Skip to main content

From Static to Dynamic Mathematics: Historical and Representational Perspectives

  • Chapter
The SimCalc Vision and Contributions

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

The nature of mathematical reference fields has substantially evolved with the advent of new types of digital technologies enabling students greater access to understanding the use and application of mathematical ideas and procedures. We analyze the evolution of symbolic thinking over time, from static notations to dynamic inscriptions in new technologies. We conclude with new perspectives on Kaput’s theory of notations and representations as mediators of constructive processes.

Originally published in Educational Studies of Mathematics. doi:10.1007/s10649-008-9116-6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: information and communication technologies, modeling, experimentation and visualization. New York: Springer.

    Google Scholar 

  • Buchanan, S. (Ed.) (1976). The portable Plato. London: Penguin Books.

    Google Scholar 

  • Changeux, J. P., & Connes, A. (1998). Conversations on mind, matter and mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28(3), 258–277.

    Article  Google Scholar 

  • Deacon, T. (1997). The symbolic species: the co-evolution of language and the human brain. New York: Norton.

    Google Scholar 

  • Demidov, S. S., & Shenitzer, A. (2000). Two letters by N.N. Luzin to M.Ya. Vigodskii. The American Mathematical Monthly, 107(1), 64–82.

    Article  Google Scholar 

  • Donald, M. (1991). Origins of the modern mind: three stages in the evolution of culture and cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Donald, M. (2001). A mind so rare: the development of human consciousness. New York: Norton.

    Google Scholar 

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1), 103–131.

    Article  Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.

    Article  Google Scholar 

  • Flegg, G. (1983). Numbers: their history and meaning. New York: Dover.

    Google Scholar 

  • Hegedus, S., & Kaput, J. (2002). Exploring the phenomena of classroom connectivity. In D. Mewborn, P. Sztajn, D. Y. White, H. G. Wiegel, R. L. Bryant, & K. Nooney (Eds.), Proceedings of the 24th annual meeting of the North American chapter of the international group for the psychology of mathematics education (Vol. 1, pp. 422–432). Columbus: ERIC Clearinghouse.

    Google Scholar 

  • Hegedus, S. J., & Kaput, J. (2003). The effect of SimCalc connected classrooms on students’ algebraic thinking. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th conference of the international group for the psychology of mathematics education held jointly with the 25th conference of the North American chapter of the international group for the psychology of mathematics education (Vol. 3, pp. 47–54). Honolulu: College of Education, University of Hawaii.

    Google Scholar 

  • Kaput, J. (1999). Representations, inscriptions, descriptions and learning: a kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 265–281. Special issue on “Representations and the psychology of mathematics education: Part II,” edited by G. Goldin and C. Janvier.

    Article  Google Scholar 

  • Kaput, J. (2000). Implications of the shift from isolated expensive technology to connected, inexpensive, ubiquitous and diverse technologies. In M. O. J. Thomas (Ed.), Proceedings of the TIME 2000: an international conference on technology in mathematics education (pp. 1–24). Auckland: The University of Auckland and the Auckland University of Technology. Also published in the New Zealand Mathematics Magazine, 38(3), December 2001.

    Google Scholar 

  • Kaput, J., & Clement, J. (1979). Interpretations of algebraic symbols. Journal of Mathematical Behavior, 2, 208.

    Google Scholar 

  • Kaput, J., Blanton, M., & Moreno-Armella, L. (2008). Algebra from a symbolization point of view. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 19–56). Mahwah: Erlbaum.

    Google Scholar 

  • Kaput, J., Hegedus, S., & Lesh, R. (2007). Technology becoming infrastructural in mathematics education. In R. Lesh, E. Hamilton, & J. Kaput (Eds.), Foundations for the future of mathematics and science (pp. 172–192). Mahwah: Erlbaum.

    Google Scholar 

  • Kline, M. (1980). Mathematics: the loss of certainty. New York: Oxford University Press.

    Google Scholar 

  • Kozulin, A. (1990). Vygotsky’s psychology: a biography of ideas. New York: Harvester Wheatsheaf.

    Google Scholar 

  • Laborde, C. (2004). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education (pp. 159–180). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mariotti, M. A. (2000). Introduction to proof: the mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1–2), 25–53.

    Article  Google Scholar 

  • Moreno-Armella, L., & Kaput, J. (2005). Aspectos semióticos de la evolución histórica de la arithmética y el álgebra. In M. Alvarado & B. M. Brizuela (Eds.), Haciendo números: las notaciones numéricas vistas desde la psicología, la didáctica y la historia (pp. 31–49). Mexico: Editorial Paidós Mexicana.

    Google Scholar 

  • Nemirovsky, R., & Tierney, C. (2001). Children creating ways to represent changing situations: on the development of homogeneous spaces. Educational Studies in Mathematics, 45(1–3), 67–102.

    Article  Google Scholar 

  • Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.

    Article  Google Scholar 

  • Pierpoint, J. (1899). On the arithmetization of mathematics. Bulletin of the American Mathematical Society, 5(8), 394–406.

    Article  Google Scholar 

  • Pea, R. (1993). Practices of distributed intelligence and designs for education. In G. Salomon (Ed.), Distributed cognitions: psychological and educational considerations (pp. 47–87). New York: Cambridge University Press.

    Google Scholar 

  • Roschelle, J. (1992). Learning by collaboration: convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276.

    Article  Google Scholar 

  • Roschelle, J. (1996). Designing for cognitive communication: the case of mental models in qualitative physics. In D. L. Day & D. K. Kovacs (Eds.), Computers, communication & mental models (pp. 13–25). London: Taylor & Francis.

    Google Scholar 

  • Roschelle, J., Kaput, J., & Stroup, W. (2000). SimCalc: Accelerating students’ engagement with the mathematics of change. In M. Jacobson & R. Kozma (Eds.), Innovations in science and mathematics education: advanced designs for technologies of learning (pp. 47–75). Mahwah: Erlbaum.

    Google Scholar 

  • Rotman, B. (2000). Mathematics as sign. Palo Alto: Standford University Press.

    Google Scholar 

  • Schmandt-Besserat, D. (1996). How writing came about. Austin: University of Texas Press.

    Google Scholar 

  • Shaffer, D. W., & Kaput, J. J. (1999). Mathematics and virtual culture: an evolutionary perspective on technology and mathematics education. Educational Studies in Mathematics, 37(2), 97–199.

    Article  Google Scholar 

  • Thom, R. (1973). Modern mathematics: does it exist? In A. G. Howson (Ed.), Development in mathematical education. Proceedings of the second international congress on mathematical education (pp. 159–209). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wertsch, J. (1985). Vygotsky and the social formation of mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Wittgenstein, L. (1983). Remarks on the foundations of mathematics (revised ed.). Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Moreno-Armella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moreno-Armella, L., Hegedus, S. (2013). From Static to Dynamic Mathematics: Historical and Representational Perspectives. In: Hegedus, S., Roschelle, J. (eds) The SimCalc Vision and Contributions. Advances in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5696-0_3

Download citation

Publish with us

Policies and ethics