Skip to main content

Characterization and Classification of Stem Cells

  • Chapter
  • First Online:
Book cover Regenerative Medicine

Abstract

Starting from a zygote, an organism is made up of thousands, highly organised stem cells, progenitor cells and postmitotic cells which are generated in spatio-temporally coordinated proliferation and differentiation steps. The ongoing advancements in cell culture, isolation techniques, and molecular analyses have driven our basic understanding of different cell types and led to a broad classification of stem cells. This chapter outlines the most prominent techniques used for the characterization and classification of stem cells and provides an overview of many different stem cells, their function and their mRNA, miRNA and protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESC:

embryonic stem cell

iPSC:

induced pluripotent stem cell

HSC:

hematopoietic stem cell

TSC:

tissue stem cell

CSC:

cancer stem cell

EPC:

endothelial progenitor cell

SPC:

spermtogonial progenitor cell

HpSC:

hepatic stem cell

NSC:

neural stem cell

BTSC:

brain tumor stem cell

MSC:

mesenchymal stem cell

LT-HSC:

long-term hematopoietic stem cell

ST-HSC:

short-term hematopoietic stem cell

MP:

multipotent progenitors

CMP:

common myeloid progenitor

CLP:

common lymphoid progenitor

MEP:

megakaryocyte-erythroid progenitor

GMP:

granulocyte-macrophage progenitor

ErP:

erythroid progenitor

MkP:

megakaryocyte progenitor

RBC:

red blood cells

NK:

natural killer

References

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Anokye-Danso F, Trivedi CM, Juhr D et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388

    Article  PubMed  CAS  Google Scholar 

  • Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840

    Article  PubMed  CAS  Google Scholar 

  • Arnold CP, Tan R, Zhou B et al (2011) MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Res 21:798–810

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Aslan H, Zilberman Y, Kandel L et al (2006) Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 24:1728–1737

    Article  PubMed  Google Scholar 

  • Asselin-Labat ML, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Baldus CD, Tanner SM, Kusewitt DF et al (2003) BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol 31:1051–1056

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  • Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    Article  PubMed  CAS  Google Scholar 

  • Beckervordersandforth R, Tripathi P, Ninkovic J et al (2011) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7:744–758

    Article  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  • Bissels U, Wild S, Tomiuk S et al (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384

    Article  PubMed  CAS  Google Scholar 

  • Bissels U, Bosio A, Wagner W (2011a) MicroRNAs are shaping the hematopoietic landscape. Haematologica 97(2):160–167

    Article  PubMed  CAS  Google Scholar 

  • Bissels U, Wild S, Tomiuk S et al (2011b) Combined characterization of microRNA and mRNA profiles delineates early differentiation pathways of CD133(+) and CD34(+) hematopoietic stem and progenitor cells. Stem Cells 29(5):847–857

    Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Bosio A, Huppert V, Donath S et al (2009) Isolation and enrichment of stem cells. Adv Biochem Eng Biotechnol 114:23–72

    PubMed  CAS  Google Scholar 

  • Boutin C, Hardt O, de Chevigny A et al (2010) NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci USA 107:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Bruchova H, Yoon D, Agarwal AM et al (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 35:1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Jiang X, Martin-Puig S et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117

    Article  PubMed  CAS  Google Scholar 

  • Buhring HJ, Seiffert M, Bock TA et al (1999) Expression of novel surface antigens on early hematopoietic cells. Ann N Y Acad Sci 872:25–38; discussion 38–29

    Article  PubMed  CAS  Google Scholar 

  • Buhring HJ, Battula VL, Treml S et al (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  CAS  Google Scholar 

  • Burns CE, Zon LI (2002) Portrait of a stem cell. Dev Cell 3:612–613

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Cheung ST, Cheung PF, Cheng CK et al (2011) Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140:344–355

    Article  PubMed  CAS  Google Scholar 

  • Conrad S, Renninger M, Hennenlotter J et al (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349

    Article  PubMed  CAS  Google Scholar 

  • Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nature Rev 11:176–187

    CAS  Google Scholar 

  • Copland M, Hamilton A, Elrick LJ et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107:4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  • Dore LC, Amigo JD, Dos Santos CO et al (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 105:3333–3338

    Article  PubMed  CAS  Google Scholar 

  • Dormeyer W, van Hoof D, Braam SR et al (2008) Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Res 7:2936–2951

    Article  PubMed  CAS  Google Scholar 

  • Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751–6760

    Article  PubMed  CAS  Google Scholar 

  • Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102:18081–18086

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Pelosi E, Greco P et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  PubMed  CAS  Google Scholar 

  • Fortunel NO, Otu HH, Ng HH et al (2003) Comment on “ ‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302:393; author reply 393

    Article  PubMed  CAS  Google Scholar 

  • Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  PubMed  CAS  Google Scholar 

  • Georgantas RW 3rd, Tanadve V, Malehorn M et al (2004) Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 64:4434–4441

    Article  PubMed  CAS  Google Scholar 

  • Georgantas RW 3rd, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755

    Article  PubMed  CAS  Google Scholar 

  • Gerrits A, Dykstra B, Otten M et al (2008) Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny. Immunogenetics 60:411–422

    Article  PubMed  CAS  Google Scholar 

  • Giebel B, Zhang T, Beckmann J et al (2006) Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 107:2146–2152

    Article  PubMed  CAS  Google Scholar 

  • Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson KO, Thorsteinsson L, Sigurjonsson OE et al (2007) Gene expression analysis of hematopoietic progenitor cells identifies Dlg7 as a potential stem cell gene. Stem Cells 25:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Lu J, Schlanger R et al (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 107:14229–14234

    Article  PubMed  CAS  Google Scholar 

  • Han YC, Park CY, Bhagat G et al (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489

    Article  PubMed  CAS  Google Scholar 

  • Hatfield S, Ruohola-Baker H (2008) microRNA and stem cell function. Cell Tissue Res 331:57–66

    Article  PubMed  CAS  Google Scholar 

  • He X, Gonzalez V, Tsang A et al (2005) Differential gene expression profiling of CD34+ CD133+ umbilical cord blood hematopoietic stem progenitor cells. Stem Cells Dev 14:188–198

    Article  PubMed  CAS  Google Scholar 

  • Hemmoranta H, Hautaniemi S, Niemi J et al (2006) Transcriptional profiling reflects shared and unique characters for CD34+ and CD133+ cells. Stem Cells Dev 15:839–851

    Article  PubMed  CAS  Google Scholar 

  • Huang TS, Hsieh JY, Wu YH et al (2008) Functional network reconstruction reveals somatic stemness genetic maps and dedifferentiation-like transcriptome reprogramming induced by GATA2. Stem Cells 26:1186–1201

    Article  PubMed  CAS  Google Scholar 

  • Hubin F, Humblet C, Belaid Z et al (2005) Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors. Stem Cells 23:1626–1633

    Article  PubMed  Google Scholar 

  • Huss R, Moosmann S (2002) The co-expression of CD117 (c-kit) and osteocalcin in activated bone marrow stem cells in different diseases. Br J Haematol 118:305–312

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  PubMed  CAS  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C et al (2002) A stem cell molecular signature. Science 298:601–604

    Article  PubMed  CAS  Google Scholar 

  • Jaatinen T, Hemmoranta H, Hautaniemi S et al (2006) Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells 24:631–641

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Wang E, Ren J et al (2008) Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis. J Transl Med 6:39

    Article  PubMed  CAS  Google Scholar 

  • Jones R, Barber J, Vala M (1995) Assessment of aldehyde dehydrogenase in viable cells. Blood 85:2742–2746

    PubMed  CAS  Google Scholar 

  • Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360

    Article  PubMed  Google Scholar 

  • Jungblut M, Oeltze K, Zehnter I et al (2008) Preparation of single-cell suspensions from mouse spleen with the gentleMACS Dissociator. J Vis Exp 2008 Dec 11, 22(2):1029. doi:10.3791/1029

    Google Scholar 

  • Jungblut M, Oeltze K, Zehnter I et al (2009) Standardized preparation of single-cell suspensions from mouse lung tissue using the gentleMACS Dissociator. J Vis Exp 29:e1266

    Google Scholar 

  • Kanatsu-Shinohara M, Takashima S, Ishii K et al (2011) Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One 6:e23663

    Article  PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101:16489–16494

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Liao R, Sun J, Zhang L et al (2008) MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 104:805–817

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Guo S, Ebert BL et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853

    Article  PubMed  CAS  Google Scholar 

  • Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    Article  PubMed  CAS  Google Scholar 

  • Mallanna SK, Rizzino A (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 344:16–25

    Article  PubMed  CAS  Google Scholar 

  • Merkerova M, Vasikova A, Belickova M et al (2009) MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19(1):17–26

    Article  Google Scholar 

  • Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian development. Curr Opin Cell Biol 18:704–709

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Buffo A, Gotz M (2005) The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol 69:67–99

    Article  PubMed  CAS  Google Scholar 

  • Ng YY, van Kessel B, Lokhorst HM et al (2004) Gene-expression profiling of CD34+ cells from various hematopoietic stem-cell sources reveals functional differences in stem-cell activity. J Leukoc Biol 75:314–323

    Article  PubMed  CAS  Google Scholar 

  • Niehage C, Steenblock C, Pursche T et al (2011) The cell surface proteome of human mesenchymal stromal cells. PLoS One 6:e20399

    Article  PubMed  CAS  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690

    Article  PubMed  CAS  Google Scholar 

  • Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309

    Article  PubMed  CAS  Google Scholar 

  • Nunomura K, Nagano K, Itagaki C et al (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Chaudhuri AA, Rao DS et al (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 107:14235–14240

    Article  PubMed  Google Scholar 

  • Ogawa M (2002) Changing phenotypes of hematopoietic stem cells. Exp Hematol 30:3–6

    Article  PubMed  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  PubMed  CAS  Google Scholar 

  • Ooi AG, Sahoo D, Adorno M et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 107:21505–21510

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

    Article  PubMed  CAS  Google Scholar 

  • Pang R, Law WL, Chu AC et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6:603–615

    Article  PubMed  CAS  Google Scholar 

  • Pastrana E, Cheng LC, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 106:6387–6392

    PubMed  CAS  Google Scholar 

  • Pennartz S, Belvindrah R, Tomiuk S et al (2004) Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol Cell Neurosci 25:692–706

    Article  PubMed  CAS  Google Scholar 

  • Pennartz S, Reiss S, Biloune R et al (2009) Generation of single-cell suspensions from mouse neural tissue. J Vis Exp 2009 Jul 7, 29(2):1267. doi:10.3791/1267

    Google Scholar 

  • Petriv OI, Kuchenbauer F, Delaney AD et al (2010) Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci USA 107:15443–15448

    Article  PubMed  CAS  Google Scholar 

  • Pfister O, Mouquet F, Jain M et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo SG, Vescovi AL (2006) Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc 5:59–81

    PubMed  Google Scholar 

  • Pontier SM, Muller WJ (2009) Integrins in mammary-stem-cell biology and breast-cancer progression–a role in cancer stem cells? J Cell Sci 122:207–214

    Article  PubMed  CAS  Google Scholar 

  • Quirici N, Soligo D, Bossolasco P et al (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  PubMed  CAS  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y et al (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199

    Article  PubMed  CAS  Google Scholar 

  • Schiedlmeier B, Santos AC, Ribeiro A et al (2007) HOXB4’s road map to stem cell expansion. Proc Natl Acad Sci USA 104:16952–16957

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer E, Reid LM (2008) EpCAM expression in normal, non-pathological tissues. Front Biosci 13:3096–3100

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer E, Zhang L, Bruce A et al (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204:1973–1987

    Article  PubMed  CAS  Google Scholar 

  • Seandel M, James D, Shmelkov SV et al (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  PubMed  CAS  Google Scholar 

  • Seidenfaden R, Desoeuvre A, Bosio A et al (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32:187–198

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Hide T et al (2004a) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004b) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Google Scholar 

  • Son MJ, Woolard K, Nam DH et al (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    Article  PubMed  CAS  Google Scholar 

  • Steidl U, Kronenwett R, Rohr UP et al (2002) Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 99:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Storms R, Trujillo A, Springer J (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    Article  PubMed  CAS  Google Scholar 

  • Sturzu AC, Wu SM (2011) Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ Res 108:353–364

    Article  PubMed  CAS  Google Scholar 

  • Suh MR, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Guo Z, Xiao X et al (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21:527–535

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Ang BT, Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. FASEB J 21:3777–3785

    Article  PubMed  CAS  Google Scholar 

  • Timmermans F, Plum J, Yoder MC et al (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102

    Article  PubMed  Google Scholar 

  • Tondreau T, Meuleman N, Delforge A et al (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Toren A, Bielorai B, Jacob-Hirsch J et al (2005) CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23:1142–1153

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Ansorge A, Wirkner U et al (2004) Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 104:675–686

    Article  PubMed  CAS  Google Scholar 

  • Wilson KD, Venkatasubrahmanyam S, Jia F et al (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18:749–758

    Article  PubMed  CAS  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    Article  PubMed  CAS  Google Scholar 

  • Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–166

    Google Scholar 

  • Yovchev MI, Grozdanov PN, Joseph B et al (2007) Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology 45:139–149

    Article  PubMed  CAS  Google Scholar 

  • Yovchev MI, Grozdanov PN, Zhou H et al (2008) Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 47:636–647

    Article  PubMed  CAS  Google Scholar 

  • Zhan M, Miller CP, Papayannopoulou T et al (2007) MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol 35:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Wang S, Mayr C et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104:7080–7085

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bosio Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bissels, U., Eckardt, D., Bosio, A. (2013). Characterization and Classification of Stem Cells. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_6

Download citation

Publish with us

Policies and ethics