Skip to main content

Non-interaction Approximation in the Problem of Effective Properties

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 193))

Abstract

We discuss modeling of the effective properties of microstructures that contain inhomogeneities of diverse and “irregular” shapes. We focus on the effects of shapes and their diversity, in the framework of the non-interaction approximation. We also clarify the difference between the non-interaction approximation and the “dilute limit” as well as the concept of “average shape” for a mixture of inhomogeneities of diverse shapes. Further, we give an overview of the approximate schemes that utilize the non-interaction approximation as the basic building block, and discuss the key role of this approximation in establishing explicit elasticity–conductivity connection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abedian B, Kachanov M (2010) On the effective viscosity of suspensions. Int J Eng Sci 48:962–965

    Article  Google Scholar 

  2. Arts RJ, Rasolofosaon PNJ, Zinsner BE (1996) Experimental and theoretical tools for characterizing anisotropy due to mechanical defects in rocks under varying pore and confining pressures. In: Fjaer et al (eds) Seismic anisotropy. Society of Exploration Geophysicists, Tulsa, Oklahoma, pp 384–432

    Google Scholar 

  3. Bachelor GK, Green JT (1972) The determination of the bulk stress in suspension of spherical particles to order c2. J Fluid Mech 56:401–472

    Article  Google Scholar 

  4. Benveniste Y (1986) On the Mori-Tanaka method for cracked solids. Mech Res Comm 13(4):193–201

    Article  MATH  Google Scholar 

  5. Berndt EA, Sevostianov I (2012) Multiscale modeling of fluid permeability of a non-homogeneous porous media. Int J Eng Sci 56:99–110

    Article  MathSciNet  Google Scholar 

  6. Bristow JR (1960) Microcracks and the static and dynamic elastic constants of annealed heavily cold-worked metals. British J Appl Phys 11:81–85

    Article  Google Scholar 

  7. Bruggeman DAG (1935) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. I. Dielectrizitätkonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 24:636–679

    Article  Google Scholar 

  8. Bruggeman DAG (1937) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. III. Die elastische Konstanten der Quaiisotropen Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 29:160–178

    Article  Google Scholar 

  9. Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227

    Article  Google Scholar 

  10. Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97

    Article  MATH  Google Scholar 

  11. Carslow HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  12. Casas R, Sevostianov I (2013) Electrical resistivity of cortical bone: Micromechanical modeling and experimental verification. Int J Eng Sci 62:106–112

    Google Scholar 

  13. Chen FC, Young K (1977) Inclusions of arbitrary shape in an elastic medium. J Math Phys 18:1412–1416

    Article  MATH  Google Scholar 

  14. Chowdhury A, Christov CI (2010) (2009) Fast Legendre spectral method for computing the perturbation of a gradient temperature field in an unbounded region due to the presence of two spheres. Numer Methods Partial Differ Equ 26:1125–1145

    MathSciNet  MATH  Google Scholar 

  15. Christensen RM (2005) Mechanics of composite materials. Dover Publications, New York

    Google Scholar 

  16. Christensen RC, Loo LK (1979) Solution for effective shear properties in three phase and cylinder models. J Mech Phys Solids 27:315–330

    Article  MATH  Google Scholar 

  17. Clausius R (1879) Die mechanische Behandlung der Elektricität. Vieweg, Braunshweig

    Google Scholar 

  18. Cowin SC, Mehrabadi MM (1987) On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 40:451–476

    Article  MathSciNet  MATH  Google Scholar 

  19. Dellinger J (2005) Computing the optimal transversely isotropic approximation of a general elastic tensor. Geophysics 70:i1–10

    Google Scholar 

  20. Drach B, Tsukrov I, Gross T, Dietrich S, Weidenmann K, Piat R, Böhlke T (2011) Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes. Int J Solids Struct 48:2447–2457

    Article  Google Scholar 

  21. Einstein A (1906) A new determination of molecular dimensions. Ann. Phys. 19(4):289–306 (Correction: ibid (1911) 34:591–592)

    Google Scholar 

  22. Eklenigoda T, Zimmerman R (2006) Compressibility of two-dimensional holes having n-fold axis of symmetry. Proc Roy Soc A-462:1933–1947

    Google Scholar 

  23. Eshelby JD (1957) The determination of the elastic field on an ellipsoidal inclusion and related problems. Proc Roy Soc A 241:376–392

    Article  MathSciNet  MATH  Google Scholar 

  24. Eshelby JD (1961) Elastic inclusions and inhomogeneities. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, V. 2. Norht-Holland, Amsterdam, pp 89–140

    Google Scholar 

  25. Fabrikant V (1989) Applications of potential theory mechanics. Kluwer, Dordrecht

    MATH  Google Scholar 

  26. Fedorov FI (1968) Theory of elastic waves in crystals. Plenum Press, New York

    Book  Google Scholar 

  27. Ford TF (1960) Viscosity concentration and fluidity concentration relationship for suspensions of spherical particles in Newtonian liquids. J Phys Chem 64:1168–1174

    Article  Google Scholar 

  28. Gueguen Y, Kachanov M (2011) Effective elastic properties of cracked rocks—an overview. In: Leroy YM, Lehner FK (eds) Mechanics of Crustal Rocks, Springer, pp 65–108

    Google Scholar 

  29. Grechka V, Kachanov M (2006) Effective elasticity of rocks with closely spaced and intersecting cracks. Geophys 71:D85–D91

    Google Scholar 

  30. Grechka V, Kachanov M (2006) Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71(6):W45–W58

    Article  Google Scholar 

  31. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 5:481–505

    Article  Google Scholar 

  32. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  Google Scholar 

  33. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  34. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 11:357–372

    Article  Google Scholar 

  35. Jasiuk I, Chen J, Thorpe M (1994) Elastic moduli of two-dimensional materials with polygonal and elliptical holes. Appl Mech Rev 47(1):S18–S28

    Article  Google Scholar 

  36. Jeffrey DJ (1973) Conduction through a random suspension of spheres. Proc Roy Soc Lond A 335:355–367

    Article  Google Scholar 

  37. Kachanov M (1980) Continuum model of medium with cracks. J Eng Mech Div ASCE 106:1039–1051

    Google Scholar 

  38. Kachanov M (1987) Elastic solids with many cracks: a simple method of analysis. Int J Solids Struct 23:23–45

    Article  MATH  Google Scholar 

  39. Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):305–336

    Article  Google Scholar 

  40. Kachanov M (1993) Elastic solids with many cracks and related problems. Hutchinson J, Wu T (eds) Advances in applied mechanics. Academic Press, London, pp 256–426

    Google Scholar 

  41. Kachanov M (1995) On the concept of approximate elastic symmetry and applications to materials with defects. Int J Fract 74:R33–R38

    Article  Google Scholar 

  42. Kachanov M, Laures J-P (1989) Three-dimensional problems of strongly interacting arbitrarily located penny-shaped cracks. Int J Fract 41:289–313

    Article  Google Scholar 

  43. Kachanov M, Montagut E (1988) A simple analysis of intersecting cracks and cracks intersecting a hole. Int J Fract 40:R61–R65

    Article  Google Scholar 

  44. Kachanov M, Sevostianov I (2005) On quantitative characterization of microstructures and effective properties. Int J Solids Struct 42:309–336

    Article  MATH  Google Scholar 

  45. Kachanov M, Sevostianov I (2012) Rice’s internal variables formalism and its implications for the elastic and conductive properties of cracked materials and for the attempts to relate strength to stiffness. J Appl Mech Trans ASME 79:031002-1–031002-10

    Google Scholar 

  46. Kachanov M, Sevostianov I, Shafiro B (2001) Explicit cross-property correlations for porous materials with anisotropic microstructures. J Mech Phys Solids 49:1–25

    Article  MathSciNet  MATH  Google Scholar 

  47. Kachanov M, Tsukrov I, Shafiro B (1994) Effective moduli of solids with cavities of various shapes. Appl Mech Rev 47(1):S151–S174

    Article  Google Scholar 

  48. Kanaun SK, Jeulin D (2001) Elastic properties of hybrid composites by the effective field approach. J Mech Phys Solids 49:2339–2367

    Article  MATH  Google Scholar 

  49. Kanaun SK, Levin VM (1994) The self-consistent field method in mechanics of matrix composite materials. In: Markov KZ (ed) Advances in mathematical modeling of composite materials. World Scientific, Singapore, pp 1–58

    Google Scholar 

  50. Kanaun SK, Levin VM (2008) Self-consistent methods for composites, vol. 1: static problems. Springer, Dordrecht

    Google Scholar 

  51. Kerner EH (1956) The elastic and thermoelastic properties of composite media. Proc Phys Soc (B) 69:808–813

    Google Scholar 

  52. Kiris A, Kachanov M (2012) Contacts and cracks of complex shapes. Int J Eng Sci 50:233–255

    Article  MathSciNet  Google Scholar 

  53. Kouzeli M, Weber L, Mortensen A (2001) Influence of damage on the tensile behaviour of pure aluminium reinforced with \(>\)40, vol. pct alumina particles. Acta Materialia 49:3699–3709

    Article  Google Scholar 

  54. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151:504–518

    Article  Google Scholar 

  55. Kunin IA (1983) Elastic media with microstructure. Springer, Berlin

    Book  MATH  Google Scholar 

  56. Leigh S-H, Berndt C (1999) Modelling of elastic constants of plasma-spray deposits with ellipsoid-shaped voids. Acta Materialia 47:1575–1586

    Article  Google Scholar 

  57. Lekhnitsky SG (1963) Theory of elasticity of anisotropic elastic body. Holden-Day, San-Francisco

    Google Scholar 

  58. Levin V, Kanaun S, Markov M (2012) Generalized Maxwell’s scheme for homogenization of poroelastic composites. Int J Eng Sci (in press)

    Google Scholar 

  59. Lewis TB, Nielsen LE (1968) Viscosity of dispersed and aggregated suspensions of spheres. J Rheol 12:421–144

    Google Scholar 

  60. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, New York

    MATH  Google Scholar 

  61. Mackenzie JK (1950) The elastic constants of a solid containing spherical holes. Proc Roy Soc Lond B 63:2–11

    Google Scholar 

  62. Markov KZ (2000) Elementary micromechanics of heterogeneous media. In: Markov KZ, Preziozi L (eds) Heterogeneous media: micromechanics modeling methods and simulations. Birkhauser, Boston, pp 1–162

    Chapter  Google Scholar 

  63. Mauge C, Kachanov M (1994) Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks. J Mech Phys Solids 42:561–584

    Article  MATH  Google Scholar 

  64. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  65. McLaughlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15:237–244

    Article  MATH  Google Scholar 

  66. Mear M, Sevostianov I, Kachanov M (2007) Elastic compliances of non-flat cracks. Int J Solids Struct 44:6412–6427

    Article  MATH  Google Scholar 

  67. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21:571–574

    Article  Google Scholar 

  68. Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff Publ, Dordrecht

    Book  Google Scholar 

  69. Nye JF (1957) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  70. Oliver DR, Ward SG (1953) Relationship between relative viscosity and volume concentration of stable suspensions of spherical particles. Nature 171:396–397

    Article  Google Scholar 

  71. Piau M (1980) Crack-induced anisotropy and scattering in stressed rocks. Int J Eng Sci 18:549–568

    Article  MATH  Google Scholar 

  72. Prokopiev O, Sevostianov I (2006a) On the possibility of approximation of irregular porous microstructure by isolated spheroidal pores. Int J Fract 139:129–136

    Article  Google Scholar 

  73. Prokopiev O, Sevostianov I (2006b) Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater Sci Eng A-431:218–227

    Google Scholar 

  74. Prokopiev O, Sevostianov I (2007) Modeling of porous rock: digitization and finite elements versus approximate schemes accounting for pore shapes. Int J Fract 143:369–375

    Article  MATH  Google Scholar 

  75. Rayleigh Lord (1892) On the influence of obstacles arranged in rectangular order upon the volume properties of a medium. Phil Mag 34:481–502

    MATH  Google Scholar 

  76. Rice JR (1975) Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Argon A (ed) Constitutive equations in plasticity. MIT Press, Cambridge, pp 171–190

    Google Scholar 

  77. Rice JR (1979) Theory of precursory processes in the inception of earthquake rupture. Gerlands Beitrage Geophysik 88:91–121

    Google Scholar 

  78. Rodin GJ (1996) Eshelby’s inclusion problem for polygons and polyhedra. J Mech Phys Solids 44:1977–1995

    Article  Google Scholar 

  79. Salganik R (1973) Mechanics of bodies with large number of cracks. Mech Solids (English translation of Izvestia AN SSSR, Mekhanika Tverdogo Tela), 8:135–145

    Google Scholar 

  80. Sevostianov I (2003) Explicit relations between elastic and conductive properties of a material containing annular cracks. Phil Trans Roy Soc L 361A:987–999

    Google Scholar 

  81. Sevostianov I (2006) Thermal conductivity of a material containing cracks of arbitrary shape. Int J Eng Sci 44:513–528

    Article  Google Scholar 

  82. Sevostianov I, Gorbatikh L, Kachanov M (2001) Recovery of information on the microstructure of porous/microcracked materials from the effective elastic/conductive properties. Mater Sci Eng A 318:1–14

    Google Scholar 

  83. Sevostianov I, Kachanov M (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. J Mech Phys Solids 50(2002):253–282

    Article  MathSciNet  MATH  Google Scholar 

  84. Sevostianov I, Kachanov M (2002b) On the elastic compliances of irregularly shaped cracks. Int J Fract 114:245–257

    Article  Google Scholar 

  85. Sevostianov I, Kachanov M, Ruud J, Lorraine P, Dubois M (2004) Quantitative characterization of microstructures of plasma-sprayed coatings and their conductive and elastic properties. Mater Sci Eng-A 386:164–174

    Google Scholar 

  86. Sevostianov I, Kachanov M (2007) Relations between compliances of inhomogeneities having the same shape but different elastic constants. Int J Eng Sci 45:797–806

    Article  MathSciNet  MATH  Google Scholar 

  87. Sevostianov I, Kachanov M (2008) Connections between elastic and conductive properties of heterogeneous materials, In: van der Giessen E, Aref H (eds) Advances in applied mechanics, vol 42. Academic Press, San Diego, pp 69–252

    Google Scholar 

  88. Sevostianov I, Kachanov M (2009) Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure—an overview. J Therm Spray Technol 18:822–834

    Google Scholar 

  89. Sevostianov I, Kachanov M (2012) Effective properties of heterogeneous materials: proper application of the non-interaction and the dilute limit applications. Int J Eng Sci (in press)

    Google Scholar 

  90. Sevostianov I, Kováčik J, Simančík F (2006a) Elastic and electric properties of closed-cell aluminum foams. Cross-property connection. Mater Sci Eng A 420:87–99

    Article  Google Scholar 

  91. Sevostianov I, Sabina F (2007) Cross-property connections for fiber reinforced piezoelectric materials. Int J Eng Sci 45:719–735

    Article  MATH  Google Scholar 

  92. Shafiro B, Kachanov M (1997) Materials with fluid-filled pores of various shapes: effective moduli and fluid pressure polarization. Int J Solids Struct 34:3517–3540

    Article  MathSciNet  MATH  Google Scholar 

  93. Shapiro AP, Probstein RF (1992) Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions. Phys Rev Lett 68:1422–1425

    Google Scholar 

  94. Smetanin BI (1968) The problem of extension of an elastic space containing a plane annular slit, PMM. Transl Appl Math Mech 32:461–466

    Google Scholar 

  95. Sneddon I, Lowengrab M (1969) Crack problems in the classical theory of elasticity. Wiley, New York

    MATH  Google Scholar 

  96. Tada H, Paris PC, Irwin GR (1973) The Stress Analysis of cracks: Handbook, Hellertown, Del Research Corporation

    Google Scholar 

  97. Taya M, Chou T-W (1981) On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int J Solids Struct 17:553–563

    Article  MATH  Google Scholar 

  98. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  99. Tsukrov I, Kachanov M (2000) Effective moduli of an anisotropic material with elliptical holes of arbitrary orientation distribution. Int J Solids Str 37:5919–5941

    Google Scholar 

  100. Tsukrov I, Novak J (2002) Effective elastic properties of solids with defects of irregular shapes. Int J Solids Struct 39:1539–1555

    Article  MATH  Google Scholar 

  101. Tsukrov I, Novak J (2004) Effective elastic properties of solids with two-dimensional inclusions of irregular shapes. Int J Solids Struct 41:6905–6924

    Article  MATH  Google Scholar 

  102. Vavakin AS, Salganik RL (1975) Effective characteristics of nonhomogeneous media with isolated inhomogeneities. Mechanics of Solids, vol 10. Allerton Press, New York, pp 58–66, pp 65–75 (English translation of Izvestia AN SSSR, Mekhanika Tverdogo Tela)

    Google Scholar 

  103. Walpole LJ (1966) On bounds for overall elastic moduli of inhomogeneous systems: part I. J Mech Phys Solids 14:151–162

    Article  MATH  Google Scholar 

  104. Walpole LJ (1984) Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc Roy Soc Lond A 391:149–179

    Article  MathSciNet  MATH  Google Scholar 

  105. Walsh JB, Brace WF, England AW (1965) Effect of porosity on compressibility of glass. J Am Ceramic Soc 48(12):605–608

    Article  Google Scholar 

  106. Weber L, Dorn J, Mortensen A (2003) On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mat 51:3199–3211

    Article  Google Scholar 

  107. Willis JR (1977) Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solids 25:185–202

    Article  MATH  Google Scholar 

  108. Wong CP, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 74:3396–3403

    Article  Google Scholar 

  109. Zimmerman R (1986) Compressibility of two-dimensional cavities of various shapes. J Appl Mech Trans ASME 53:500–504

    Article  Google Scholar 

  110. Zimmerman R (1991a) Compressibility of sandstones. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  111. Zimmerman R (1991b) Elastic moduli of a solid containing spherical inclusions. Mech Mater 12:17–24

    Article  Google Scholar 

  112. Zimmerman RW (1996) Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities. Proc Roy Soc Lond A 453:1713–1727

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author (IS) acknowledges support of New Mexico Space Grant Consortium

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sevostianov .

Editor information

Editors and Affiliations

Appendix: Tensor Basis in the Space of Transversely Isotropic Fourth Rank Tensors. Representation of Certain Transversely Isotropic Tensors in Terms of the Tensor Basis

Appendix: Tensor Basis in the Space of Transversely Isotropic Fourth Rank Tensors. Representation of Certain Transversely Isotropic Tensors in Terms of the Tensor Basis

The operations of analytic inversion and multiplication of fourth rank tensors are conveniently done in terms of special tensor bases that are formed by combinations of unit tensor \({\delta } _{ ij} \) and one or two orthogonal unit vectors (see [55] and [50]). In the case of the transversely isotropic elastic symmetry, the following basis is most convenient (it differs slightly from the one used by Kanaun and Levin [50]):

$$\begin{aligned} T_{ ijkl}^{\left(1 \right)}&=\theta _{ ij} \theta _{kl} , \quad T_{ ijkl}^{\left(2 \right)} ={\left({\theta _{ik} \theta _{lj} +\theta _{il} \theta _{kj} -\theta _{ ij} \theta _{kl} } \right)}/2, \quad T_{ ijkl}^{\left(3 \right)} =\theta _{ ij} m_k m_l , \quad T_{ ijkl}^{\left(4 \right)} =m_i m_j \theta _{kl} \\ T_{ ijkl}^{\left(5 \right)}&={\left({\theta _{ik} m_l m_j +\theta _{il} m_k m_j +\theta _{jk} m_l m_i +\theta _{jl} m_k m_i } \right)}/4, \quad T_{ ijkl}^{\left(6 \right)} =m_i m_j m_k m_l\nonumber \end{aligned}$$
(A.1)

where \(\theta _{ ij} ={\delta } _{ ij} -m_i m_j \) and \({\varvec{m}}=m_1 e_1 +m_2 e_2 +m_3 e_3 \) is a unit vector along the axis of transverse symmetry.

These tensors form the closed algebra with respect to the operation of (non-commutative) multiplication (contraction over two indices):

$$\begin{aligned} \left({{\varvec{T}}^{\left({\alpha } \right)}{\varvec{T}}^{\left(\beta \right)}} \right)_{ ijkl} =T_{ ijpq}^{\left({\alpha } \right)} T_{pqkl}^{\left(\beta \right)} \end{aligned}$$
(A.2)

The table of multiplication of these tensors has the following form (the column represents the left multipliers):

 

\({\varvec{T}}^{(1)}\)

\({\varvec{T}}^{(2)}\)

\({\varvec{T}}^{(3)}\)

\({\varvec{T}}^{(4)}\)

\({\varvec{T}}^{(5)}\)

\({\varvec{T}}^{(6)}\)

\({\varvec{T}}^{(1)}\)

\(2{\varvec{T}}^{(1)}\)

\(0\)

\(2{\varvec{T}}^{(3)}\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(2)}\)

\(0\)

\({\varvec{T}}^{(2)}\)

\(0\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(3)}\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(1)}\)

\(0\)

\({\varvec{T}}^{(3)}\)

\({\varvec{T}}^{(4)}\)

\(2{\varvec{T}}^{(4)}\)

\(0\)

\(2{\varvec{T}}^{(6)}\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(5)}\)

\(0\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(5)}\)/2

\(0\)

\({\varvec{T}}^{(6)}\)

\(0\)

\(0\)

\(0\)

\({\varvec{T}}^{(4)}\)

\(0\)

\({\varvec{T}}^{(6)}\)

Then the inverse of any fourth rank tensor \({\varvec{X}}\), as well as the product \({\varvec{X}}{:}{\varvec{Y}}\) of two such tensors are readily found in the closed form, as soon as the representation in the basis

$$\begin{aligned} {\varvec{X}}=\sum _{k=1}^6 {X_k {\varvec{T}}^{\left(k \right)}} , \quad {\varvec{Y}}=\sum _{k=1}^6 {Y_k {\varvec{T}}^{\left(k \right)}} \end{aligned}$$
(A.3)

are established. Indeed:

(a) inverse tensor \({\varvec{X}}^{-1}\) defined by \(X_{ ijmn}^{-1} X_{mnkl} =\left({X_{ ijmn} X_{mnkl}^{-1}} \right)=J_{ ijkl} \) is given by

$$\begin{aligned} {\varvec{X}}^{-1}=\frac{X_6 }{2\Delta }{\varvec{T}}^{\left(1 \right)}+\frac{1}{X_2 }{\varvec{T}}^{\left(2 \right)}-\frac{X_3 }{\Delta }{\varvec{T}}^{\left(3 \right)}-\frac{X_4 }{\Delta }{\varvec{T}}^{\left(4 \right)}+\frac{4}{X_5 }{\varvec{T}}^{\left(5 \right)}+\frac{2X_1 }{\Delta }{\varvec{T}}^{\left(6 \right)} \end{aligned}$$
(A.4)

where \(\Delta =2\left({X_1 X_6 -X_3 X_4 } \right)\).

(b) product of two tensors \({\varvec{X}}{:}{\varvec{Y}}\) (tensor with \(ijkl\) components equal to \(X_{ ijmn} Y_{mnkl} )\) is

$$\begin{aligned} {\varvec{X}}{:}{\varvec{Y}}&=\left({2X_1 Y_1 +X_3 Y_4 } \right){\varvec{T}}^{\left(1 \right)}+X_2 Y_2 {\varvec{T}}^{\left(2 \right)}+\left({2X_1 Y_3 +X_3 Y_6 } \right){\varvec{T}}^{\left(3 \right)} \nonumber \\&\quad \;+\left({2X_4 Y_1 +X_6 Y_4 } \right){\varvec{T}}^{\left(4 \right)}+\frac{1}{2}X_5 Y_5 {\varvec{T}}^{\left(5 \right)}+\left({X_6 Y_6 +2X_4 Y_3 } \right){\varvec{T}}^{\left(6 \right)} \\ \end{aligned}$$
(A.5)

If \(x_3 \) is the axis of transverse symmetry, tensors \({\varvec{T}}^{\left(1 \right)}, \ldots ,{\varvec{T}}^{\left(6 \right)}\)given by (A.1) have the following non-zero components:

$$\begin{aligned} {\varvec{T}}_{1111}^{\left(1 \right)}&={\varvec{T}}_{2222}^{\left(1 \right)} ={\varvec{T}}_{1122}^{\left(1 \right)} ={\varvec{T}}_{2211}^{\left(1 \right)} =1 \nonumber \\ {\varvec{T}}_{1212}^{\left(2 \right)}&={\varvec{T}}_{2121}^{\left(2 \right)} ={\varvec{T}}_{1221}^{\left(2 \right)} ={\varvec{T}}_{2112}^{\left(2 \right)} ={\varvec{T}}_{1111}^{\left(2 \right)} ={\varvec{T}}_{2222}^{\left(2 \right)} =\frac{1}{2},\nonumber \\ {\varvec{T}}_{1122}^{\left(2 \right)}&={\varvec{T}}_{2211}^{\left(2 \right)}=-\frac{1}{2} \nonumber \\ {\varvec{T}}_{1133}^{\left(3 \right)}&={\varvec{T}}_{2233}^{\left(3 \right)} =1; \nonumber \\ {\varvec{T}}_{3311}^{\left(4 \right)}&={\varvec{T}}_{3322}^{\left(4 \right)}=1 \nonumber \\ {\varvec{T}}_{1313}^{\left(5 \right)}&={\varvec{T}}_{2323}^{\left(5 \right)} ={\varvec{T}}_{1331}^{\left(5 \right)} ={\varvec{T}}_{2332}^{\left(5 \right)} ={\varvec{T}}_{3113}^{\left(5 \right)} ={\varvec{T}}_{3223}^{\left(5 \right)} ={\varvec{T}}_{3131}^{\left(5 \right)} ={\varvec{T}}_{3232}^{\left(5 \right)} =\frac{1}{4} \nonumber \\ {\varvec{T}}_{3333}^{\left(6 \right)}&=1 \nonumber \\ \end{aligned}$$
(A.6)

General transversely isotropic fourth-rank tensor, being represented in this basis

$$\begin{aligned} \varPsi _{ ijkl} =\sum {\psi _m T_{ ijkl}^m } \end{aligned}$$

has the following components:

$$\begin{aligned} \psi _1&={\left({\varPsi _{1111} +\varPsi _{1122} } \right)}/2; \quad \psi _2 =2\varPsi _{1212} ; \quad \psi _3 =\varPsi _{1133} ; \quad \psi _4 =\varPsi _{3311} ; \\ \psi _5&=4\varPsi _{1313} ; \quad \psi _6 =4\varPsi _{3333} \nonumber \end{aligned}$$
(A.7)

Utilizing (A.7) one obtains the following representations:

  • Tensor of elastic compliances of the isotropic material \(S_{ ijkl} =\sum {s_m T_{ ijkl}^m } \) has the following components

    $$\begin{aligned} s_1 =\frac{1-\nu }{4G\left({1+\nu } \right)}; \quad s_2 =\frac{1}{2G}; \quad s_3 =s_4 =\frac{-\nu }{2G\left({1+\nu } \right)}; \quad s_5 =\frac{1}{G}; \quad s_6 =\frac{1}{2G\left({1+\nu } \right)}. \end{aligned}$$
    (A.8)
  • Tensor of elastic stiffness of the isotropic material by \(C_{ ijkl} =\sum {c_m T_{ ijkl}^m } \) has components

    $$\begin{aligned} c_1 =\lambda +G; \quad c_2 =2G; \quad c_3 =c_4 =\lambda ; \quad c_5 =4G; \quad c_6 =\lambda +2G. \end{aligned}$$
    (A.9)

where \(\lambda ={2G\nu }/{\left({1-2\nu } \right)}\).

  • Unit fourth rank tensors are represented in the form

    $$\begin{aligned} J_{ ijkl}^{\left(1 \right)} ={\left({{\delta } _{ik} {\delta } _{lj} +{\delta } _{il} {\delta } _{kj} } \right)}/2=\frac{1}{2}T_{ ijkl}^1 +T_{ ijkl}^2 +2T_{ ijkl}^5 +T_{ ijkl}^6 \end{aligned}$$
    (A.10)
    $$\begin{aligned} J_{ ijkl}^{\left(2 \right)} ={\delta } _{ ij} {\delta } _{kl} =T_{ ijkl}^1 +T_{ ijkl}^3 +T_{ ijkl}^4 +T_{ ijkl}^6 \end{aligned}$$
    (A.11)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sevostianov, I., Kachanov, M. (2013). Non-interaction Approximation in the Problem of Effective Properties. In: Kachanov, M., Sevostianov, I. (eds) Effective Properties of Heterogeneous Materials. Solid Mechanics and Its Applications, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5715-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5715-8_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5714-1

  • Online ISBN: 978-94-007-5715-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics