Skip to main content

Pituitary Tumor Cells: Role of PKCα, PKCδ and PKCε Expression

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 10

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 10))

Abstract

The PKC family is involved in a wide variety of cellular processes such as proliferation, senescence and cell death, which are determined by the specific subcellular targeting of these kinases.

In adenomatous pituitary cells, it has been observed that the enzyme activity and expression of PKCs were higher than in normal pituitary. The isozymes PKCα and PKCε are usually involved in tumorigenesis and are the most expressed in human pituitary adenomas. The specific PKCα and PKCε activation is closely associated with the tumoral pituitary cell proliferation and cell cycle progression through the ERK 1/2 pathway. By contrast, PKCδ has been shown to mediate anti-proliferative and apoptotic signals. In the regression of pituitary tumors triggered by bromocriptine the PKCδ /p38 pathway is involved in a non-­apoptotic mechanism identified as parapoptosis.

Each individual PKC isozyme is undoubtedly an attractive target for therapeutic intervention, given its role in survival and cell death in pituitary tumors, processes that contribute to the onset and progression of the tumorigenesis. The combination of specific inhibitors of PKC and the “upstream-downstream” kinases of the signalling pathways with conventional antitumoral drugs could lead to a better tolerance and effectiveness in the regression of pituitary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen V, Peltonen J (2010) PKCalpha/beta I inhibitor Go6976 induces dephosphorylation of constitutively hyperphosphorylated Rb and G1 arrest in T24 cells. Anticancer Res 30:3995–3999

    PubMed  CAS  Google Scholar 

  • Akita Y (2002) Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem 132:847–852

    Article  PubMed  CAS  Google Scholar 

  • Alvaro V, Touraine P, Raisman VR, Bai-Grenier F, Birman P, Joubert D (1992) Protein kinase C activity and expression in normal and adenomatous human pituitaries. Int J Cancer 50:724–730

    Article  PubMed  CAS  Google Scholar 

  • Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L (2007) Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 67:6053–6063

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Sivaprasad U (2007) Protein kinase Cepsilon makes the life and death decision. Cell Signal 19:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Benhadji KA, Serova M, Ghoul A, Cvitkovic E, Le Tourneau C, Ogbourne SM, Lokiec F, Calvo F, Hammel P, Faivre S, Raymond E (2008) Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells. Br J Cancer 99:1808–1815

    Article  PubMed  CAS  Google Scholar 

  • Delgrange E, Sassolas G, Perrin G, Jan M, Trouillas J (2005) Clinical and histological correlations in prolactinomas, with special reference to bromocriptine resistance. Acta Neurochir (Wien) 147:751–757

    Article  CAS  Google Scholar 

  • Detjen KM, Brembeck FH, Welzel M, Kaiser A, Haller H, Wiedenmann B, Rosewicz S (2000) Activation of protein kinase C alpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci 113:3025–3035

    PubMed  CAS  Google Scholar 

  • Fishman DD, Segal S, Livneh E (1998) The role of protein kinase C in G1 and G2/M phases of the cell cycle (review). Int J Oncol 12:181–186

    PubMed  CAS  Google Scholar 

  • Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281–294

    Article  PubMed  CAS  Google Scholar 

  • Hanauske AR, Lahn M, Musib LC, Weigang-Köhler K, Yilmaz E, Graefe T, Kuenen B, Thornton D, McNealy P, Giaccone G (2009) Phase Ib safety and pharmacokinetic evaluation of daily and twice daily oral enzastaurin in combination with pemetrexed in advanced/metastatic cancer. Ann Oncol 20:1565–1575

    Article  PubMed  Google Scholar 

  • Haughian JM, Bradford AP (2009) Protein kinase C alpha (PKCalpha) regulates growth and invasion of endometrial cancer cells. J Cell Physiol 220:112–118

    Article  PubMed  CAS  Google Scholar 

  • Hussaini IM, Trotter C, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, Agi CU, Redpath GT, Fang Z, Leung GK, Lopes MB, Laws ER (2007) Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol 170:356–365

    Article  PubMed  CAS  Google Scholar 

  • Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Maeda T, Chandler WF, Lloyd RV (1993) Protein kinase C (PKC) activity and PKC messenger RNAs in human pituitary adenomas. Am J Pathol 142:569–578

    PubMed  CAS  Google Scholar 

  • Kazanietz MG, Blumberg PM (1996) Protein kinase C and signal transduction in normal and neoplastic cells. In: Sirica AE (ed) Cellular and molecular pathogenesis. Raven, New York, pp 389–402

    Google Scholar 

  • Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525–3544

    Article  PubMed  CAS  Google Scholar 

  • Leverrier S, Vallentin A, Joubert D (2002) Positive feedback of protein kinase C proteolytic activation during apoptosis. Biochem J 368:905–913

    Article  PubMed  CAS  Google Scholar 

  • MacEwan DJ, Johnson MS, Mitchell R (1999) Protein kinase C isoforms in pituitary cells displaying differential sensitivity to phorbol ester. Mol Cell Biochem 202:85–90

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Nishizuka Y (2002) Protein kinase C isotypes and their specific functions: prologue. J Biochem 132:509–511

    Article  PubMed  CAS  Google Scholar 

  • Palmeri CM, Petiti JP, Sosa LV, Gutiérrez S, De Paul AL, Mukdsi JH, Torres AI (2009) Bromocriptine induces parapoptosis as the main type of cell death responsible for experimental pituitary tumor shrinkage. Toxicol Appl Pharmacol 240:55–65

    Article  PubMed  CAS  Google Scholar 

  • Persidis A (1998) Signal transduction as a drug-discovery platform. Nat Biotechnol 16:1082–1083

    Article  PubMed  CAS  Google Scholar 

  • Petiti JP, De Paul AL, Gutiérrez S, Palmeri CM, Mukdsi JH, Torres AI (2008) Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol 283:77–84

    Article  Google Scholar 

  • Petiti JP, Gutiérrez S, Mukdsi JH, De Paul AL, Torres AI (2009) Specific subcellular targeting of PKCalpha and PKCepsilon in normal and tumoral lactotroph cells by PMA-mitogenic stimulus. J Mol Histol 40:417–425

    Article  PubMed  CAS  Google Scholar 

  • Petiti JP, Gutiérrez S, De Paul AL, Andreoli V, Palmeri CM, Sosa LV, Bocco JL, Torres AI (2010) GH3B6 pituitary tumor cell proliferation is mediated by PKCalpha and PKCepsilon via ERK 1/2-dependent pathway. Cell Physiol Biochem 26:135–146

    Article  PubMed  CAS  Google Scholar 

  • Qiu ZH, Leslie CC (1994) Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem 269:19480–19487

    PubMed  CAS  Google Scholar 

  • Quereda V, Malumbres M (2009) Cell cycle control of pituitary development and disease. J Mol Endocrinol 42:75–86

    Article  PubMed  CAS  Google Scholar 

  • Serova M, Ghoul A, Benhadji KA, Cvitkovic E, Faivre S, Calvo F, Lokiec F, Raymond E (2006) Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol 33:466–478

    Article  PubMed  CAS  Google Scholar 

  • Serova M, Ghoul A, Benhadji KA, Faivre S, Le Tourneau C, Cvitkovic E, Lokiec F, Lord J, Ogbourne SM, Calvo F, Raymond E (2008) Effects of protein kinase C modulation by PEP005, a novel ingenol angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. Mol Cancer Ther 7:915–922

    Article  PubMed  CAS  Google Scholar 

  • Shirai Y, Sakai N, Saito N (1998) Subspecies-specific targeting mechanism of protein kinase C. Jpn J Pharmacol 78:411–417

    Article  PubMed  CAS  Google Scholar 

  • Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (2001) Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Spada A, Lania A, Mantovani G (2007) Hormonal signaling and pituitary adenomas. Neuroendocrinology 85:101–109

    Article  PubMed  CAS  Google Scholar 

  • Stefaneanu L, Kovacs K, Scheithauer BW, Kontogeorgos G, Riehle DL, Sebo TJ, Murray D, Vidal S, Tran A, Buchfelder M, Fahlbusch R (2000) Effect of dopamine agonists on lactotroph adenomas of the human pituitary. Endocr Pathol 11:341–352

    Article  PubMed  CAS  Google Scholar 

  • Vandeva S, Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A (2010) The genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 24:461–476

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Dong Q, Tan BJ, Lim WG, Zhou S, Duan W (2005) The PKCalpha-D294G mutant found in pituitary and thyroid tumors fails to transduce extracellular signals. Cancer Res 65:4520–4524

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Petiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petiti, J.P., Torres, A.I. (2013). Pituitary Tumor Cells: Role of PKCα, PKCδ and PKCε Expression. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 10. Tumors of the Central Nervous System, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5681-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5681-6_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5680-9

  • Online ISBN: 978-94-007-5681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics