Skip to main content

Targets for Global Resource Consumption

  • Chapter
  • First Online:
Factor X

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 29))

  • 853 Accesses

Abstract

Global warming, the overall extraction of minerals and the expansion of cultivated land for biomass harvest are growing globally. These “Big Three” represent key environmental pressures which may lead to a continuous degradation of the living environment, if not controlled at levels with acceptable low risk. The situation is complex, because countries and regions consume products which require resources such as minerals and land in various parts of the world. Nevertheless, it is possible to measure the global resource use which is associated with the domestic consumption. In order to inform policies at the national and supranational level whether it may be necessary to adjust the incentive framework for industry and households, reference data are needed to compare the status quo of their countries with what may be deemed acceptable at a global level. This chapter outlines a rationale for the derivation of possible long-term targets for total material consumption of abiotic materials (TMCabiot) and global land use for crops (GLUcropland). The indicated targets are expressed in tentative per capita values which may serve as a first orientation and basis for further debate and research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://unfccc.int

  2. 2.

    See http://ozone.unep.org

  3. 3.

    See http://chm.pops.int and http://www.chem.unep.ch/pops

  4. 4.

    See http://www.pic.int

  5. 5.

    See http://www.basel.int

  6. 6.

    See http://www.cbd.int

  7. 7.

    The net effect of consumption can generally be calculated by adding domestic emissions and emissions associated with imports minus exports. Indirect GHG emissions of imports to and exports out of Germany, for instance, have been accounted for by Schoer et al. (2007).

  8. 8.

    See http://www.un.org/esa/dsd/agenda21

  9. 9.

    See http://www.un.org/esa/sustdev/documents/WSSD_POI_PD/English/WSSD_PlanImpl.pdf

  10. 10.

    See http://www.scp-centre.org

  11. 11.

    Decision 1600/2002/EC, O.J. L 242/1 of 19.9.2002.

  12. 12.

    §8 (i) (c) of the 6 EAP.

  13. 13.

    MOSUS data base established by S. Giljum and colleagues: http://www.materialflows.net (accessed February 17, 2009).

  14. 14.

    The order of magnitude might not have decreased since those values have been estimated. 2–5 Mha of global arable land are lost every year to soil erosion (den Biggelaar et al. 2004). According to Lavelle et al. (2005) persistently high rates of erosion affect more than 1.1 billion hectares of land worldwide.

  15. 15.

    A recent estimate for 2008 by OECD/FAO (2008) arrives at 64.5 billion litres ethanol and 11.8 billion litres biodiesel, up 22 % from 2007 (by energy content). From 2005 to 2007 (average) to 2008, the share of ethanol in global gasoline type fuel use has increased from 3.78 to 5.46 %, the share of biodiesel in global diesel type fuel use rose from 0.93 to 1.5 % (OECD/FAO 2008).

  16. 16.

    TMC = Total Material Consumption, comprises both abiotic and biotic resources.

  17. 17.

    For operationalization see Schmidt-Bleek et al. (1998), Ritthoff et al. (2003).

  18. 18.

    From a systems perspective, erosion may be regarded as flow along the system boundary between socio-industrial metabolism and environment; as a consequence, it may be (1) included when environmental pressure through mass translocation also by agriculture shall be accounted for, analogous to translocations in mining (Schmidt-Bleek et al. 1998); or it may be (2) regarded as impact of human activities and excluded from material flow accounts when concentrating on the throughput of industries and directly linked flows like unused extraction (e.g. Eurostat (2001) regards erosion as memory item).

  19. 19.

    The development from a phase of physical growth towards a phase of steady stocks may be regarded as essential characteristic of maturation.

  20. 20.

    Note that TMC* abiot does not include biomass nor erosion.

  21. 21.

    In case the EU would increase its exports (in relation to domestic consumption) in order to supply other regions to a growing extent, the decline of the TMR would be lower than that of the TMC. Any policy target aiming to reduce absolute resource consumption should be oriented towards TMC, whereas targets for resource productivity should be based on TMR (as explained below).

  22. 22.

    Note that TMC** includes all primary materials without excavation and erosion.

  23. 23.

    The data for 2005 resulted in a global average TMCabiot ** of 18 t/cap (Dittrich, personal communication, September 2009) which is about 25 % higher than the data provided by www.materialflows.net

  24. 24.

    Based on FAO (2006). The FAO expects an expansion of 200 million ha by 2030; further expansion was estimated to follow the growth of the world population until 2050.

  25. 25.

    For further discussion see also Bringezu and Steger (2005) who state the importance to account for “intensively cultivated land”.

  26. 26.

    Using only TMCabiot, without a complementary indicator of biomass-related land use, would be misleading; as long as GLUA data is not available, targets should be based on TMC (including both abiotic and biotic resources), in order to avoid problem shifting towards (enhanced) overuse of biomass.

References

  • Aachen Foundation (ed) (2011) Factsheet measuring resource extraction. Aachen

    Google Scholar 

  • Bringezu S (2002) Towards sustainable resource management in the European Union. Wuppertal Pap 121:6–46

    Google Scholar 

  • Bringezu S (2006) Materializing policies for sustainable resource use and economy-wide management of resources: biophysical perspectives, socio-economic options and a dual approach for the European Union. Wuppertal Pap 160:7–33

    Google Scholar 

  • Bringezu S (2009) Visions of a sustainable resource use. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 155–215

    Chapter  Google Scholar 

  • Bringezu S (2011) Key elements of economy-wide sustainable resource management. Annales de Mines, Section Responsabilité & Environnement 61:78–87

    Google Scholar 

  • Bringezu S, Schütz H (1995) Wie misst man die ökologische Zukunftsfähigkeit einer Volkswirtschaft? Ein Beitrag der Stoffstrombilanzierung am Beispiel der Bundesrepublik Deutschland. In: Bringezu S (ed) Neue Ansätze der Umweltstatistik. Ein Wuppertaler Werkstattgespräch. Birkhäuser Verlag, Berlin, pp 26–54

    Google Scholar 

  • Bringezu S, Bleischwitz R (2009) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield

    Google Scholar 

  • Bringezu S, Schütz H, Moll S (2003) Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J Ind Ecol 7(2):43–67

    Article  Google Scholar 

  • Bringezu S, Schütz H, Saurat M, Moll S, Acosta Fernandez J, Steger S (2009a) The implications of Europe’s resource use: basic trends, global and sectoral patterns, environmental and socioeconomic impacts. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 52–154

    Chapter  Google Scholar 

  • Bringezu S, van de Sand I, Schütz H, Bleischwitz R, Moll S (2009b) Analyzing global resource use of the national and regional economies across various levels. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 10–51

    Chapter  Google Scholar 

  • Bringezu S, Schütz H, O’Brien M, Kauppi L, Howarth RW, McNeely J (2009c) Towards sustainable production and use of resources: assessing biofuels. Report of the International Panel for Sustainable Resource Management, UNEP-DTIE, Paris

    Google Scholar 

  • Bringezu S, Schütz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt G, Rettenmaier N (2009d) Global implications of biomass and biofuel use in Germany: recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:57–68

    Article  Google Scholar 

  • Bringezu S, Steger S (2005) Biofuels and competition for global land use’, Global issue papers of Heinrich−Böll Foundation, Proceedings of the workshop “Bio in den Tank: Chancen − Risiken − Nebenwirkungen (Bio into the tank: Chances − Risks – Side Effects)”, Fachtagung der Heinrich−Böll−Stiftung und des European Climate Forum, 15 Apr 2005, Berlin

    Google Scholar 

  • Bringezu S, O’Brien M, Schütz H (2012) Beyond biofuels: assessing global land use for domestic consumption of biomass. A conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 29:224–232

    Article  Google Scholar 

  • Brown L (1985) The pressures keep growing. The state of the world in 1985. In: context: strategies for cultural change, vol 9. Context Institute, Langley, USA, p 12.

    Google Scholar 

  • BUND (Bund für Umwelt- und Naturschutz Deutschland) & MISEREOR (ed) (1996) Zukunftsfähiges Deutschland, ein Beitrag zu einer global nachhaltigen Entwicklung. Birkhäuser Verlag, Basel/Bonn/Berlin

    Google Scholar 

  • den Biggelaar C, Lal R, Wiebe K, Breneman V (2004) The global impact of soil erosion on productivity I: absolute and relative erosion-induced yield losses. Adv Agron 81:1–48

    Article  Google Scholar 

  • Dittrich M (2010) Physische Handelsbilanzen. Verlagert der Norden Umweltbelastungen in den Süden? Dissertation. Kölner Geographische Arbeiten, University of Cologne, Cologne

    Google Scholar 

  • Eickhout B, van den Born GJ, Notenboom J, van Oorschot M, Ros JPM, van Vuuren DP, Westhoek HJ (2008) Local and global consequences of the EU renewable directive of biofuels: testing the sustainable criteria (MNP report 500143001/2008). Netherlands Environmental Assessment Agency, Bilthoven

    Google Scholar 

  • European Commission (2005) Thematic strategy on the sustainable use of natural resources. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. COM(2005) 670 final {SEC(2005) 1683} {SEC(2005) 1684}

    Google Scholar 

  • Eurostat (2001) Economy-wide material flow accounts and derived indicators: a methodological guide. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2006) World agriculture: towards 2030/2050. Interim report, Rome

    Google Scholar 

  • SERI Global 2000, Friends of the Earth Europe (2009) Overconsumption? Our use of the world’s resources

    Google Scholar 

  • Kemp-Benedict E, Heaps C, Raskin P (2002) Global scenario group futures. Technical notes. Stockholm Environment Institute, Stockholm

    Google Scholar 

  • Lambin EF, Geist H (eds) (2006) Land-use and land-cover change: local processes and global impacts. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lavelle P, Dugdale R, Scholes R, Berthe AA, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizao F, Scholes M, Tréguer P, Ward B (2005) Ecosystems and human well-being: current state and trends. Nutrient cycling. In: Millenium ecosystem assessment ecosystems and human well-being. Synthesis. Island Press, Washington, DC, pp 331–353

    Google Scholar 

  • Millenium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mudd G (2009) The sustainability of mining in Australia. Key production trends and their environmental implications for the future. Research report no. RR5, Department of Civil Engineering, Monash University and Mineral Policy Institute, Revised – April 2009

    Google Scholar 

  • OECD (2004) Recommendation of the council on material flows and resource productivity. Adopted by the OECD Council April 21, 2004

    Google Scholar 

  • OECD (2008) Recommendation of the council on resource productivity. Adopted by the OECD Council on March 28, 2008

    Google Scholar 

  • Pimentel D (ed) (1993) World soil erosion and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22(1):1–19, American Geophysical Union

    Article  Google Scholar 

  • Ravindranath NH, Sathaye J, Woods J, Fargione J, Watson H, Faaji A, Makundi W, Canadell P (2009) GHG implications of land use and land conversion to biofuel crops. In: Howarth RW, Bringezu S (eds) Biofuels: environmental consequences and interactions with changing land use. Report of the international SCOPE biofuels project. Cornell University, Ithaca. http://cip.cornell.edu/biofuels/

  • RFA, Gallagher E (2008) The Gallagher review of the indirect effects of biofuels productions. Renewable Fuels Agency, East Sussex

    Google Scholar 

  • Ritthoff M, Rohn H, Liedtke C (2003) Calculating MIPS. Resource productivity of products and services. Wuppertal Spezial 27e:8–35

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Schmidt-Bleek F (1992) Will Germany remain a good place for industry? The ecological side of the Coin’ Fres. Environ Bull 1:417–422

    Google Scholar 

  • Schmidt-Bleek F (1994) Wieviel Umwelt braucht der Mensch? MIPS Das Mass für ökologisches Wirtschaften. Birkhäuser Verlag, Basel/Berlin/Bosten

    Book  Google Scholar 

  • Schmidt-Bleek F, Bringezu S, Hinterberger F, Liedtke C, Spangenberg J, Stiller H, Welfens MJ (1998) MAIA. Einführung in die Material-Intensitätsanalyse nach dem MIPS-Konzept. Birkhäuser Verlag, Basel/Berlin/Bosten

    Google Scholar 

  • Schoer K, Buyny S, Flachmann C, Klink S, Mayer H (2007) Environmental-economic accounting (EEA): environmental pressures from German imports and exports. Results of EEA on embodied energy, carbon dioxide and transport of goods. Paper presented at the 93rd DGINS conference, 19–21 September 2007, Budapest/Hungary

    Google Scholar 

  • Schütz H (2003) Economy-wide material flow accounts, land use accounts and derived indicators for Germany: MFA Germany. Final report to the Commission of the European Communities; DG Eurostat/B1, contract ref No. 200141200028, Eurostat B1, Wuppertal

    Google Scholar 

  • Schütz H, Bringezu S (2008) Resource consumption of Germany – indicators and definitions. TEXTE, 08/08. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  • Schütz H, Moll S, Bringezu S (2003) Globalisation and the shifting of environmental burden: material trade flows of the European Union. Wuppertal Pap 134e:5–59

    Google Scholar 

  • Steger S (2004) Der “Flächenrucksack” des europäischen Außenhandels mit Agrargütern. In Welche Globalisierung ist zukunftsfähig? Wuppertal Institut zur Globalisierung

    Google Scholar 

  • United Nations Environment Programme (UNEP) (2007) Global environment outlook, vol 4. UNEP, Nairobi

    Google Scholar 

  • von Weizsäcker EU, Lovins AB, Lovins LH (1995) Factor four – doubling wealth, halving resource use. Droemer Knaur, Munich

    Google Scholar 

  • Wackernagel M, Monfreda C, Moran D, Wermer P, Goldfinger S, Deumling D, Murray M (2005) National footprint and biocapacity accounts 2005: the underlying calculation method. Global Footprint Network, Oakland. http://www.footprintnetwork.org/download.php?id=5. Accessed 14 Mar 2009

  • Zah R, Binder C, Bringezu S, Reinhard J, Schmid A, Schütz H (2010) Future perspectives of 2nd generation biofuels. Vdf Hochschulverlag AG an der ETH Zürich, Zürich

    Google Scholar 

Download references

Acknowledgments

 The author would like to thank Helmut Schütz for data checking and Monika Dittrich for the provision of the TMCabiot ** world map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bringezu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bringezu, S. (2014). Targets for Global Resource Consumption. In: Angrick, M., Burger, A., Lehmann, H. (eds) Factor X. Eco-Efficiency in Industry and Science, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5706-6_3

Download citation

Publish with us

Policies and ethics