Skip to main content

Hematopoietic Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Hematopoietic stem cells represent the most studied and understood adult stem cell, and have consequently set the trends for the investigation of a wide array of stem cells, while their clinical use for over half a century and ever improving efficacy encourages the view that stem cell therapy will one day be useful in the treatment of a whole host of diseases that involve cellular loss. In this chapter we describe how hematopoietic stem cells can be identified, isolated and characterized, and how important it is to be able to conduct experiments on animal models as well as humans, especially as studies in animals can provide the best, sometimes only, way to test stem cell potential and new protocols for their therapeutic use. The increasing possibilities for bone marrow regenerative medicine raised by the rapid developments in our ability to derive pluripotent stem cells from any individual are discussed, in particular because these are likely to be a very effective source of hematopoietic stem cells for all people requiring them to be replaced, as well as the exciting prospect that they can provide a route for the correction of inherited diseases affecting the blood system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GB, Scadden DT (2008) A niche opportunity for stem cell therapeutics. Gene Ther 15:96–99

    PubMed  CAS  Google Scholar 

  • Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    PubMed  CAS  Google Scholar 

  • Adolfsson J, Månsson R, Buza-Vidas N et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306

    PubMed  CAS  Google Scholar 

  • Akashi K, Traver D, Miyamoto T et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    PubMed  CAS  Google Scholar 

  • Almeida-Porada G, Porada C, Gupta N et al (2007) The human-sheep chimeras as a model for human stem cell mobilization and evaluation of hematopoietic grafts’ potential. Exp Hematol 35:1594–1600

    PubMed  CAS  Google Scholar 

  • Ando K (2002) Human CD34- hematopoietic stem cells: basic features and clinical relevance. Int J Hematol 75:370–375

    PubMed  Google Scholar 

  • in ‘t Anker PS, Noort WA, Kruisselbrink AB et al (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31:881–889

    Google Scholar 

  • Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45

    PubMed  CAS  Google Scholar 

  • Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    PubMed  CAS  Google Scholar 

  • Balazs AB, Fabian AJ, Esmon CT et al (2006) Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107:2317–2321

    PubMed  CAS  Google Scholar 

  • Baum CM, Weissman IL, Tsukamoto AS et al (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808

    PubMed  CAS  Google Scholar 

  • Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1− or Stro-1+ mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319

    PubMed  CAS  Google Scholar 

  • Bhatia M (2007) Hematopoietic development from human embryonic stem cells. Hematol Am Soc Hematol Educ Progr 2007:11–16

    Google Scholar 

  • Bhatia M, Wang JC, Kapp U et al (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 94:5320–5325

    PubMed  CAS  Google Scholar 

  • Bhatia M, Bonnet D, Murdoch B et al (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045

    PubMed  CAS  Google Scholar 

  • Bonnet D, Bhatia M, Wang JC et al (1999) Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant 23:203–209

    PubMed  CAS  Google Scholar 

  • Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44:287–299

    PubMed  CAS  Google Scholar 

  • Challen GA, Boles NC, Lin KK et al (2009) Mouse hematopoietic stem cell identification and analysis. Cytometry A 75:14–24

    PubMed  Google Scholar 

  • Challen GA, Boles NC, Chambers SM et al (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6:265–278

    PubMed  CAS  Google Scholar 

  • Chambers SM, Goodell MA (2007) Hematopoietic stem cell aging: wrinkles in stem cell potential. Stem Cell Rev 3:201–211

    PubMed  CAS  Google Scholar 

  • Chen BP, Galy A, Kyoizumi S et al (1994) Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice. Blood 84:2497–2505

    PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Li M et al (2003) The endoglin(positive) sca-1(positive) rhodamine(low) phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19:525–533

    PubMed  Google Scholar 

  • Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561

    PubMed  CAS  Google Scholar 

  • Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple model to isolate long-term stem cells. Proc Natl Acad Sci USA 98:14541–14546

    PubMed  CAS  Google Scholar 

  • Chute JP (2006) Stem cell homing. Curr Opin Hematol 13:399–406

    PubMed  Google Scholar 

  • Coffer PJ, Burgering BM (2007) Stressed marrow: FoxOs stem tumour growth. Nat Cell Biol 9:251–253

    PubMed  CAS  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826

    PubMed  CAS  Google Scholar 

  • Craig W, Kay R, Cutler RL et al (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177:1331–1342

    PubMed  CAS  Google Scholar 

  • Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 25:745–785

    PubMed  CAS  Google Scholar 

  • de Haan G, Weersing E, Dontje B et al (2003) In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev Cell 4:241–251

    PubMed  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol 91:335–344

    PubMed  CAS  Google Scholar 

  • Dick JE, Magli MC, Huszar D et al (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42:71–79

    PubMed  CAS  Google Scholar 

  • Doulatov S, Notta F, Laurenti E et al (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136

    PubMed  CAS  Google Scholar 

  • Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331:91–101

    PubMed  Google Scholar 

  • Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    PubMed  CAS  Google Scholar 

  • Dzierzak E, Medvinsky A, de Bruijn M (1998) Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 19:228–236

    PubMed  CAS  Google Scholar 

  • Ema H, Takano H, Sudo K et al (2000) In vitro self-renewal division of hematopoietic stem cells. J Exp Med 192:1281–1288

    PubMed  CAS  Google Scholar 

  • Engelhardt M, Lübbert M, Guo Y (2002) CD34(+) or CD34(−): which is the more primitive? Leukemia 16:1603–1608

    PubMed  CAS  Google Scholar 

  • Fraser CC, Chen BP, Webb S et al (1995) Circulation of human hematopoietic cells in severe combined immunodeficient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 86:183–192

    PubMed  CAS  Google Scholar 

  • Fukuda S, Bian H, King AG et al (2007) The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 110:860–869

    PubMed  CAS  Google Scholar 

  • Gallacher L, Murdoch B, Wu DM et al (2000) Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95:2813–2820

    PubMed  CAS  Google Scholar 

  • Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152

    PubMed  CAS  Google Scholar 

  • Goldman JP, Blundell MP, Lopes L et al (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103:335–342

    PubMed  CAS  Google Scholar 

  • Goldstone SD, Milligan AD, Hunt NH (1996) Oxidative signalling and gene expression during lymphocyte activation. Biochim Biophys Acta 1314:175–182

    PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hemopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    PubMed  CAS  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    PubMed  CAS  Google Scholar 

  • Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16:166–177

    PubMed  CAS  Google Scholar 

  • Guo Y, Lübbert M, Engelhardt M (2003) CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21:15–20

    PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    PubMed  CAS  Google Scholar 

  • Hao QL, Shah AJ, Thiemann FT et al (1995) A functional comparison of CD34+  CD38− cells in cord blood and bone marrow. Blood 86:3745–3753

    PubMed  CAS  Google Scholar 

  • Harrison DE, Jordan CT, Zhong RK et al (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple bionomial, correlation and covariance calculations. Exp Hematol 21:206–219

    PubMed  CAS  Google Scholar 

  • Hess DA, Wirthlin L, Craft TP et al (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169

    PubMed  CAS  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    PubMed  CAS  Google Scholar 

  • Hoebeke I, De Smedt M, Stolz F et al (2007) T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34(+)CD38(−)CD7(+) common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 21:311–319

    PubMed  CAS  Google Scholar 

  • Ishii M, Matsuoka Y, Sasaki Y et al (2011) Development of a high-resolution purification method for precise functional characterization of primitive human cord blood-derived CD34-negative SCID-repopulating cells. Exp Hematol 39:203–213

    PubMed  CAS  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573

    PubMed  CAS  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCIDgamma(c) (null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    PubMed  CAS  Google Scholar 

  • Ito M, Kobayashi K, Nakahata T (2008) NOD/Shi-scid IL2rgamma(null) (NOG) mice are more appropriate for humanized mouse models. Curr Top Microbiol Immunol 324:53–76

    PubMed  CAS  Google Scholar 

  • Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063

    PubMed  CAS  Google Scholar 

  • Janzen V, Forkert R, Fleming HE et al (2006) Stem cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:42142–42146

    Google Scholar 

  • Kamel-Reid S, Dick JE (1988) Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242:1706–1709

    PubMed  CAS  Google Scholar 

  • Kastan MB, Schlaffer E, Russo JE et al (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75:1947–1950

    PubMed  CAS  Google Scholar 

  • Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    PubMed  CAS  Google Scholar 

  • Kaufman DS, Hanson ET, Lewis RL et al (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98:10716–10721

    PubMed  CAS  Google Scholar 

  • Kent DG, Copley MR, Benz C et al (2009) Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113:6342–63450

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    PubMed  CAS  Google Scholar 

  • Kimura T, Asada R, Wang J et al (2007) Identification of long-term repopulating potential of human cord blood-derived CD34-flt3- severe combined immunodeficiency-repopulating cells by intra-bone marrow injection. Stem Cells 25:1348–1355

    PubMed  CAS  Google Scholar 

  • Kollet O, Peled A, Byk TB et al (2000) Beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95:3102–3105

    PubMed  CAS  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    PubMed  CAS  Google Scholar 

  • Kusadasi N, van Soest PL, Mayen AE et al (2000) Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood. Leukemia 14:1944–1953

    PubMed  CAS  Google Scholar 

  • Kushida T, Inaba M, Hisha H et al (2001) Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97:3292–3299

    PubMed  CAS  Google Scholar 

  • Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37

    PubMed  CAS  Google Scholar 

  • Lai AY, Kondo M (2006) Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J Exp Med 203:1867–1873

    PubMed  CAS  Google Scholar 

  • Lapidot T, Pflumio F, Doedens M et al (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141

    PubMed  CAS  Google Scholar 

  • Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910

    PubMed  CAS  Google Scholar 

  • Larochelle A, Savora M, Wiggins M et al (2011) Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 117:1550–1554

    PubMed  CAS  Google Scholar 

  • Ledran MH, Krassowska A, Armstrong L et al (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85–98

    PubMed  CAS  Google Scholar 

  • Lemieux ME, Rebel VI, Lansdorp PM et al (1995) Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow “switch” cultures. Blood 86:1339–1347

    PubMed  CAS  Google Scholar 

  • Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927

    PubMed  CAS  Google Scholar 

  • Li Z, Li L (2006) Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 31:589–595

    PubMed  CAS  Google Scholar 

  • Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    PubMed  CAS  Google Scholar 

  • Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–645

    PubMed  CAS  Google Scholar 

  • Mayani H, Dragowska W, Lansdorp PM (1993) Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 81:3252–3258

    PubMed  CAS  Google Scholar 

  • Mazurier F, Fontanellas A, Salesse S et al (1999) A novel immunodeficient mouse model RAG2 x common cytokine receptor gamma chain double mutants requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res 19:533–541

    PubMed  CAS  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H et al (1988) The SCID-hu mouse: murine model for the analysis of human hematoplymphoid differentiation and function. Science 241:1632–1639

    PubMed  CAS  Google Scholar 

  • McKenzie JL, Gan OI, Doedens M et al (2005) Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106:1259–1261

    PubMed  CAS  Google Scholar 

  • McKenzie JL, Gan OI, Doedens M et al (2006) Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 7:1225–1233

    PubMed  CAS  Google Scholar 

  • McKenzie JL, Takenaka K, Gan OI et al (2007) Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+  CD38− population. Blood 109:543–545

    PubMed  CAS  Google Scholar 

  • Mercier FE, Ragu C, Scadden DT (2011) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60

    PubMed  Google Scholar 

  • Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133:3733–3744

    PubMed  CAS  Google Scholar 

  • Moore MA, Williams N, Metcalf D (1973) In vitro colony formation by normal and leukemic human hematopoitic cells: characterization of the colony-forming cells. J Natl Cancer Inst 50:603–623

    PubMed  CAS  Google Scholar 

  • Moreno-Gimeno I, Ledran MH, Lako M (2010) Hematopoietic differentiation from human ESCs as a model for developmental studies and future clinical translations. Invited review following the FEBS anniversary prize received on 5 July 2009 at the 34th FEBS congress in Prague. FEBS J 277:5014–5025

    PubMed  CAS  Google Scholar 

  • Namikawa R, Weilbaecher KN, Kaneshima H et al (1990) Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med 172:1055–1063

    PubMed  CAS  Google Scholar 

  • Narayan AD, Chase JL, Lewis RL et al (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 107:2180–2183

    PubMed  CAS  Google Scholar 

  • Niwa A, Umeda K, Chang H et al (2009) Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemangiogenic progenitors. J Cell Physiol 221:367–377

    PubMed  CAS  Google Scholar 

  • Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051

    PubMed  CAS  Google Scholar 

  • Noort WA, Kruisselbrink AB, in ‘t Anker PS et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 30:870–878

    PubMed  Google Scholar 

  • Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221

    PubMed  CAS  Google Scholar 

  • Okada S, Nakauchi H, Nagayoshi K et al (1992) In vivo and in vitro stem cell function of c-kit and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050

    PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    PubMed  CAS  Google Scholar 

  • Olsen AL, Stachura DL, Weiss MJ (2006) Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 107:1265–1275

    PubMed  CAS  Google Scholar 

  • Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    PubMed  CAS  Google Scholar 

  • Pang WW, Price EA, Sahoo D et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108:20012–20017

    PubMed  CAS  Google Scholar 

  • Pearson T, Greiner DL, Shultz LD (2008) Humanized SCID mouse models for biomedical research. Curr Top Microbiol Immunol 324:25–51

    PubMed  CAS  Google Scholar 

  • Pelus LM, Fukuda S (2008) Chemokine mobilized adult stem cells: defining a better hematopoietic graft. Leukemia 22:466–473

    PubMed  CAS  Google Scholar 

  • Ploemacher RE, van der Sluijs JP, Voerman JS et al (1989) An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74:2755–2763

    PubMed  CAS  Google Scholar 

  • Ploemacher RE, van der Sluijs JP, van Beurden CA et al (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulation and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533

    PubMed  CAS  Google Scholar 

  • Pronk CJ, Rossi DJ, Mansson R et al (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor hierarchy. Cell Stem Cell 1:428–442

    PubMed  CAS  Google Scholar 

  • Purton LE, Scadden DT (2007) Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1:263–270

    PubMed  CAS  Google Scholar 

  • Raaijmakers MH, Scadden DT (2008) Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol 15:301–306

    PubMed  Google Scholar 

  • Raya A, Rodríguez-Pizà I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    PubMed  CAS  Google Scholar 

  • Risueño RM, Sachlos E, Lee JH et al (2012) Inability of human induced pluripotent stem cell-hematopoietic derivatives to downregulate micro RNAs in vivo reveals a block in xenograft hematopoietic regeneration. Stem Cells 30:131–139

    PubMed  Google Scholar 

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    PubMed  CAS  Google Scholar 

  • Rongvaux A, Willinger T, Takizawa H et al (2011) Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 108:2378–2383

    PubMed  CAS  Google Scholar 

  • Sardina JL, López-Ruano G, Sánchez-Sánchez B et al (2012) Reactive oxygen species: are they important for hematopoiesis? Crit Rev Oncol Hematol 81:257–274

    PubMed  Google Scholar 

  • Schenke-Layland K, Rhodes KE, Angelis E et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546

    PubMed  CAS  Google Scholar 

  • Schmitt TM, Zúñiga-Pflücker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17:749–756

    PubMed  CAS  Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    PubMed  CAS  Google Scholar 

  • Sintes J, Romero X, Marin P et al (2008) Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells. Exp Hematol 36:1199–1204

    PubMed  CAS  Google Scholar 

  • Sitnicka E, Buza-Vidas N, Larsson S et al (2003) Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood 102:881–886

    PubMed  CAS  Google Scholar 

  • Six EM, Bonhomme D, Monteiro M et al (2007) A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 204:3085–3093

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Johnson GR (1990) Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 87:7433–7437

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    PubMed  CAS  Google Scholar 

  • Spiegel A, Kalinkovich A, Shivtiel S et al (2008) Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 3:484–492

    PubMed  CAS  Google Scholar 

  • Srour EF, Zanjani ED, Cornetta K et al (1993) Persistence of human multilineage, self-renewing lymphohematopoietic stem cells in chimeric sheep. Blood 82:3333–3342

    PubMed  CAS  Google Scholar 

  • Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    PubMed  CAS  Google Scholar 

  • Sutherland HJ, Eaves CJ, Eaves AC et al (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570

    PubMed  CAS  Google Scholar 

  • Suzuki T, Yokoyama Y, Kumano K et al (2006) Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein. Stem Cells 24:245624–245665

    Google Scholar 

  • Swierczek SI, Agarwal N, Nussenzveig RH et al (2008) Hematopoiesis is not clonal in healthy elderly women. Blood 112:3186–3193

    PubMed  CAS  Google Scholar 

  • Szabo E, Rampalli S, Risueño RM et al (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Humphries RK, Lansdorp PM et al (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 87:8736–8740

    PubMed  CAS  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  • Takano H, Ema H, Sudo K et al (2004) Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med 199:295–302

    PubMed  CAS  Google Scholar 

  • Tatla S, Woodhead F et al (1999) The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic Biol Med 26:14–24

    PubMed  CAS  Google Scholar 

  • Thomas ED, Lochte HL Jr, Lu WC et al (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491–496

    PubMed  CAS  Google Scholar 

  • Tian X, Kaufman DS (2008) Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls. Curr Opin Hematol 15:312–318

    PubMed  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  • Ueda T, Tsuji K, Yoshino H et al (2000) Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest 105:1013–1021

    PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  • van Os R, Kamminga LM, de Haan G (2004) Stem cell assays: something old, something new, something borrowed. Stem Cells 22:118111–118190

    Google Scholar 

  • van Rijn RS, Simonetti ER, Hagenbeek A et al (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG-/- gammac-/- double-mutant mice. Blood 102:2522–2531

    PubMed  Google Scholar 

  • Vodyanik MA, Bork JA, Thomson JA et al (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626

    PubMed  CAS  Google Scholar 

  • Wang JC, Doedens M, Dick JE (1997) Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating assay. Blood 89:3919–3924

    PubMed  CAS  Google Scholar 

  • Wang J, Kimura T, Asada R et al (2003) SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 101:2924–2931

    PubMed  CAS  Google Scholar 

  • Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79:3608–3612

    PubMed  CAS  Google Scholar 

  • Willinger T, Rongvaux A, Stowig T et al (2011) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327

    PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AF, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    PubMed  CAS  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    PubMed  CAS  Google Scholar 

  • Woolthuis CM, de Haan G, Huls G (2011) Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects? Curr Opin Immunol 23:512–517

    PubMed  CAS  Google Scholar 

  • Yahata T, Ando K, Sato T et al (2003) A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 101:2905–2913

    PubMed  CAS  Google Scholar 

  • Yang L, Bryder D, Adolfsson J et al (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    PubMed  CAS  Google Scholar 

  • Yeoh JS, van Os R, Weersing E et al (2006) Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 24:1564–1572

    PubMed  CAS  Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  • Yu J, Hu K, Smugga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    PubMed  CAS  Google Scholar 

  • Zanjani ED, Pallavicini MG, Ascensao JL et al (1992) Engraftment and long-term expression of human fetal hematopoietic stem cells in sheep following transplantation in utero. J Clin Invest 89:1178–1188

    PubMed  CAS  Google Scholar 

  • Zanjani ED, Srour EF, Hoffman R (1995) Retention of long-term repopulating ability of xenogeneic transplanted purified adult human bone marrow hematopoietic stem cells in sheep. J Lab Clin Med 126:24–28

    PubMed  CAS  Google Scholar 

  • Zanjani ED, Almeida-Porada G, Livingston AG et al (1998) Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 26:353–360

    PubMed  CAS  Google Scholar 

  • Zhang CC, Kaba M, Ge G et al (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240–245

    PubMed  Google Scholar 

  • Zhang CC, Kaba M, Iizuka S et al (2008) Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Frampton B.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clarke, M.L., Frampton, J. (2013). Hematopoietic Stem Cells. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_10

Download citation

Publish with us

Policies and ethics