Skip to main content

Pituitary Adenomas: Role of Cyclin-Dependent Kinase Inhibitors

  • Chapter
  • First Online:
Book cover Tumors of the Central Nervous System, Volume 10

Abstract

Human pituitary adenomas are common tumors. In spite of extensive investigations, the molecular basis of human pituitary tumorigenesis remains elusive. The cell cycle is driven by cyclins-cyclin-dependent kinases (CDKs) complexes. Because CDK inhibitors (CKIs) serve as negative regulators of cell cycle, dysregulation in CKIs is recognized as critical factors in tumorigenesis. In recent years, extensive studies have demonstrated that somatic mutations, underexpression, and DNA methylation of the CKIs genes were frequently observed in various types of human cancers. Although the role of CKIs in human pituitary tumors has been elucidated to a limited extent, studies on knockout mice suggested that some CKIs are involved in tumorigenesis of murine pituitary gland. For example, knockout mice of p18Ink4c and p27Kip1 develop both pituitary intermediate- and anterior-lobe tumors and intermediate-lobe tumors, respectively. Each of the INK4 and CIP/KIP family members shows unique pattern of gene expression, mutations and promoter methylation in human pituitary adenomas. Until now, changes of mRNA or protein levels of p16INK4A, p18INK4C, and p27KIP1 in pituitary adenomas have been reported. Non-functioning pituitary adenomas show reduced expression of p16INK4A by epigenetic changes. In pituitary adenomas, mRNA and protein levels of p18INK4C were reduced by unidentified mechanisms and ­protein levels of p27KIP1 are reduced by protein modification. These changes of expression ­levels may contribute to pituitary tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal SK, Mateo CM, Marx SJ (2009) Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 94:1826–1834

    Article  PubMed  CAS  Google Scholar 

  • Bamberger CM, Fehn M, Bamberger AM, Ludecke DK, Beil FU, Saeger W, Schulte HM (1999) Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas. Eur J Endocrinol 140:250–255

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM (2007) Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21:1731–1746

    Article  PubMed  CAS  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  PubMed  CAS  Google Scholar 

  • Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifenberger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol 159:61–69

    Article  Google Scholar 

  • Ceruti JM, Scassa ME, Flo JM, Varone CL, Canepa ET (2005) Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells. Oncogene 24:4065–4080

    PubMed  CAS  Google Scholar 

  • Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, Wawrowsky K, Melmed S (2007) Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res 67:10564–10572

    Article  PubMed  CAS  Google Scholar 

  • Chesnokova V, Zonis S, Kovacs K, Ben-Sholomo A, Wawrowsky K, Bannykh S, Melmed S (2008) p21Cip1 restrains pituitary tumor growth. Proc Natl Acad Sci U S A 105:17498–17503

    Article  PubMed  CAS  Google Scholar 

  • Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen K, Paschke R, Gimm O, Koch CA, Gündogdu S, Lucassen A, Tischkowitz M, Izatt L, Aylwin S, Bano G, Hodgson S, De Menis E, Launonen V, Vahteristo P, Aaltonen LA (2007) Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 92:321–325

    Article  Google Scholar 

  • Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M, Yoshimoto K (2003) Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 50:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hossain MG, Iwata T, Mizusawa N, Qian ZR, Shima SW, Okutsu T, Yamada S, Sano T, Yoshimoto K (2009) Expression of p18INK4C is down-regulated in human pituitary adenomas. Endocr Pathol 20:114–121

    Article  PubMed  CAS  Google Scholar 

  • Hutter G, Scheubner M, Zimmermann Y, Kalla J, Katzenberger T, Hübler K, Roth S, Hiddemann W, Ott G, Dreyling M (2006) Differential effect of epigenetic alterations and genomic deletions of CDK inhibitors [p16(INK4a), p15(INK4b), p14(ARF)] in mantle cell lymphoma. Genes Chromosomes Cancer 45:203–210

    Article  PubMed  CAS  Google Scholar 

  • Jin RJ, Lho Y, Wang Y, Ao M, Revelo MP, Hayward SW, Wills ML, Logan SK, Zhang P, Matusik RJ (2008) Down-regulation of p57Kip2 induces prostate cancer in the mouse. Cancer Res 68:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Jung YS, Qian Y, Chen X (2010) Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 22:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, Mörz M, Pinzer T, Schackert HK, Schackert G (2009) Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas. Genes Chromosomes Cancer 48:143–154

    Article  PubMed  CAS  Google Scholar 

  • Korbonits M, Chahal HS, Kaltsas G, Jordan S, Urmanova Y, Khalimova Z, Harris PE, Farrell WE, Claret FX, Grossman AB (2002) Expression of phosphorylated p27Kip1 protein and jun activation domain binding protein 1 in human pituitary adenomas. J Clin Endocrinol Metab 87:2635–2643

    Article  PubMed  CAS  Google Scholar 

  • Landa I, Montero-Conde C, Malanga D, De Gisi S, Pita G, Leandro-García LJ, Inglada-Pérez L, Letón R, De Marco C, Rodríguez-Antona C, Viglietto G, Robledo M (2010) Allelic variant at -79 (C  >  T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocr Relat Cancer 17:317–328

    Article  PubMed  CAS  Google Scholar 

  • le Sage C, Nagel R, Agami R (2007) Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6:2742–2749

    Article  PubMed  Google Scholar 

  • Morris DG, Musat M, Czirjak S, Hanzely Z, Lillington DM, Korbonits M, Grossman AB (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151

    Article  PubMed  CAS  Google Scholar 

  • Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T (2005) The p15INK4b/p16INK4a/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 64:398–403

    PubMed  CAS  Google Scholar 

  • Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG (2009) p57KIP2: “Kip”ing the cell under control. Mol Cancer Res 7:1902–1919

    Article  PubMed  CAS  Google Scholar 

  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A 103:11558–11563

    Article  Google Scholar 

  • Quereda V, Malumbres M (2009) Cell cycle control of pituitary development and disease. J Mol Endocrinol 42:75–86

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB (2002) Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14

    Article  PubMed  CAS  Google Scholar 

  • Salehi F, Kovacs K, Scheithauer BW, Cantelmi D, Horvath E, Lloyd RV, Cusimano M (2010) Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: a correlative study of tumor subtypes. Int J Surg Pathol 18:5–13

    Article  PubMed  Google Scholar 

  • Sánchez-Aguilera A, Delgado J, Camacho FI, Sánchez-Beato M, Sánchez L, Montalbán C, Fresno MF, Martín C, Piris MA, García JF (2004) Silencing of the p18INK4C gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood 103:2351–2357

    Article  PubMed  Google Scholar 

  • Seemann N, Kuhn D, Wrocklage C, Keyvani K, Hackl W, Buchfelder M, Fahlbusch R, Paulus W (2001) CDKN2A/p16 inactivation is related to pituitary adenoma type and size. J Pathol 193:491–497

    Article  PubMed  CAS  Google Scholar 

  • Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, Brooks SC, Wang YA (2005) ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 65:8747–8753

    Article  PubMed  CAS  Google Scholar 

  • Simpson DJ, Bicknell JE, McNicol AM, Calyton R, Farrell WE (1999) Hypermethylation of the p16/CDKN2A/MTS1 gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer 24:328–336

    Article  PubMed  CAS  Google Scholar 

  • Tanaka C, Yoshimoto K, Yang P, Kimura T, Yamada S, Moritani M, Sano T, Itakura M (1997) Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 82:3141–3147

    Article  PubMed  CAS  Google Scholar 

  • van Veelen W, Klompmaker R, Gloerich M, van Gastteren CJR, Kalkhoven E, Berger R, Lips CJ, Medema RH, Höppener JW, Acton DS (2009) P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer 124:339–345

    Article  PubMed  Google Scholar 

  • Woloschak M, Yu A, Post KD (1997) Frequent inactivation of the p16INK4a gene in human pituitary tumors by gene methylation. Mol Carcinog 19:21–24

    Article  Google Scholar 

  • Yoshimoto K, Tanaka C, Yamada S, Kimura T, Iwahana H, Sano T, Itakura M (1997) Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. Eur J Endocrinol 136:74–80

    Article  PubMed  CAS  Google Scholar 

  • Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83:153–162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshimoto, K. et al. (2013). Pituitary Adenomas: Role of Cyclin-Dependent Kinase Inhibitors. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 10. Tumors of the Central Nervous System, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5681-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5681-6_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5680-9

  • Online ISBN: 978-94-007-5681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics