Skip to main content

Stem Cells and Asymmetric Cell Division

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Asymmetric stem cell division is a fundamental process used to generate cellular diversity and to provide a source of new cells in developing and adult ­organisms. Asymmetric stem cell division leads to another stem cell via ­self-renewal, and a second cell type which can be either a differentiating progenitor or a ­postmitotic cell. Experimental studies in model organisms including the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster and the laboratory mouse, Mus ­musculus, have identified interrelated mechanisms that regulate ­asymmetric stem cell division from polarity formation and mitotic spindle orientation to asymmetric segregation of cell fate determinants and growth control. These mechanisms are mediated by evolutionary conserved molecules including Aurora-A, aPKC, Mud/NuMa, Lgl, Numb and Brat/TRIM-NHL, which in turn regulate a binary switch between stem cell self-renewal and differentiation. The mechanistic insights into asymmetric cell division have enhanced our understanding of stem cell biology and are of major therapeutic interest for regenerative medicine as ­asymmetrically dividing stem cells provide a powerful source for targeted cell replacement and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ago1 :

Argonaute protein 1

AurA :

Aurora-A

Baz :

Bazooka

Brat :

Brain tumor

Cdc2 :

Cell division cycle 2

Cdc42 :

Cell division cycle 42

Cdc25 :

Cell division cycle 25

Cdk :

cyclin dependent kinase

Cnn :

centrosomin

CNS :

Central Nervous System

c-Myc :

cellular myelocytomatosis oncogene

DaPKC :

Drosophila atypical protein kinase C

Dctn1 :

dynactin

Dlg :

Discs large

DmPar6 :

Drosophila melanogaster Partitioning defective 6

ESC :

embryonic stem cell

ECT-2 :

epithelial cell transforming gene 2

Galphai :

G-protein alpha, subunit i

GMC :

Ganglion Mother Cell

GoLoco :

G-protein 0, Locomotion defects domain

GDPase :

guanosine diphosphatase

GTPase :

guanosine triphosphatase

Insc :

Inscuteable

Khc-73 :

Kinesin heavy chain 73

Lgl :

Lethal (2) giant larvae

Mira :

Miranda

Mud :

Mushroom body defect

NB :

Neuroblast

NHL :

NCL-1, HT2A, and LIN-41 domain

NuMa :

Nuclear Mitotic apparatus

PAR :

partitioning defective

Par-3 :

partitioning defective 3

Par-6 :

partitioning defective 6

PDZ :

Post synaptic density 95, Discs large, and Zonula occludens-1 domain

Pins :

Partner of Inscuteable

Pon :

Partner of Numb

Pros :

Prospero

RNA :

Ribonucleic Acid

Sqh :

Spaghetti squash

TRIM 3 :

tripartite motif protein 3

TRIM 32 :

tripartite motif protein 32

VNC :

Ventral Nerve Cord

References

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new ­animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 97:4453–4465

    Article  PubMed  CAS  Google Scholar 

  • Albertson R, Doe CQ (2003) Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 5:166–170

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    Article  PubMed  CAS  Google Scholar 

  • Arama E, Dickman D, Kinchie Z, Shearn A, Lev Z (2000) Mutations in the beta-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 19:3706–3716

    Article  PubMed  CAS  Google Scholar 

  • Atwood SX, Prehoda KE (2009) aPKC phosphorylates Miranda to polarize fate determinants ­during neuroblast asymmetric cell division. Curr Biol 19:723–729

    Article  PubMed  CAS  Google Scholar 

  • Bähler J (2005) Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39:69–94

    Article  PubMed  CAS  Google Scholar 

  • Barros CS, Phelps CB, Brand AH (2003) Drosophila nonmuscle Myosin II promotes the ­asymmetric segregation of cell fate determinants by cotical exclusion rather than active transport. Dev Cell 5:829–840

    Article  PubMed  CAS  Google Scholar 

  • Bello BC, Reichert H, Hirth F (2006) The brain tumour gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133:2639–2648

    Article  PubMed  CAS  Google Scholar 

  • Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12:640–647

    Article  PubMed  CAS  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422:326–330

    Article  PubMed  CAS  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumour suppressor Brat regulates self-renewal in drosophila neural stem cells. Cell 124:1241–1253

    Article  PubMed  CAS  Google Scholar 

  • Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F (2009) Loss of heterozygosity of TRIM3 in malignant gliomas. BMC Cancer 9:71

    Article  PubMed  CAS  Google Scholar 

  • Bowman SK, Neumuller RA, Novatchkova M, Du Q, Knoblich JA (2006) The Drosophila NuMa homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 10:731–742

    Article  PubMed  CAS  Google Scholar 

  • Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546

    Article  PubMed  CAS  Google Scholar 

  • Broadus J, Doe CQ (1997) Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr Biol 7:827–835

    Article  PubMed  CAS  Google Scholar 

  • Broadus J, Fuerstenberg S, Doe CQ (1998) Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391:792–795

    Article  PubMed  CAS  Google Scholar 

  • Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN, Kriegstein AR, Shi SH (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202

    Article  PubMed  CAS  Google Scholar 

  • Caussinus E, Hirth F (2007) Asymmetric stem cell division in development and cancer. Prog Mol Subcell Biol 45:205–225

    Article  PubMed  CAS  Google Scholar 

  • Choksi SP, Southall TD, Bossing T, Edoff K, De Wit E, Fischer BE, Van Steensel B, Miclem G, Brand AH (2006) Prospero acts as a binary switch between self renewal and differentiation in Drosophila neural stem cells. Dev Cell 11:775–789

    Article  PubMed  CAS  Google Scholar 

  • Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20:2187–2292

    Article  PubMed  CAS  Google Scholar 

  • Cowan CR, Hyman AA (2004) Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol 20:427–453

    Article  PubMed  CAS  Google Scholar 

  • Daniela F, Vescovi AL, Bottai D (2007) The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol 399:199–213

    Article  PubMed  Google Scholar 

  • Doe CQ, Chu-LaGraff Q, Wright DM, Scott MP (1991) The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65:451–464

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Stukenberg PT, Macara IG (2001) A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3:1069–7105

    Article  PubMed  CAS  Google Scholar 

  • Eckfeldt CE, Mendenhall EM, Verfaillie CM (2005) The molecular repertoire of the ‘almighty’ stem cell. Nat Rev Mol Cell Biol 6:726–737

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, Lehner CF (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274:1646–1652

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766

    Article  PubMed  CAS  Google Scholar 

  • Erben V, Waldhuber M, Langer D, Fetka I, Jansen RP, Petritsch C (2008) Asymmetric localisation of the adaptor protein Miranda in neuroblasts is achieved by the diffusion and sequential interaction of myosin II and VI. J Cell Sci 121:1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Farkas LM, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715

    Article  PubMed  CAS  Google Scholar 

  • Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329

    Article  PubMed  CAS  Google Scholar 

  • Frank DJ, Edgar BA, Roth MB (2002) The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development 129:399–407

    PubMed  CAS  Google Scholar 

  • Fuerstenberg S, Peng CY, Alvarez-Ortiz P, Hor T, Doe CQ (1998) Identification of Miranda protein domains regulating asymmetric cortical localisation, cargo binding, and cortical release. Mol Cell Neurosci 12:325–339

    Article  PubMed  CAS  Google Scholar 

  • Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  PubMed  CAS  Google Scholar 

  • Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156:437–451

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13:609–622

    Article  PubMed  CAS  Google Scholar 

  • Gönzy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366

    Article  CAS  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  CAS  Google Scholar 

  • Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A (1998) Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125:4521–4530

    PubMed  CAS  Google Scholar 

  • Hietakangas V, Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410

    Article  PubMed  CAS  Google Scholar 

  • Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377:627–630

    Article  PubMed  CAS  Google Scholar 

  • Hyenne V, Desrosiers M, Labbé JC (2008) C. elegans Brat homologs regulate PAR protein-dependent polarity and asymmetric cell division. Dev Biol 321(2):368–378

    Article  PubMed  CAS  Google Scholar 

  • Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9:846–859

    Article  PubMed  CAS  Google Scholar 

  • Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–629

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Ohta N, Itoh-Furuya A, Fuse N, Matsuzaki F (2004) Differential functions of G protein and Baz-aPKC signalling pathways in Drosophila neuroblast asymmetric division. J Cell Biol 164:729–738

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8:586–593

    Article  PubMed  CAS  Google Scholar 

  • Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    Article  PubMed  CAS  Google Scholar 

  • Johnson MH (2009) From mouse egg to mouse embryo: polarities, axes, and tissues. Annu Rev Cell Dev Biol 25:483–512

    Article  PubMed  CAS  Google Scholar 

  • Jonhston CA, Hirono K, Prehoda KE, Doe CQ (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138:1150–1163

    Article  CAS  Google Scholar 

  • Kaltschmidt JA, Davidson C, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2:7–10

    Article  PubMed  CAS  Google Scholar 

  • Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Hirth F (2009) Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila. Cell Adhes Migr 3:1–10

    Article  Google Scholar 

  • Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in lgl1 knockout mice. Genes Dev 18:559–571

    Article  PubMed  CAS  Google Scholar 

  • Knoblich JA (2010) Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11:849–860

    Article  PubMed  CAS  Google Scholar 

  • Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of inscuteable in orienting asymmetric cell division in Drosophila. Nature 383:50–55

    Article  PubMed  CAS  Google Scholar 

  • Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Robinson KJ, Doe CQ (2006a) Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439:594–598

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Andersen RO, Cabernard C, Manning L, Tran KD, Lanskey MJ, Bashirullah A, Doe CQ (2006b) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20:3464–3474

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ (2006c) Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self renewal. Dev Cell 10:441–449

    Article  PubMed  CAS  Google Scholar 

  • Leuzinger S, Hirth F, Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, Reichert H (1998) Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development 125:1703–1710

    PubMed  CAS  Google Scholar 

  • Li L, Vaessin H (2000) Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 14:147–151

    PubMed  CAS  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  • Li HS, Wang D, Shen Q, Schonemann MD, Gorski JA, Jones KR, Temple S, Jan LY, Jan YN (2003) Inactivation of numb and numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40:1105–1118

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Christophersen NS, Hall V, Soulet D, Brundin P (2008) Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 31:146–153

    Article  PubMed  CAS  Google Scholar 

  • Liu TH, Li L, Vaessin H (2002) Transcription of the Drosophila CKI gene dacapo is regulated by a modular array of cis-regulatory sequences. Mech Dev 112:25–36

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H, Hirth F (2004) Transcriptional signature of an adult brain tumour in Drosophila. BMC Genomics 5:24

    Article  PubMed  Google Scholar 

  • Losick VP, Morris LX, Fox DT, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21:159–171

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Rothenberg M, Jan LY, Jan YN (1998) Partner of Numb co-localises with Numb during mitosis and directs Numb asymmetric localisation in Drosophila neural and muscle progenitors. Cell 95:225–235

    Article  PubMed  CAS  Google Scholar 

  • Marignani PA (2005) LKB1, the multitasking tumour suppressor kinase. J Clin Pathol 58:15–19

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Agosto JA, Mikkola HK, Hartenstein V, Banerjee U (2007) The hematopoietic stem cell and its niche: a comparative view. Genes Dev 21:3044–3060

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Koizumi K, Hama C, Yoshioka T, Nabeshima Y (1992) Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem Biophys Res Commun 182:1326–1332

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Ohshiro T, Ikeshima-Kataoka H, Izumi H (1998) Miranda localises staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development 125:4089–4098

    PubMed  CAS  Google Scholar 

  • Metallo CM, Azarin SM, Ji L, de Pablo JJ, Palecek SP (2008) Engineering tissue from human embryonic stem cells. J Cell Mol Med 12:709–729

    Article  PubMed  CAS  Google Scholar 

  • Mitalipov S, Wolf D (2009) Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 114:185–199

    PubMed  CAS  Google Scholar 

  • Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313:3377–3385

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cell and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  • Nagao T, Leuzinger S, Acampora D, Simeone A, Finkelstein R, Reichert H, Furukubo-Tokunaga K (1998) Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proc Natl Acad Sci USA 95:3737–3742

    Article  PubMed  CAS  Google Scholar 

  • Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32:105–114

    PubMed  Google Scholar 

  • Nipper RW, Siller KH, Smith NR, Doe CQ, Prehoda KE (2007) Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci USA 104:14306–14311

    Article  PubMed  CAS  Google Scholar 

  • Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc B 363:153–170

    Article  CAS  Google Scholar 

  • Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408:596–600

    Article  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  • Peng CY, Manning L, Albertson R, Doe CQ (2000) The tumour-suppressor genes lgl and dlg ­regulate basal protein targeting in Drosophila neuroblasts. Nature 408:596–600

    Article  PubMed  CAS  Google Scholar 

  • Petersen PH, Zhou K, Hwang JK, Jan YN, Zhong W (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419:929–934

    Article  PubMed  CAS  Google Scholar 

  • Petersen PH, Zhou K, Krauss S, Zhong W (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 7:803–811

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci USA 101:6536–6541

    Article  PubMed  CAS  Google Scholar 

  • Petritsch C, Tavosanis G, Turck CW, Jan LY, Jan YN (2003) The Drosophila myosin VI jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4:273–281

    Article  PubMed  CAS  Google Scholar 

  • Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblast in Drosophila. Nat Cell Biol 3:43–49

    Article  PubMed  CAS  Google Scholar 

  • Postiglione MP, Jüschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-Basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72:269–284

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Roeder I, Lorenz R (2006) Asymmetry of stem cell fate and the potential impact of the niche: observations, simulations, and interpretations. Stem Cell Rev 2:171–180

    Article  PubMed  Google Scholar 

  • Rolls MM, Albertson R, Shih HP, Lee CY, Doe CQ (2003) Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Rosser AE, Zietlow R, Dunnett SB (2007) Stem cell transplantation for neurodegenerative diseases. Curr Opin Neurol 20:688–692

    Article  PubMed  Google Scholar 

  • Sánchez I, Dynlacht BD (2005) New insights into cyclins, CDKs, and cell cycle control. Semin Cell Dev Biol 16:311–321

    Article  PubMed  CAS  Google Scholar 

  • Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G (2008) Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol 8:225

    Article  PubMed  CAS  Google Scholar 

  • Schatton T, Frank NY, Frank MH (2009) Identification and targeting of cancer stem cells. Bioessays 31:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Schneider SQ, Bowerman B (2003) Cell polarity and the cytoskeleton in the Caenorhabditis ­elegans zygote. Annu Rev Genet 37:221–249

    Article  PubMed  CAS  Google Scholar 

  • Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402:548–551

    Article  PubMed  CAS  Google Scholar 

  • Schuldt AJ, Adams JH, Davidson CM, Micklem DR, Haseloff J, St Johnston D, Brand AH (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136:913–925

    Article  PubMed  CAS  Google Scholar 

  • Shen CP, Jan LY, Jan YN (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90:449–458

    Article  PubMed  CAS  Google Scholar 

  • Shen CP, Knoblich JA, Chan YM, Jiang MM, Jan LY, Jan YN (1998) Miranda as a multidomain adapter linking apically localized inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev 12:1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Siegrist SE, Doe CQ (2007) Microtubule-induced cortical cell polarity. Genes Dev 21:483–496

    Article  PubMed  CAS  Google Scholar 

  • Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    Article  PubMed  CAS  Google Scholar 

  • Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8:594–600

    Article  PubMed  CAS  Google Scholar 

  • Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498–1501

    Article  PubMed  CAS  Google Scholar 

  • Smith A (2006) A glossary for stem cell biology. Nature 441:1060

    Article  CAS  Google Scholar 

  • Sonoda J, Wharton RP (2001) Drosophila brain tumour is a translational repressor. Genes Dev 15:762–773

    Article  PubMed  CAS  Google Scholar 

  • Spana EP, Doe CQ (1995) The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121:3187–3195

    PubMed  CAS  Google Scholar 

  • Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846

    Article  PubMed  CAS  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genet Dev 10:529–535

    Article  PubMed  CAS  Google Scholar 

  • Sun QY, Schatten H (2006) Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360

    Article  PubMed  CAS  Google Scholar 

  • Vaessin H, Grell E, Wolff E, Bier E, Jan LY, Jan YN (1991) Prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:941–953

    Article  PubMed  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Cai Y, Chia W, Yang X (2006a) Drosophila homologs of mammalian TNF/TNFR-related molecules regulate segregation of Miranda/Prospero in neuroblasts. EMBO J 25:5783–5793

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W (2006b) Aurora-A acts as a tumour suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20:3453–3463

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ouyang Y, Somers WG, Chia W, Lu B (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449:96–100

    Article  PubMed  CAS  Google Scholar 

  • Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358

    Article  PubMed  CAS  Google Scholar 

  • Wirtz-Peitz F, Knoblich JA (2006) Lethal giant larvae take on a life of their own. Trends Cell Biol 16:234–241

    Article  PubMed  CAS  Google Scholar 

  • Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135:161–173

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A (2005) Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 17:475–481

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A, Huttner WB (2003) Asymmetric cell division during neurogenesis of Drosophila and vertebrates. Mech Dev 120:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for inscuteable localisation in Drosophila neuroblasts. Nature 402:544–547

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Wang H, Qian H, Kaushik R, Bownes M, Yang X, Chia W (2005) Locomotion defects, together with Pins, regulates heterotrimeric G-protein signalling during Drosophila neuroblast asymmetric divisions. Genes Dev 19:1341–1353

    Article  PubMed  CAS  Google Scholar 

  • Zheng C (2000) NuMA: a nuclear protein involved in mitotic centrosome function. Microsc Res Tech 49:467–477

    Article  Google Scholar 

Download references

Acknowledgements

Work in the Hirth laboratory is supported by grants from the UK Medical Research Council (G070149), the Royal Society (Hirth/2007/R2), the Parkinson’s Disease Society (G-0714), the Motor Neurone Disease Association (Hirth/Oct07/6233), and the Fondation Thierry Latran (Hirth/DrosALS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hirth B.Sc., M.Sc., Ph.D., PD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirth, F. (2013). Stem Cells and Asymmetric Cell Division. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_4

Download citation

Publish with us

Policies and ethics