Advertisement

Factor X pp 41-64 | Cite as

Targets for Global Resource Consumption

  • Stefan BringezuEmail author
Chapter
  • 765 Downloads
Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 29)

Abstract

Global warming, the overall extraction of minerals and the expansion of cultivated land for biomass harvest are growing globally. These “Big Three” represent key environmental pressures which may lead to a continuous degradation of the living environment, if not controlled at levels with acceptable low risk. The situation is complex, because countries and regions consume products which require resources such as minerals and land in various parts of the world. Nevertheless, it is possible to measure the global resource use which is associated with the domestic consumption. In order to inform policies at the national and supranational level whether it may be necessary to adjust the incentive framework for industry and households, reference data are needed to compare the status quo of their countries with what may be deemed acceptable at a global level. This chapter outlines a rationale for the derivation of possible long-term targets for total material consumption of abiotic materials (TMCabiot) and global land use for crops (GLUcropland). The indicated targets are expressed in tentative per capita values which may serve as a first orientation and basis for further debate and research.

Keywords

Resource Consumption Environmental Pressure Virtual Water Resource Productivity Global Land 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

 The author would like to thank Helmut Schütz for data checking and Monika Dittrich for the provision of the TMCabiot ** world map.

References

  1. Aachen Foundation (ed) (2011) Factsheet measuring resource extraction. AachenGoogle Scholar
  2. Bringezu S (2002) Towards sustainable resource management in the European Union. Wuppertal Pap 121:6–46Google Scholar
  3. Bringezu S (2006) Materializing policies for sustainable resource use and economy-wide management of resources: biophysical perspectives, socio-economic options and a dual approach for the European Union. Wuppertal Pap 160:7–33Google Scholar
  4. Bringezu S (2009) Visions of a sustainable resource use. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 155–215CrossRefGoogle Scholar
  5. Bringezu S (2011) Key elements of economy-wide sustainable resource management. Annales de Mines, Section Responsabilité & Environnement 61:78–87Google Scholar
  6. Bringezu S, Schütz H (1995) Wie misst man die ökologische Zukunftsfähigkeit einer Volkswirtschaft? Ein Beitrag der Stoffstrombilanzierung am Beispiel der Bundesrepublik Deutschland. In: Bringezu S (ed) Neue Ansätze der Umweltstatistik. Ein Wuppertaler Werkstattgespräch. Birkhäuser Verlag, Berlin, pp 26–54Google Scholar
  7. Bringezu S, Bleischwitz R (2009) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, SheffieldGoogle Scholar
  8. Bringezu S, Schütz H, Moll S (2003) Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J Ind Ecol 7(2):43–67CrossRefGoogle Scholar
  9. Bringezu S, Schütz H, Saurat M, Moll S, Acosta Fernandez J, Steger S (2009a) The implications of Europe’s resource use: basic trends, global and sectoral patterns, environmental and socioeconomic impacts. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 52–154CrossRefGoogle Scholar
  10. Bringezu S, van de Sand I, Schütz H, Bleischwitz R, Moll S (2009b) Analyzing global resource use of the national and regional economies across various levels. In: Bringezu S, Bleischwitz R (eds) Sustainable resource management. Global trends, visions and policies. Greenleaf Publishing, Sheffield, pp 10–51CrossRefGoogle Scholar
  11. Bringezu S, Schütz H, O’Brien M, Kauppi L, Howarth RW, McNeely J (2009c) Towards sustainable production and use of resources: assessing biofuels. Report of the International Panel for Sustainable Resource Management, UNEP-DTIE, ParisGoogle Scholar
  12. Bringezu S, Schütz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt G, Rettenmaier N (2009d) Global implications of biomass and biofuel use in Germany: recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:57–68CrossRefGoogle Scholar
  13. Bringezu S, Steger S (2005) Biofuels and competition for global land use’, Global issue papers of Heinrich−Böll Foundation, Proceedings of the workshop “Bio in den Tank: Chancen − Risiken − Nebenwirkungen (Bio into the tank: Chances − Risks – Side Effects)”, Fachtagung der Heinrich−Böll−Stiftung und des European Climate Forum, 15 Apr 2005, BerlinGoogle Scholar
  14. Bringezu S, O’Brien M, Schütz H (2012) Beyond biofuels: assessing global land use for domestic consumption of biomass. A conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 29:224–232CrossRefGoogle Scholar
  15. Brown L (1985) The pressures keep growing. The state of the world in 1985. In: context: strategies for cultural change, vol 9. Context Institute, Langley, USA, p 12.Google Scholar
  16. BUND (Bund für Umwelt- und Naturschutz Deutschland) & MISEREOR (ed) (1996) Zukunftsfähiges Deutschland, ein Beitrag zu einer global nachhaltigen Entwicklung. Birkhäuser Verlag, Basel/Bonn/BerlinGoogle Scholar
  17. den Biggelaar C, Lal R, Wiebe K, Breneman V (2004) The global impact of soil erosion on productivity I: absolute and relative erosion-induced yield losses. Adv Agron 81:1–48CrossRefGoogle Scholar
  18. Dittrich M (2010) Physische Handelsbilanzen. Verlagert der Norden Umweltbelastungen in den Süden? Dissertation. Kölner Geographische Arbeiten, University of Cologne, CologneGoogle Scholar
  19. Eickhout B, van den Born GJ, Notenboom J, van Oorschot M, Ros JPM, van Vuuren DP, Westhoek HJ (2008) Local and global consequences of the EU renewable directive of biofuels: testing the sustainable criteria (MNP report 500143001/2008). Netherlands Environmental Assessment Agency, BilthovenGoogle Scholar
  20. European Commission (2005) Thematic strategy on the sustainable use of natural resources. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. COM(2005) 670 final {SEC(2005) 1683} {SEC(2005) 1684}Google Scholar
  21. Eurostat (2001) Economy-wide material flow accounts and derived indicators: a methodological guide. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  22. Food and Agriculture Organization (FAO) (2006) World agriculture: towards 2030/2050. Interim report, RomeGoogle Scholar
  23. SERI Global 2000, Friends of the Earth Europe (2009) Overconsumption? Our use of the world’s resourcesGoogle Scholar
  24. Kemp-Benedict E, Heaps C, Raskin P (2002) Global scenario group futures. Technical notes. Stockholm Environment Institute, StockholmGoogle Scholar
  25. Lambin EF, Geist H (eds) (2006) Land-use and land-cover change: local processes and global impacts. Springer, Berlin/HeidelbergGoogle Scholar
  26. Lavelle P, Dugdale R, Scholes R, Berthe AA, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizao F, Scholes M, Tréguer P, Ward B (2005) Ecosystems and human well-being: current state and trends. Nutrient cycling. In: Millenium ecosystem assessment ecosystems and human well-being. Synthesis. Island Press, Washington, DC, pp 331–353Google Scholar
  27. Millenium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  28. Mudd G (2009) The sustainability of mining in Australia. Key production trends and their environmental implications for the future. Research report no. RR5, Department of Civil Engineering, Monash University and Mineral Policy Institute, Revised – April 2009Google Scholar
  29. OECD (2004) Recommendation of the council on material flows and resource productivity. Adopted by the OECD Council April 21, 2004Google Scholar
  30. OECD (2008) Recommendation of the council on resource productivity. Adopted by the OECD Council on March 28, 2008Google Scholar
  31. Pimentel D (ed) (1993) World soil erosion and conservation. Cambridge University Press, CambridgeGoogle Scholar
  32. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22(1):1–19, American Geophysical UnionCrossRefGoogle Scholar
  33. Ravindranath NH, Sathaye J, Woods J, Fargione J, Watson H, Faaji A, Makundi W, Canadell P (2009) GHG implications of land use and land conversion to biofuel crops. In: Howarth RW, Bringezu S (eds) Biofuels: environmental consequences and interactions with changing land use. Report of the international SCOPE biofuels project. Cornell University, Ithaca. http://cip.cornell.edu/biofuels/
  34. RFA, Gallagher E (2008) The Gallagher review of the indirect effects of biofuels productions. Renewable Fuels Agency, East SussexGoogle Scholar
  35. Ritthoff M, Rohn H, Liedtke C (2003) Calculating MIPS. Resource productivity of products and services. Wuppertal Spezial 27e:8–35Google Scholar
  36. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  37. Schmidt-Bleek F (1992) Will Germany remain a good place for industry? The ecological side of the Coin’ Fres. Environ Bull 1:417–422Google Scholar
  38. Schmidt-Bleek F (1994) Wieviel Umwelt braucht der Mensch? MIPS Das Mass für ökologisches Wirtschaften. Birkhäuser Verlag, Basel/Berlin/BostenCrossRefGoogle Scholar
  39. Schmidt-Bleek F, Bringezu S, Hinterberger F, Liedtke C, Spangenberg J, Stiller H, Welfens MJ (1998) MAIA. Einführung in die Material-Intensitätsanalyse nach dem MIPS-Konzept. Birkhäuser Verlag, Basel/Berlin/BostenGoogle Scholar
  40. Schoer K, Buyny S, Flachmann C, Klink S, Mayer H (2007) Environmental-economic accounting (EEA): environmental pressures from German imports and exports. Results of EEA on embodied energy, carbon dioxide and transport of goods. Paper presented at the 93rd DGINS conference, 19–21 September 2007, Budapest/HungaryGoogle Scholar
  41. Schütz H (2003) Economy-wide material flow accounts, land use accounts and derived indicators for Germany: MFA Germany. Final report to the Commission of the European Communities; DG Eurostat/B1, contract ref No. 200141200028, Eurostat B1, WuppertalGoogle Scholar
  42. Schütz H, Bringezu S (2008) Resource consumption of Germany – indicators and definitions. TEXTE, 08/08. Umweltbundesamt, Dessau-RoßlauGoogle Scholar
  43. Schütz H, Moll S, Bringezu S (2003) Globalisation and the shifting of environmental burden: material trade flows of the European Union. Wuppertal Pap 134e:5–59Google Scholar
  44. Steger S (2004) Der “Flächenrucksack” des europäischen Außenhandels mit Agrargütern. In Welche Globalisierung ist zukunftsfähig? Wuppertal Institut zur GlobalisierungGoogle Scholar
  45. United Nations Environment Programme (UNEP) (2007) Global environment outlook, vol 4. UNEP, NairobiGoogle Scholar
  46. von Weizsäcker EU, Lovins AB, Lovins LH (1995) Factor four – doubling wealth, halving resource use. Droemer Knaur, MunichGoogle Scholar
  47. Wackernagel M, Monfreda C, Moran D, Wermer P, Goldfinger S, Deumling D, Murray M (2005) National footprint and biocapacity accounts 2005: the underlying calculation method. Global Footprint Network, Oakland. http://www.footprintnetwork.org/download.php?id=5. Accessed 14 Mar 2009
  48. Zah R, Binder C, Bringezu S, Reinhard J, Schmid A, Schütz H (2010) Future perspectives of 2nd generation biofuels. Vdf Hochschulverlag AG an der ETH Zürich, ZürichGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Wuppertal Institute for Climate, Environment and EnergyWuppertalGermany

Personalised recommendations