Skip to main content

Cancer Stem Cells

  • Chapter
  • First Online:
  • 2203 Accesses

Abstract

Our knowledge of carcinogenesis has tremendously improved through decades of research. However, till date the therapeutic refractoriness and tumor dormancy that leads to cancer recurrence after therapy presents formidable obstacles through severely limiting the successful treatment outcomes for majority of cancers. Significant advances made recently in the cancer stem cell (CSC) biology field have provided new insights into cancer biology that are radically changing both our understanding of carcinogenesis and cancer treatment. The cancer stem cell hypothesis provides an attractive cellular mechanism to account for the therapeutic refractoriness and dormant behavior exhibited by many of these tumors. Direct evidence for the CSC hypothesis has recently emerged through their identification and isolation in diverse tumor types. These tumor types appeared to be hierarchically organized and sustained by a distinct fraction of self-renewing and tumor-initiating CSCs. Such illustration of the CSC paradigm in diverse tumor types necessitates reassessment and improvisation of the current therapeutic strategies originally developed against the homogenous tumor mass; now to specifically target the CSC population. Preliminary findings in the field indicate that such specific targeting of CSCs may be possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CSCs:

Cancer stem cells

NSCs:

Normal stem cells, HSCs, Hematopoetic stem cells

RB:

Retinoblastoma

LRCs:

Label retaining cells

EMT:

Epithelial to mesenchymal transition

NOD/SCID:

Non-obese diabetic/severe combined immunodeficient

SP:

Side population

MDR:

Multidrug resistance

References

  • Aguirre-Ghiso J (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  PubMed  CAS  Google Scholar 

  • Ajioka I, Martins R, Bayazitov I et al (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378–390

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha M, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Antunez J, Couce M, Fraga M et al (1991) Immunohistochemical demonstration of neuronal and astrocytic markers and oncofoetal antigens in retinoblastomas. Histol Histopathol 6:241–246

    PubMed  CAS  Google Scholar 

  • Balla M, Vemuganti G, Kannabiran C et al (2009) Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci 50:1506–1514

    Article  PubMed  Google Scholar 

  • Bapat S (ed) (2009) Cancer stem cells. Wiley, Hoboken

    Google Scholar 

  • Bapat S, Mali A, Koppikar C et al (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Jackson J, Das A et al (2003) Direct identification and enrichment of retinal stem cells/progenitors by hoechst dye efflux assay. Invest Ophthalmol Vis Sci 44:2764–2773

    Article  PubMed  Google Scholar 

  • Blanpain C, Lowry W, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Twala K (2007) Perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  • Challen G, Little M (2006) A side order of stem cells: the sp phenotype. Stem Cells 24:3–12

    Article  PubMed  Google Scholar 

  • Chiba T, Kita K, Zheng Y et al (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    Article  PubMed  CAS  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N, Perez-Losada J et al (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95:1007–1013

    PubMed  CAS  Google Scholar 

  • Collins A, Berry P, Hyde C, Stower M et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  • Cotran SR (1994) Pathologic basis of disease, 5th edn. WB Saunders Company, Philadelphia

    Google Scholar 

  • Courtenay V, Mills J (1978) An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 37:261–268

    Article  PubMed  CAS  Google Scholar 

  • Courtenay V, Selby P, Smith I (1978) Growth of human tumor cell colonies from biopsies using two soft-agar techniques. Br J Cancer 38:77–81

    Article  PubMed  CAS  Google Scholar 

  • Craft J, Sang D, Dryja T et al (1985) Glial cell component in retinoblastoma. Exp Eye Res 40:647–659

    Article  PubMed  CAS  Google Scholar 

  • Decraene C, Benchaouir R, Dillies M et al (2005) Global transcriptional characterization of sp and mp cells from the myogenic c2c12 cell line: effect of fgf6. Physiol Genomics 23:132–149

    Article  PubMed  CAS  Google Scholar 

  • Duncan A, Rattis F, DiMascio L et al (2005) Integration of notch and wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    Article  PubMed  CAS  Google Scholar 

  • Eylerand C, Rich J (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845

    Article  CAS  Google Scholar 

  • Fearon E, Hamilton S, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197

    Article  PubMed  CAS  Google Scholar 

  • Fialkow P (1976) Clonal origin of human tumors. Biochim Biophys Acta 458:283–321

    PubMed  CAS  Google Scholar 

  • Goodell M, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Grichnik J, Burch J, Schulteis R et al (2006) Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126:142–153

    Article  PubMed  CAS  Google Scholar 

  • Hamburger A, Salmon S (1977) Primary bioassay of human tumor stem cells. Science 197:461

    Article  PubMed  CAS  Google Scholar 

  • Hewitt H (1958) Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br J Cancer 12(3):378–401

    Article  PubMed  CAS  Google Scholar 

  • Hirschmann-Jax C, Foster A, Wulf G et al (2004) A distinct “Side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  • Hopfer O, Zwahlen D, Fey M et al (2005) The notch pathway in ovarian carcinomas and adenomas. Br J Cancer 93:709–718

    Article  PubMed  CAS  Google Scholar 

  • Jordan C, Guzman M, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Katano M (2005) Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett 227:99–104

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Jackson E, Woolfenden A et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  • Kiran V, Kannabiran C, Chakravarthi K et al (2003) Mutational screening of the rb1 gene in indian patients with retinoblastoma reveals eight novel and several recurrent mutations. Hum Mutat 22:339

    Article  PubMed  CAS  Google Scholar 

  • Kivela T (1986) S-100 protein in retinoblastoma revisited. An immunohistochemical study. Acta Ophthalmol (Copenh) 64:664–673

    Article  CAS  Google Scholar 

  • Kivela T, Virtanen I (1986) Intermediate filaments in the human retina and retinoblastoma. An immunohistochemical study of vimentin, glial fibrillary acidic protein, and neurofilaments. Invest Ophthalmol Vis Sci 27:1075–1084

    PubMed  CAS  Google Scholar 

  • Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  • Kolligs F, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:131–144

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the c6 glioma cell line. Proc Natl Acad Sci USA 101:781–786

    Article  PubMed  CAS  Google Scholar 

  • Krishnakumar S, Mallikarjuna K, Desai N et al (2004) Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 88:1521–1526

    Article  PubMed  CAS  Google Scholar 

  • Krivtsov A, Twomey D, Feng Z (2006) Transformation from committed progenitor to leukaemia stem cell initiated by mll-af9. Nature 442:818–822

    Article  PubMed  CAS  Google Scholar 

  • Kruh G (2003) Introduction to resistance to anticancer agents. Oncogene 22:7262–7264

    Article  PubMed  CAS  Google Scholar 

  • Kurrey N, Jalgaonkar S, Joglekar A et al (2009) Snail and slug mediate radio- and chemo-resistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Kusumbe A, Bapat S (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253

    Article  PubMed  CAS  Google Scholar 

  • Kusumbe A, Mali A, Bapat S (2009) CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells 27:498–508

    Article  PubMed  CAS  Google Scholar 

  • Kyritsis A, Tsokos M, Triche T et al (1984) Retinoblastoma – origin from a primitive neuroectodermal cell? Nature 307:471–473

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into scid mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  • Larderet G, Fortunel N, Vaigot P et al (2006) Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24:965–974

    Article  PubMed  CAS  Google Scholar 

  • Laurie N, Donovan S, Shih C et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  PubMed  CAS  Google Scholar 

  • Li C, Heidt D, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Mani S, Guo W, Liao M et al (2008) The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • Mark B, Meads R, Dalton G (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–667

    Article  CAS  Google Scholar 

  • Matsui W, Huff C, Wang Q et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336

    Article  PubMed  CAS  Google Scholar 

  • Messmer E, Font R, Kirkpatrick J et al (1985) Immunohistochemical demonstration of neuronal and astrocytic differentiation in retinoblastoma. Ophthalmology 92:167–173

    PubMed  CAS  Google Scholar 

  • Mohan A, Kandalam M, Ramkumar H et al (2006) Stem cell markers: Abcg2 and mcm2 expression in retinoblastoma. Br J Ophthalmol 90:889–893

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Stefansson K, Marton L et al (1984) Immunohistochemistry of retinoblastomas in humans. Am J Ophthalmol 97:301–307

    PubMed  CAS  Google Scholar 

  • Moore M (1991) Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 78:1–19

    PubMed  CAS  Google Scholar 

  • Moore K, Lemischka I (2006) Stem cells and their niches. Science 311:1880–1885

    Article  PubMed  CAS  Google Scholar 

  • Mukai N, Kobayashi S (1973) Human adenovirus-induced medulloepitheliomatous neoplasms in Sprague–Dawley rats. Am J Pathol 73:671–690

    PubMed  CAS  Google Scholar 

  • Nakajima T, Kato K, Kaneko A et al (1986) High concentrations of enolase, alpha- and gamma-subunits, in the aqueous humor in cases of retinoblastoma. Am J Ophthalmol 101:102–106

    PubMed  CAS  Google Scholar 

  • Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • O’Brien C, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Tsutsumi A, Iwata K et al (1966) Histogenesis of malignant neoplasm induced by adenovirus type 12. Gann 57:43–52

    PubMed  CAS  Google Scholar 

  • Ogawa K, Hamaya K, Fujii Y et al (1969) Tumor induction by adenovirus type 12 and its target cells in the central nervous system. Gann 60:383–392

    PubMed  CAS  Google Scholar 

  • Ogawa M, Bergsagel D, McCulloch E (1973) Chemotherapy of mouse myeloma: quantitative cell cultures predictive of response in vivo. Blood 41:7–15

    PubMed  CAS  Google Scholar 

  • Pacal M, Bremner R (2006) Insights from animal models on the origins and progression of retinoblastoma. Curr Mol Med 6:759–781

    PubMed  CAS  Google Scholar 

  • Park C, Amare M, Savin M (1980) Prediction of chemotherapy response in human leukemia using an in vitro chemotherapy sensitivity test on the leukemic colony-forming cells. Blood 55:595–601

    PubMed  CAS  Google Scholar 

  • Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    Article  PubMed  CAS  Google Scholar 

  • Peeters S, van der Kolk D, de Haan G et al (2006) Selective expression of cholesterol metabolism genes in normal CD34+CD38 cells with a heterogeneous expression pattern in aml cells. Exp Hematol 34:622–630

    Article  PubMed  CAS  Google Scholar 

  • Perentes E, Herbort C, Rubinstein L et al (1987) Immunohistochemical characterization of human retinoblastomas in situ with multiple markers. Am J Ophthalmol 103:647–658

    PubMed  CAS  Google Scholar 

  • Prince M, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    Article  PubMed  CAS  Google Scholar 

  • Puck T, Marcus P (1956) Action of x-rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed  CAS  Google Scholar 

  • Puck T, Marcus P, Cieciura S (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single Hela cells with and without a feeder layer. J Exp Med 103:273–283

    Article  PubMed  CAS  Google Scholar 

  • Rask K, Nilsson A, Brannstrom M et al (2003) Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and gsk3beta. Br J Cancer 89:1298–1304

    Article  PubMed  CAS  Google Scholar 

  • Reid T, Albert D, Rabson A et al (1974) Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst 53:347–360

    PubMed  CAS  Google Scholar 

  • Reya T, Morrison S, Clarke M et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi D, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues M, Wilson M, Wiggert B et al (1986) Retinoblastoma. A clinical, immunohistochemical, and electron microscopic case report. Ophthalmology 93:1010–1015

    PubMed  CAS  Google Scholar 

  • Sanchez P, Clement V, Ruizi Altaba A (2005) Therapeutic targeting of the hedgehog-gli pathway in prostate cancer. Cancer Res 65:2990–2992

    PubMed  CAS  Google Scholar 

  • Sawa H, Takeshita I, Kuramitsu M et al (1987) Immunohistochemistry of retinoblastomas. J Neurooncol 5:351–355

    Article  PubMed  CAS  Google Scholar 

  • Scharenberg C, Harkey M, Torok-Storb B (2002) The abcg2 transporter is an efficient hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    Article  PubMed  CAS  Google Scholar 

  • Schroder H (1987) Immunohistochemical demonstration of glial markers in retinoblastomas. Virchows Arch A Pathol Anat Histopathol 411:67–72

    Article  PubMed  CAS  Google Scholar 

  • Seigel G, Hackam A, Ganguly A et al (2007) Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 13:823–832

    PubMed  CAS  Google Scholar 

  • Sery T, Lee E, Lee W et al (1990) Characteristics of two new retinoblastoma cell lines: Weri-rb24 and weri-rb27. J Pediatr Ophthalmol Strabismus 27:212–217

    PubMed  CAS  Google Scholar 

  • Setoguchi T, Taga T, Kondo T et al (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415

    Article  PubMed  CAS  Google Scholar 

  • Sieber O, Heinimann K, Tomlinson I (2003) Genomic instability – the engine of tumorigenesis? Nat Rev Cancer 3:701–708

    Article  PubMed  CAS  Google Scholar 

  • Silva A, Yi H, Hayes S et al (2010) Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical wnt signaling pathway. Mol Vis 16:36–45

    PubMed  CAS  Google Scholar 

  • Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Sneddon J, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611

    Article  PubMed  CAS  Google Scholar 

  • Southam C, Brunschwig A (1960) A quantitative studies of autotransplantation of human cancer. Cancer 14:971–978

    Article  Google Scholar 

  • Suetsugu A, Nagaki M, Aoki H et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    Article  PubMed  CAS  Google Scholar 

  • Summer R, Kotton D, Sun X et al (2003) Side population cells and bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285:L97–L104

    PubMed  CAS  Google Scholar 

  • Szotek P, Pieretti-Vanmarcke R, Masiakos P et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159

    Article  PubMed  CAS  Google Scholar 

  • Terenghi G, Polak J, Ballesta J et al (1984) Immunocytochemistry of neuronal and glial markers in retinoblastoma. Virchows Arch A Pathol Anat Histopathol 404:61–73

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Guasch G, Greco V et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  PubMed  CAS  Google Scholar 

  • Umemoto T, Yamato M, Shiratsuchi Y et al (2006) Expression of integrin beta3 is correlated to the properties of quiescent hemopoietic stem cells possessing the side population phenotype. J Immunol 177:7733–7739

    PubMed  CAS  Google Scholar 

  • Visvader J, Lindeman G (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  • Wani A, Sharma N, Shouche Y et al (2006) Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25:6336–6344

    Article  PubMed  CAS  Google Scholar 

  • Weaver B, Cleveland D (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 67:10103–10105

    Article  PubMed  CAS  Google Scholar 

  • Welm B, Tepera S, Venezia T et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    Article  PubMed  CAS  Google Scholar 

  • White D, Kurpios N, Zuo D et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6:159–170

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Radtke F (2006) Multiple functions of notch signaling in self-renewing organs and cancer. FEBS Lett 580:2860–2868

    Article  PubMed  CAS  Google Scholar 

  • Windle J, Albert D, O’Brien J et al (1990) Retinoblastoma in transgenic mice. Nature 343:665–669

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Fang Y, Lee T et al (2009) Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific mdm2 signaling. Cell 137:1018–1031

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz O, Valdez R, Theisen B et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    Article  PubMed  CAS  Google Scholar 

  • Yue Z, Jiang T, Widelitz R et al (2005) Mapping stem cell activities in the feather follicle. Nature 438:1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Zagzag D, Krishnamachary B, Yee H et al (2005) Stromal cell-derived factor-1alpha and cxcr4 expression in hemangioblastoma and clear cell-renal cell carcinoma: Von hippel-lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. G.C. Mishra, Director, National Center for Cell Science (Pune, India) for encouragement and support. We thank Dr. Santosh Honavar and team for providing clinical samples for Retinoblastoma work. We also acknowledge the Association for Research in Vision and Ophthalmology, the copyright holder of Figs. 15.3 and 15.4 for permitting use of these figures

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila A. Bapat Ph.D., FNASc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balla, M.M.S., Kusumbe, A.P., Vemuganti, G.K., Bapat, S.A. (2013). Cancer Stem Cells. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_15

Download citation

Publish with us

Policies and ethics