Skip to main content

Evolving Molecular Marker Technologies in Plants: From RFLPs to GBS

  • Chapter
  • First Online:
Diagnostics in Plant Breeding

Abstract

Molecular markers have proven to be useful tools for genetics and molecular breeding of crop plants, starting with low-throughput RFLPs (restriction fragment length polymorphisms) in 1980 and culminating in ultra high-throughput SNPs at present. Molecular marker technology has continuously evolved from hybridization-based RFLPs to PCR-based RAPDs, AFLPs, and SSRs, and finally high-throughput SNPs. More recently, ultra high-throughput genotyping by sequencing (GBS) has been established. Among these molecular markers, SSRs were considered the markers of choice for several plant breeding applications because of their various desirable attributes, and are still considered inexpensive for simply inherited traits. However, more recently, SNP markers have become markers of choice due to their abundance, uniform distribution throughout genomes and high resolution as well as their amenability to high-throughput approaches. With the advent of next-generation sequencing (NGS) technologies, new sequencing tools have been found to be valuable for the discovery, validation, and application of genetic markers. These ultra high-throughput markers will not only prove useful for preparation of high-density genetic maps and identification of QTLs for their deployment in plant breeding but will also facilitate genome-wide selection (GWS) and genome-wide association studies (GWAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed  CAS  Google Scholar 

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099

    Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant genomics methods & protocols. Humana Press, Hertfordshire, pp 19–39

    Chapter  Google Scholar 

  • Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson CT, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560

    Article  PubMed  CAS  Google Scholar 

  • Bagge M, Lűbberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328

    Article  Google Scholar 

  • Barrett BA, Kidwell KK, Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the pacific Northwest. Crop Sci 38:1271–1278

    Article  CAS  Google Scholar 

  • Bolibok-BrÄ…goszewska H, Heller-UszyÅ„ska K, Wenzl P, UszyÅ„ski G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome-genetic diversity and mapping. BMC Genomics 10:578

    Article  PubMed  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homeologous group7 chromosomes. Theor Appl Genet 78:495–904

    Article  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Mingus J, Mammadov J, Backlund JE, Greene T, Thompson S, Kumpatla S (2010) KASPar: a simple and cost-effective system for SNP genotyping. In: Plant and Animal Genomes XVII conference, San Diego, USA, p 194

    Google Scholar 

  • Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics 7:272

    Article  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson TJ, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, Young JD, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Cortes AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845

    Article  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Bone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  PubMed  CAS  Google Scholar 

  • Delmas CE, Lhuillier E, Pornon A, Escaravage N (2011) Isolation and characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae) using pyrosequencing technology. Am J Bot 98:e120–e122

    Article  PubMed  CAS  Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Henaut I, Burstin J, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:468

    Article  PubMed  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Heerwaarden JV, Wegryzn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neaale DB (2010) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinustaeda L., Pinaceae). Genetics 185:969–982

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth DL, Rittenhouse KD, Honeycutt RL (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14:214–217

    PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed  CAS  Google Scholar 

  • Emami MK, Sharma B (1999) Linkage between three morphological markers in lentil. Plant Breed 118:579–581

    Article  Google Scholar 

  • Faccioli P, Pecchioni N, Stanca AM, Terzi V (1999) Amplified fragment length polymorphism (AFLP) markers for barley malt fingerprinting. J Cereal Sci 29:257–260

    Article  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier M, McMullen MD, Montalent P, Rose M, Schön CS, Sun Q, Walter H, Martin OC, Falque M (2010) A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334

    Article  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Donaire L, Saladie M, Mascarell-Creus A, Delgado A, Garcia-Mas J, Llave C, Aranda MA (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12:393

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Griffin PC, Robin C, Hoffmann AA (2011) A next-generation sequencing method for overcoming the multiple gene copy problem in polyploidy phylogenetics, applied to Poa grasses. BMC Biol 9:19

    Article  PubMed  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their application in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Rustagi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:1–14

    Article  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Article  Google Scholar 

  • Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655

    Article  PubMed  CAS  Google Scholar 

  • Helentjaris T (1987) A genetic linkage map for maize based on RFLPs. Trends Genet 3:217–221

    Article  CAS  Google Scholar 

  • Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor Appl Genet 85:961–968

    Article  CAS  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, KaviKishore PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptomic analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  PubMed  CAS  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, KaviKishor PB, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Zeller FJ, Hsam SL, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wei X, Tap S, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng O, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Smith JR, Fredrick RD, Tucker ML, Song Q, Cregan PB (2009) Bulked segregant analysis using the GoldenGate assay to locate the Rpp 3 locus that confers resistance to soybean rust in soybean. Crop Sci 49:265–271

    Article  CAS  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J, Choi I, Hwang E, Pastor-Corrales M, Cregan PB (2010b) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475

    Article  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:25–31

    Article  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (2002) Molecular techniques in crop improvement. Kluwer, Dordrecht, p 601

    Google Scholar 

  • Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458

    Article  PubMed  Google Scholar 

  • Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966

    Article  PubMed  CAS  Google Scholar 

  • Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742

    PubMed  CAS  Google Scholar 

  • Kwok P (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258

    Article  PubMed  CAS  Google Scholar 

  • Mace EM, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl KA (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  Google Scholar 

  • Mackill DJ, Zhang Z, Redona ED, Colowit PM (1996) Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39:969–977

    Article  PubMed  CAS  Google Scholar 

  • Maheshwaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N (1997) Polymorphism, distribution and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94:39–45

    Article  Google Scholar 

  • Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S (2012) Development of versatile gene-based SNP assays in maize (Zeamays L.). Mol Breed 29:779–790

    Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Kilian A et al (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR, Huetis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93:392–401

    Article  CAS  Google Scholar 

  • Maughan PJ, Smith SM, Fairbanks DJ, Jellen EN (2011) Development, characterization and linkage mapping of single nucleotide polymorphisms in the grain Amaranths (Amaranthus sp.). Plant Genome 4:92–101

    Article  Google Scholar 

  • McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali L, McClung A, Eizenga G, Bustamanate C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535

    Article  Google Scholar 

  • Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009) A consensus genetic map of cowpea [Vigna ungiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164

    Article  PubMed  CAS  Google Scholar 

  • Newell MA, Cook D, Tinker NA, Jannink JL (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122:623–632

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2003) Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123:173–179

    Article  Google Scholar 

  • Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, Delong EF (2011) Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J 5:1881–1895

    Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Rounsley R, Marri PR, Yu Y, He R, Sisneros N, Goicoechea JL, Lee SJ, Angelova A, Kudrna D, Luo M, Affourtit J, Desany B, Knight J, Niazi F, Egholm M, Wing RA (2009) De novo next generation sequencing of plant genomes. Rice 2:35–43

    Article  Google Scholar 

  • Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter JA, Farmer A, Whaley AM, Sarma BK, May GD, Cook DR, Varshney RK (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res doi:10.1093/dnares/dss025

    PubMed  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    Article  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    Article  CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. sub sp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  PubMed  CAS  Google Scholar 

  • Syvanen A (2005) Towards genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messenger J, Miller C, Miller L, Patreson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:41141–41160

    Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A et al (2011) High-throughput single nucleotide polymorphism for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    Article  Google Scholar 

  • Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genomics 11:3–11

    Article  PubMed  CAS  Google Scholar 

  • van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J et al (2011) Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res 21:618–625

    Article  PubMed  Google Scholar 

  • Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Dordrecht, pp 119–142

    Chapter  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van deLee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • White J, Law JR, MacKay KJ, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelic AR, Livak KJ, Rafalsky JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6532–6535

    Google Scholar 

  • Winter P, Benko-Iseppon AM, Hűttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C .arietinum × C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Xu DH, Ban T (2004) Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 47:660–665

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Yang X, Shah T, Villeda HS, Li H, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–792

    Article  CAS  Google Scholar 

  • Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W (2009) Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res 19:70–80

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for the study of rice biodiversity. Theor Appl Genet 96:602–611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Theme Leader Discretionary Grant of CGIAR-Generation Challenge Programme (GCP) and Centre of Excellence (CoE) grant from Department of Biotechnology (DBT) for funding the research of authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mir, R.R., Hiremath, P.J., Riera-Lizarazu, O., Varshney, R.K. (2013). Evolving Molecular Marker Technologies in Plants: From RFLPs to GBS. In: Lübberstedt, T., Varshney, R. (eds) Diagnostics in Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5687-8_11

Download citation

Publish with us

Policies and ethics