autumn leaves of Ginkgo biloba. The Science Report of Tokyo Kyoiku Daigaku, Section B, 12, pp 31–37Google Scholar
  71. Tuba Z, Lichtenthaler HK (2011) Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, Berlin/Heidelberg, pp 179–183CrossRefGoogle Scholar
  72. Tuba Z, Lichtenthaler HK, Maroti I, Csintalan Z (1993) Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J Plant Physiol 142:742–748CrossRefGoogle Scholar
  73. Wettstein D von (1957) Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–506CrossRefGoogle Scholar
  74. Whatley JM (1977) Variations in the basic pathway of chloroplast development. New Phytol 78:407–420CrossRefGoogle Scholar
  75. Wild A, Höpfner M, Rühle W, Richter M (1986) Changes in the stoichiometry of photosystem II components as an adaptive response to high-light and low-light conditions during growth. Z Naturforsch C 41:597–603Google Scholar
  76. Wulff A, Ahonen J, Kärenlampi L (1996) Cell ultrastructural evidence of accelerated ageing of Norway spruce needles in industrial areas. New Phytol 133:553–561CrossRefGoogle Scholar
  77. Yamamoto HY (1985) Xanthophyll cycles. Methods Enzymol 110:303–312CrossRefGoogle Scholar
  78. Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173PubMedCrossRefGoogle Scholar
  79. Ytterberg AJ, Peltier J, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997PubMedCrossRefGoogle Scholar
  80. Zelling G, Gailhofer M (1989) Feinstruktur der Chloroplasten von Picea abies verschiedener Standorte im Höhenprofil “Zillertal”. Phyton 29 (special issue “Zillertal”): 147–161Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Botanisches Institut (Molecular Biology and Biochemistry of Plants), Karlsruhe Institute of Technology (KIT)University DivisionKarlsruheGermany

Personalised recommendations