Skip to main content

Pituitary Tumors: Genetics and Heritable Predisposition

  • Chapter
  • First Online:
  • 1345 Accesses

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 10))

Abstract

Pituitary tumors are the most common intracranial tumors. Most pituitary tumors are thought to be sporadic, with estimates showing that genetic heritability in the form of traditional syndromes, including multiple endocrine neoplasia type 1 (MEN1) and Carney complex (CNC), accounts for only 5% of all cases. The monoclonality of pituitary tumors is a widely established model in which a genetic mutation in one cell leads to the formation of an adenoma. On a larger scale, however, the pituitary gland may contain multiple hyperplastic cells, each with its own origin. The predominant cell type within the adenoma is dependent on a variety of oncogenes and tumor suppressor genes including GSP, RAS, Cyclin D1, PTTG, and p53. Multiple other studies show germline mutations in a variety of additional genes, including AIP, BMP-4, CDKN1B, CDKN2A, CDKN2C, GADD45G, PDt-FGFR4, PKC, PRKAR1A, RB, WIF1, and ZAC. More recently, studies of genetic mutations leading to pituitary adenomas and population studies of patients and families with pituitary adenomas have revealed a significant heritable predisposition for pituitary tumors outside of traditional syndromes. These studies, while confirming the heritability of pituitary tumors, unfortunately only provide a glimpse into the multifactorial cause of pituitary adenomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal SK, Impey S, McWeeney S, Scacheri PC, Collins FS, Goodman RH, Spiegel AM, Marx SJ (2007) Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 9:101–107

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Sarlis NJ, Oldfield EH, Yen PM (2001) Somatic mutation of TRbeta can cause a defect in negative regulation of TSH in a TSH-secreting pituitary tumor. J Clin Endocrinol Metab 86:5572–5576

    Article  PubMed  CAS  Google Scholar 

  • Beckers A, Daly AF (2007) The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 157:371–382

    Article  PubMed  CAS  Google Scholar 

  • Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S, Melmed S (2008) p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci USA 105:17498–17503

    Article  PubMed  CAS  Google Scholar 

  • Clayton RN (1999) Sporadic pituitary tumours: from epidemiology to use of databases. Baillieres Best Pract Res Clin Endocrinol Metab 13:451–460

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Couldwell WT, Cannon-Albright L (2010) A heritable predisposition to pituitary tumors. Pituitary 13:130–137

    Article  PubMed  Google Scholar 

  • Couldwell WT, Law RE, Hinton DR, Gopalakrishna R, Yong VW, Weiss MH (1996) Protein kinase C and growth regulation of pituitary adenomas. Acta Neurochir Suppl 65:22–26

    PubMed  CAS  Google Scholar 

  • Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, Murat A, Emy P, Gimenez-Roqueplo AP, Tamburrano G, Raverot G, Barlier A, De Herder W, Penfornis A, Ciccarelli E, Estour B, Lecomte P, Gatta B, Chabre O, Sabate MI, Bertagna X, Garcia Basavilbaso N, Stalldecker G, Colao A, Ferolla P, Wemeau JL, Caron P, Sadoul JL, Oneto A, Archambeaud F, Calender A, Sinilnikova O, Montanana CF, Cavagnini F, Hana V, Solano A, Delettieres D, Luccio-Camelo DC, Basso A, Rohmer V, Brue T, Bours V, Teh BT, Beckers A (2007) Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Evans CO, Yao C, Laborde D, Oyesiku NM (2008) Folate receptor expression in pituitary adenomas cellular and molecular analysis. Vitam Horm 79:235–266

    Article  PubMed  CAS  Google Scholar 

  • Ezzat S, Asa SL (2006) Mechanisms of disease: the pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2:220–230

    Article  PubMed  CAS  Google Scholar 

  • Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    Article  PubMed  Google Scholar 

  • Farrell WE (2005) Epigenetic mechanisms of tumorigenesis. Horm Metab Res 37:361–368

    Article  PubMed  CAS  Google Scholar 

  • Giacomini D, Acuna M, Gerez J, Nagashima AC, Silberstein S, Paez-Pereda M, Labeur M, Theodoropoulou M, Renner U, Stalla GK, Arzt E (2007) Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 85:94–100

    Article  PubMed  CAS  Google Scholar 

  • Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, Bonthron DT (2001) Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 107:R31–R36

    Article  PubMed  CAS  Google Scholar 

  • Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE (1999) Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 5:2133–2139

    PubMed  CAS  Google Scholar 

  • Jacoby LB, Hedley-Whyte ET, Pulaski K, Seizinger BR, Martuza RL (1990) Clonal origin of pituitary adenomas. J Neurosurg 73:731–735

    Article  PubMed  CAS  Google Scholar 

  • Kirschner LS, Taymans SE, Stratakis CA (1998) Characterization of the adrenal gland pathology of Carney complex, and molecular genetics of the disease. Endocr Res 24:863–864

    Article  PubMed  CAS  Google Scholar 

  • Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA (2000) Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex. Hum Mol Genet 9:3037–3046

    Article  PubMed  CAS  Google Scholar 

  • Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32

    Article  PubMed  CAS  Google Scholar 

  • Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM, Lowe DG, Grossman AB (1999) Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 84:3823–3830

    Article  PubMed  CAS  Google Scholar 

  • Monte M, Simonatto M, Peche LY, Bublik DR, Gobessi S, Pierotti MA, Rodolfo M, Schneider C (2006) MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci USA 103:11160–11165

    Article  PubMed  CAS  Google Scholar 

  • Pagotto U, Arzberger T, Theodoropoulou M, Grubler Y, Pantaloni C, Saeger W, Losa M, Journot L, Stalla GK, Spengler D (2000) The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799

    PubMed  CAS  Google Scholar 

  • Pei L (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF, Prager D (1995) Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 55:1613–1616

    PubMed  CAS  Google Scholar 

  • Rengachary SS, Ellenbogen RG (2005) Principles of neurosurgery. Elsevier Mosby, Edinburgh/New York

    Google Scholar 

  • Simpson DJ, Clayton RN, Farrell WE (2002) Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene 21:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Spada A, Lania A, Mantovani G (2007) Hormonal signaling and pituitary adenomas. Neuroendocrinology 85:101–109

    Article  PubMed  CAS  Google Scholar 

  • Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F, Lloyd RV (2007) P53 gene mutations in pituitary carcinomas. Endocr Pathol 18:217–222

    Article  PubMed  CAS  Google Scholar 

  • Tateno T, Zhu X, Asa SL, Ezzat S (2010) Chromatin remodeling and histone modifications in pituitary tumors. Mol Cell Endocrinol 326:66–70

    Article  PubMed  CAS  Google Scholar 

  • Tichomirowa MA, Daly AF, Beckers A (2009) Familial pituitary adenomas. J Intern Med 266:5–18

    Article  PubMed  CAS  Google Scholar 

  • Vallar L, Spada A, Giannattasio G (1987) Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330:566–568

    Article  PubMed  CAS  Google Scholar 

  • Veugelers M, Wilkes D, Burton K, McDermott DA, Song Y, Goldstein MM, La Perle K, Vaughan CJ, O’Hagan A, Bennett KR, Meyer BJ, Legius E, Karttunen M, Norio R, Kaariainen H, Lavyne M, Neau JP, Richter G, Kirali K, Farnsworth A, Stapleton K, Morelli P, Takanashi Y, Bamforth JS, Eitelberger F, Noszian I, Manfroi W, Powers J, Mochizuki Y, Imai T, Ko GT, Driscoll DA, Goldmuntz E, Edelberg JM, Collins A, Eccles D, Irvine AD, McKnight GS, Basson CT (2004) Comparative PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkar1a haploinsufficient mice. Proc Natl Acad Sci USA 101:14222–14227

    Article  PubMed  CAS  Google Scholar 

  • Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gundogdu S, De Menis E, Makinen MJ, Launonen V, Karhu A, Aaltonen LA (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230

    Article  PubMed  CAS  Google Scholar 

  • Weinstein LS, Chen M, Liu J (2002) Gs(alpha) mutations and imprinting defects in human disease. Ann N Y Acad Sci 968:173–197

    Article  PubMed  CAS  Google Scholar 

  • Williamson EA, Johnson SJ, Foster S, Kendall-Taylor P, Harris PE (1995) G protein gene mutations in patients with multiple endocrinopathies. J Clin Endocrinol Metab 80:1702–1705

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Williams-Simons L, Parlow AF, Asa S, Kirschner LS (2008) Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 22:380–387

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S (1999) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84:761–767

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, Klibanski A (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87:1262–1267

    Article  PubMed  CAS  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Couldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalra, R.R., Taussky, P., Niazi, T., Couldwell, W. (2013). Pituitary Tumors: Genetics and Heritable Predisposition. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 10. Tumors of the Central Nervous System, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5681-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5681-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5680-9

  • Online ISBN: 978-94-007-5681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics