Skip to main content

Interaction of Naloxone and Estrogen Receptor in Breast Cancer

  • Chapter
  • First Online:
Morphine and Metastasis

Abstract

Majority of breast cancers are estrogen receptor (ER) positive. Due to resistance to known ER-based therapies, novel treatment targets and drugs are required to effectively treat ER-positive breast cancer. Opioids are often used to treat pain in breast cancer and promote tumor growth and metastases in rodent studies. Opioid receptor (OR) antagonists, such as naloxone, naltrexone and methylnaltrexone inhibit cancer progression and metastases. All three antagonists share structural similarities with the estrogen, 17β-estradiol (E2), and are therefore capable of binding to ER. Naloxone inhibits E2-induced human MCF-7 breast cancer cell proliferation and MAPK/ERK signaling. Additionally, naloxone also attenuates the activation of membrane bound/cytoplasmic ER and phosphorylation of the epidermal growth factor receptor. Naloxone blocks the E2-induced ER activation by precluding its binding to the co-activator and by directly competing with E2 for binding to ER. In addition to these direct interactions with ER, naloxone prevents the cross-talk of ER with mu opioid receptor (MOR), suggesting that activation of MOR may contribute to E2-induced ER activation. Since naloxone and structurally similar OR antagonists inhibit cancer progression and metastases, OR antagonists can be potentially developed for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E2:

17β-estradiol

AF1:

activation-function 1

AF2:

activation-function 2

AI:

aromatase inhibitor

cAMP:

cyclic adenosine monophosphate

EGFR:

epidermal growth factor receptor

ER:

estrogen receptor

ERE:

estrogen response element

Gi-GPCRs:

inhibitory regulated-G protein coupled receptors

LBD:

ligand-binding domain

MNTX:

methylnaltrexone

MAPK/ERK:

mitogen activated protein kinase/extracellular signal-regulated kinase

Nal:

naloxone

NTX:

naltrexone

NOP:

nociceptin/orphanin FQ receptor

OR:

opioid receptor

PI3K:

phosphatidylinositol 3-kinase

Akt:

protein kinase B

SERMs:

selective ER modulators

VEGFR2:

vascular endothelial growth factor receptor 2

DOR:

δ opioid receptor

KOR:

κ opioid receptor

MOR:

μ opioid receptor

References

  • Arpino G, Green SJ, Allred DC, Lew D, Martino S, Osborne CK, Elledge RM (2004) Her-2 amplification, her-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a southwest oncology group study. Clin Cancer Res 10:5670–5676. doi:10.1158/1078-0432.CCR-04-011010/17/5670 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Aylsworth CF, Hodson CA, Meites J (1979) Opiate antagonists can inhibit mammary tumor growth in rats. Proc Soc Exp Biol Med 161:18–20

    PubMed  CAS  Google Scholar 

  • Belcheva MM, Szucs M, Wang D, Sadee W, Coscia CJ (2001) Mu-opioid receptor-mediated erk activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem 276:33847–33853

    Article  PubMed  CAS  Google Scholar 

  • Berkson BM, Rubin DM, Berkson AJ (2009) Revisiting the ala/n (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther 8:416–422. doi:8/4/416 [pii]10.1177/1534735409352082

    Article  PubMed  CAS  Google Scholar 

  • Cadet P, Mantione K, Bilfinger TV, Stefano GB (2002) Morphine down regulates human vascular tissue estrogen receptor expression determined by real-time RT-PCR. Neuro Endocrinol Lett 23:95–100. doi:NEL230202A01 [pii]

    PubMed  CAS  Google Scholar 

  • Chen C, Farooqui M, Gupta K (2006) Morphine stimulates vascular endothelial growth factor-like signaling in mouse retinal endothelial cells. Curr Neurovasc Res 3:171–180

    Article  PubMed  CAS  Google Scholar 

  • Cuzick J, DeCensi A, Arun B, Brown PH, Castiglione M, Dunn B, Forbes JF, Glaus A, Howell A, von Minckwitz G, Vogel V, Zwierzina H (2011) Preventive therapy for breast cancer: a consensus statement. Lancet Oncol 12:496–503. doi:S1470-2045(11)70030-4 [pii]10.1016/S1470-2045(11)70030-4

    Article  PubMed  CAS  Google Scholar 

  • Donahue RN, McLaughlin PJ, Zagon IS (2009) Cell proliferation of human ovarian cancer is regulated by the opioid growth factor-opioid growth factor receptor axis. Am J Physiol Regul Integr Comp Physiol 296:R1716–R1725

    Article  PubMed  CAS  Google Scholar 

  • Donahue RN, McLaughlin PJ, Zagon IS (2011a) Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model. Exp Biol Med (Maywood) 236:1036–1050. doi:ebm.2011.011121 [pii]10.1258/ebm.2011.011121

    Article  CAS  Google Scholar 

  • Donahue RN, McLaughlin PJ, Zagon IS (2011b) The opioid growth factor (OGF) and low dose naltrexone (LDN) suppress human ovarian cancer progression in mice. Gynecol Oncol 122:382–388. doi:S0090-8258(11)00270-8 [pii]10.1016/j.ygyno.2011.04.009

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M (2000) Effect of single and compound knockouts of estrogen receptors alpha (eralpha) and beta (erbeta) on mouse reproductive phenotypes. Development 127:4277–4291

    PubMed  CAS  Google Scholar 

  • Emde A, Mahlknecht G, Maslak K, Ribba B, Sela M, Possinger K, Yarden Y (2011) Simultaneous inhibition of estrogen receptor and the HER2 pathway in breast cancer: effects of HER2 abundance. Transl Oncol 4:293–300

    PubMed  Google Scholar 

  • Farooqui M, Geng ZH, Stephenson EJ, Zaveri N, Yee D, Gupta K (2006) Naloxone acts as an antagonist of estrogen receptor activity in mcf-7 cells. Mol Cancer Ther 5:611–620. doi:5/3/611 [pii]10.1158/1535-7163.MCT-05-0016

    Article  PubMed  CAS  Google Scholar 

  • Farooqui M, Li Y, Rogers T, Poonawala T, Griffin RJ, Song CW, Gupta K (2007) COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer 97:1523–1531

    Article  PubMed  CAS  Google Scholar 

  • Finley MJ, Happel CM, Kaminsky DE, Rogers TJ (2008) Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol 252:146–154

    Article  PubMed  CAS  Google Scholar 

  • Fujioka N, Nguyen J, Chen C, Li Y, Pasrija T, Niehans G, Johnson KN, Gupta V, Kratzke RA, Gupta K (2011) Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg 113:1353–1364. doi:ANE.0b013e318232b35a [pii]10.1213/ANE.0b013e318232b35a

    Article  PubMed  CAS  Google Scholar 

  • Gach K, Piestrzeniewicz M, Fichna J, Stefanska B, Szemraj J, Janecka A (2008) Opioid-induced regulation of mu-opioid receptor gene expression in the MCF-7 breast cancer cell line. Biochem Cell Biol 86:217–226

    Article  PubMed  CAS  Google Scholar 

  • Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964. doi:nrd1551 [pii]10.1038/nrd1551

    Article  PubMed  CAS  Google Scholar 

  • Gupta K, Kshirsagar S, Chang L, Schwartz R, Law PY, Yee D, Hebbel RP (2002) Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res 62:4491–4498

    PubMed  CAS  Google Scholar 

  • Gupta M, Yunfang L, Gupta K (2007) Opioids as promoters and regulators of angiogenesis. In: Maragoudakis ME, Papadimitriou E (eds) Angiogenesis: basic science and clinical applications. Transworld Research Network, Kerala, pp 303–317

    Google Scholar 

  • Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001s–1007s

    Article  PubMed  CAS  Google Scholar 

  • Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276:36869–36872. doi:10.1074/jbc.R19200R19200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hall JM, McDonnell DP (1999) The estrogen receptor beta-isoform (erbeta) of the human estrogen receptor modulates eralpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578

    Article  PubMed  CAS  Google Scholar 

  • Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726–741. doi:er.2007-0022 [pii]10.1210/er.2007-0022

    Article  PubMed  CAS  Google Scholar 

  • Hatzoglou A, Bakogeorgou E, Castanas E (1996a) The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors. Eur J Pharmacol 296:199–207. doi:0014-2999(95)00703-2 [pii]10.1016/0014-2999(95)00703-2

    Article  PubMed  CAS  Google Scholar 

  • Hatzoglou A, Bakogeorgou E, Hatzoglou C, Martin PM, Castanas E (1996b) Antiproliferative and receptor binding properties of alpha- and beta-casomorphins in the T47D human breast cancer cell line. Eur J Pharmacol 310:217–223

    Article  PubMed  CAS  Google Scholar 

  • Howe LR, Brown PH (2011) Targeting the her/egfr/erbb family to prevent breast cancer. Cancer Prev Res (Phila) 4:1149–1157. doi:4/8/1149 [pii]10.1158/1940-6207.CAPR-11-0334

    Article  CAS  Google Scholar 

  • Kajdaniuk D, Marek B, Swietochowska E, Ciesielska-Kopacz N, Buntner B (2000) Is positive correlation between cortisol and met-enkephalin concentration in blood of women with breast cancer a reaction to stress before chemotherapy administration? Pathophysiology 7:47–51

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Rogers MA, Obando JA, Tamsen A (1994) Estrogen receptor expression of benign breast epithelium and its association with breast cancer. Cancer Res 54:993–997

    PubMed  CAS  Google Scholar 

  • Koo KL, Tejwani GA, Abou-Issa H (1996) Relative efficacy of the opioid antagonist, naltrexone, on the initiation and promotion phases of rat mammary carcinogenesis. Anticancer Res 16:1893–1898

    PubMed  CAS  Google Scholar 

  • Korach KS, Emmen JM, Walker VR, Hewitt SC, Yates M, Hall JM, Swope DL, Harrell JC, Couse JF (2003) Update on animal models developed for analyses of estrogen receptor biological activity. J Steroid Biochem Mol Biol 86:387–391. doi:S0960076003003480 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95:15677–15682

    Article  PubMed  CAS  Google Scholar 

  • Kugawa F, Arae K, Ueno A, Aoki M (1998) Buprenorphine hydrochloride induces apoptosis in ng108-15 nerve cells. Eur J Pharmacol 347:105–112. doi:S0014-2999(98)00080-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lennon FE, Mirzapoiazova T, Mambetsariev B, Salgia R, Moss J, Singleton PA (2012) Overexpression of the mu-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis. Anesthesiology. doi:10.1097/ALN.0b013e31824babe2

  • Lissoni P, Malugani F, Bordin V, Conti A, Maestroni G, Tancini G (2002) A new neuroimmunotherapeutic strategy of subcutaneous low-dose interleukin-2 plus the long-acting opioid antagonist naltrexone in metastatic cancer patients progressing on interleukin-2 alone. Neuro Endocrinol Lett 23:255–258

    PubMed  CAS  Google Scholar 

  • Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 90:11162–11166

    Article  PubMed  CAS  Google Scholar 

  • Lunzer MM, Yekkirala A, Hebbel RP, Portoghese PS (2007) Naloxone acts as a potent analgesic in transgenic mouse models of sickle cell anemia. Proc Natl Acad Sci U S A 104:6061–6065. doi:0700295104 [pii]10.1073/pnas.0700295104

    Article  PubMed  CAS  Google Scholar 

  • Maneckjee R, Minna JD (1992) Nonconventional opioid binding sites mediate growth inhibitory effects of methadone on human lung cancer cells. Proc Natl Acad Sci U S A 89:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839. doi:0092-8674(95)90199-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68:826–833. doi:68/3/826 [pii]10.1158/0008-5472.CAN-07-2707

    Article  PubMed  CAS  Google Scholar 

  • Mathew B, Lennon FE, Siegler J, Mirzapoiazova T, Mambetsariev N, Sammani S, Gerhold LM, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Moss J, Singleton PA (2011) The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg 112:558–567. doi:ANE.0b013e31820568af [pii]10.1213/ANE.0b013e31820568af

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Zagon IS (2012) The opioid growth factor-opioid growth factor receptor axis: Homeostatic regulator of cell proliferation and its implications for health and disease. Biochem Pharmacol 84:746–755

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Rosow CE (2008) Development of peripheral opioid antagonists’ new insights into opioid effects. Mayo Clin Proc 83:1116–1130. doi:S0025-6196(11)60617-4 [pii]10.4065/83.10.1116

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S, Koehler KF, Gustafsson JA (2011) Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov 10:778–792. doi:nrd3551 [pii]10.1038/nrd3551

    Article  PubMed  CAS  Google Scholar 

  • Panagiotou S, Hatzoglou A, Calvo F, Martin PM, Castanas E (1998) Modulation of the estrogen-regulated proteins cathepsin D and pS2 by opioid agonists in hormone-sensitive breast cancer cell lines (MCF7 and T47D): evidence for an interaction between the two systems. J Cell Biochem 71:416–428. doi:10.1002/(SICI)1097-4644(19981201)71:3<416::AID-JCB10>3.0.CO;2-Y [pii]

    Article  PubMed  CAS  Google Scholar 

  • Power I (2011) An update on analgesics. Br J Anaesth 107:19–24. doi:aer126 [pii]10.1093/bja/aer126

    Article  PubMed  CAS  Google Scholar 

  • Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    Article  PubMed  CAS  Google Scholar 

  • Sinchak K, Micevych PE (2001) Progesterone blockade of estrogen activation of mu-opioid receptors regulates reproductive behavior. J Neurosci 21:5723–5729. doi:21/15/5723 [pii]

    PubMed  CAS  Google Scholar 

  • Singleton PA, Lingen MW, Fekete MJ, Garcia JG, Moss J (2006) Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation. Microvasc Res 72:3–11. doi:S0026-2862(06)00043-4 [pii]10.1016/j.mvr.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  • Singleton PA, Garcia JG, Moss J (2008) Synergistic effects of methylnaltrexone with 5-fluorouracil and bevacizumab on inhibition of vascular endothelial growth factor-induced angiogenesis. Mol Cancer Ther 7:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Singleton PA, Mambetsariev N, Lennon FE, Mathew B, Siegler JH, Moreno-Vinasco L, Salgia R, Moss J, Garcia JG (2010) Methylnaltrexone potentiates the anti-angiogenic effects of mTOR inhibitors. J Angiogenes Res 2:5. doi:2040-2384-2-5 [pii]10.1186/2040-2384-2-5

    Article  PubMed  Google Scholar 

  • Stephenson EJ, Gupta K (2006) Existence and modus operandi of opioid receptors in endothelium. In: Aird W (ed) The endothelium: a comprehensive reference. Cambridge University Press, Cambridge, MA, pp 451–460

    Google Scholar 

  • Tegeder I, Grosch S, Schmidtko A, Haussler A, Schmidt H, Niederberger E, Scholich K, Geisslinger G (2003) G protein-independent g1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Res 63:1846–1852

    PubMed  CAS  Google Scholar 

  • Tsunashima K (1982) Anticancer effect of naloxone. Proc Jpn Cancer Assoc 425

    Google Scholar 

  • Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, Bevers TB, Fehrenbacher L, Pajon ER, Wade JL 3rd, Robidoux A, Margolese RG, James J, Runowicz CD, Ganz PA, Reis SE, McCaskill-Stevens W, Ford LG, Jordan VC, Wolmark N (2010) Update of the national surgical adjuvant breast and bowel project study of tamoxifen and raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res (Phila) 3:696–706. doi:1940-6207.CAPR-10-0076 [pii]10.1158/1940-6207.CAPR-10-0076

    Article  CAS  Google Scholar 

  • Wu Q, Chambliss K, Umetani M, Mineo C, Shaul PW (2011) Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem 286:14737–14743. doi:R110.191791 [pii]10.1074/jbc.R110.191791

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1983a) Naltrexone modulates tumor response in mice with neuroblastoma. Science 221:671–673

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1983b) Opioid antagonists inhibit the growth of metastatic murine neuroblastoma. Cancer Lett 21:89–94

    Article  PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1987) Modulation of murine neuroblastoma in nude mice by opioid antagonists. J Natl Cancer Inst 78:141–147

    PubMed  CAS  Google Scholar 

  • Zagon IS, Donahue RN, McLaughlin PJ (2009) Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regul Integr Comp Physiol 297:R1154–R1161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Carol Taubert for manuscript preparation and figures. This work was supported by National Institutes of Health Grant numbers CA109582, HL068802 and HL103733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpna Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnson, K.N.H., Zaveri, N., Gupta, K. (2013). Interaction of Naloxone and Estrogen Receptor in Breast Cancer. In: Parat, MO. (eds) Morphine and Metastasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5678-6_2

Download citation

Publish with us

Policies and ethics