Skip to main content

Plant Nutrients and Soil Fertility Management

  • Chapter
  • First Online:
Soils

Abstract

Seventeen chemical elements such as C, H, O, N, P, S, K, Ca, Mg, Fe, Mn, Cu, Mo, B, Zn, Cl, and Ni have so far been recognized as essential for plants. Plants cannot complete their life cycles and accomplish normal physiological functions in the absence of these nutrients. Growth and yield of crops are reduced by their deficiencies. There are some other elements, namely, sodium (Na), silicon (Si), vanadium (V), iodine (I), and cobalt (Co), reckoned to be beneficial for growth of certain plants and microorganisms. Plants often suffer from inadequate supply of nutrients by the soil. These inadequacies are met by the application of fertilizers. Fertilizers are any materials added to soils or plant leaves to supply nutrients. There are various natural and synthesized materials used as fertilizers. Composts, farmyard manures, poultry manure, oilcakes, guano, etc. are very good organic fertilizers obtained from natural materials. These substances contain low concentrations of nutrients; so they are needed in huge amounts. Moreover, their composition is not fixed; and estimating their required amounts is difficult. If added in adequate amounts and well ahead of time, they give good results. Industrial fertilizers are soluble, fast acting, and high analysis materials. They contain nutrients in available forms, and therefore, they are very efficient in correcting current deficiencies. Nutrients may be lost from applied fertilizers, especially nitrogenous fertilizers. Some nitrates and phosphates are transported from agricultural lands to surface and groundwater reservoirs. These contaminants have tremendous environmental impacts. Slow-release N fertilizers are being used to minimize loss of nitrogen from crop fields. There are some methods of fertilizer application that might reduce nutrient losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amesz J (1993) The role of manganese in photosynthetic oxygen evolution. Biochem Biophys Acta 726:1–12

    Google Scholar 

  • Anderson G (1980) Assessing organic phosphorus in soils. In: Khasawneh FE et al (eds) The role of phosphorus in agriculture. ASA/CSSA/SSSA, Madison

    Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    Article  CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  CAS  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  CAS  Google Scholar 

  • Baldock JO, Schulte EE (1996) Plant analysis with standardized scores combines DRIS and sufficiency range approaches for corn. Agron J 88:448–456

    Article  Google Scholar 

  • Bangroo SA, Bhat MI, Ali T, Aziz MA, Bhat MA, Wani MA (2010) Diagnosis and Recommendation Integrated System (DRIS) – a review. Int J Cur Res 10:84–97

    Google Scholar 

  • Beaufils ER (1973) Diagnosis and recommendation integrated system (DRIS). Soil Science Bulletin no. 1. University of Natal, Natal

    Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Ann Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  CAS  Google Scholar 

  • Bonilla I, Blevins D, Bolaos L (2009) Boron functions in plants: looking beyond the cell wall. In: Taiz L, Zeiger EA (eds) Companion to plant physiology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Pearson Education Inc., New Delhi

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37(4–5):304–313

    CAS  Google Scholar 

  • Chen W, He ZL, Yang XE, Mishra S, Stoffella PJ (2010) Chlorine nutrition of higher plants: progress and perspectives. J Plant Nutr 33(7):943–952

    Article  CAS  Google Scholar 

  • Collard JM, Corbisier P, Diels L, Dong Q, Jeanthon C, Mergeay M, Taghavi S et al (1994) Plasmids for heavy-metal resistance in Alcaligenes-eutrophus Ch34 – mechanisms and applications. FEMS Microbiol Rev 14(4):405–414

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    CAS  Google Scholar 

  • Cordain L (1999) Cereal grains: humanity’s double-edged sword. In: Simopoulos AP (ed) Evolutionary aspects of nutrition and health. Diet, exercise, genetics and chronic disease. World Rev Nutr Diet Basel Karger 84:L19–73

    Google Scholar 

  • Cowan CE, Zachara JM, Resch CT (1991) Cadmium adsorption on iron-oxides in the presence of alkaline-earth elements. Environ Sci Technol 25:437–446

    Article  CAS  Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39

    CAS  Google Scholar 

  • Deak S (1985) Health hazards from nitrates in drinking water. Report on a WHO meeting, Copenhagen, 5–9 March 1984. WHO, Geneva

    Google Scholar 

  • Ewing MC, White RMM (1951) Cyanosis in infancy from nitrates in drinking water. Lancet 260:931

    Article  CAS  Google Scholar 

  • Fageria VD (2001) Nutrient interactions in crop plants. J Plant Nutr 24(8):1269–1290

    Article  CAS  Google Scholar 

  • Filho FAAM (2004) DRIS: concepts and applications on nutritional diagnosis in fruit crops. Sci Agricn (Piracicaba Braz) 61(5):550–560

    Article  Google Scholar 

  • Fixen PE, Grove JH (1990) Testing soils for phosphorus. In: Westerman RL (ed) Soil testing and plant analysis. SSSA, Madison

    Google Scholar 

  • Foth HD (1990) Fundamentals of soil science, 8th edn. Wiley, New York

    Google Scholar 

  • Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dorsch P, Flessa H, Smith KA (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosyst 52:77–105

    Article  CAS  Google Scholar 

  • Freundlich H (1926) Colloid and capillary chemistry. Methuen, London

    Google Scholar 

  • Goldbatch HE, Huang L, Wimmer MA (2007) Boron functions in plants and animals: recent advances in boron research and open questions. Adv Plant Anim Boron Nutr Part 1:3–25. Springer

    Article  Google Scholar 

  • Griffin RA, Jurinak JJ (1974) Kinetics of the phosphate interaction with calcite. Soil Sci Soc Am Proc 38:75–79

    Article  Google Scholar 

  • Hall SJ, Huber D, Grimm NB (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res 113. doi:10.1029/2007JG000523

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  Google Scholar 

  • Herrera E (2000) Soil test interpretations. Guide A-122. http://aces.nmsu.edu/pubs/_a/a-122.pdf. Accessed 22 Dec 2011

  • Hingston FJ, Posner AM, Quirk JP (1974) Anion adsorption by goethite and gibbsite. 2. Desorption of anion from oxide surfaces. J Soil Sci 25:16–26

    Article  CAS  Google Scholar 

  • Hopkins B, Ellsworth J (2005) Phosphorus availability with alkaline/calcareous soil. Western Nutr Manage Conf 6:88–94

    Google Scholar 

  • Horneck DA, Sullivan DM, Owen JS, Hart JM (2011) Soil test interpretation guide. http://www.sanjuanislandscd.org/Soil_Survey/files/page18_3.pdf. Accessed 3 Jan 2012

  • http://www.montmorillonite.org/Mulders%20chart.htm. Accessed 27 Aug 2011

  • IPCC (1992) Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (1995) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang BF, Gu YC (1989) A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Sci Agric Sin 22(3):58–66 (in Chinese)

    Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis: Part 3 Chemical methods. SSSA, Madison

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    Article  CAS  Google Scholar 

  • Maksimovic ZJ, Djujic I, Jovic V, Rsumovic M (1992) Selenium deficiency in Yugoslavia. Biol Trace Elem Res 33(1–3):187–196

    Article  CAS  Google Scholar 

  • Manitoba Provincial Soil Testing Laboratory (1987) http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3791/$file/540-.pdf?OpenElement. Accessed 23 Dec 2011

  • Marschner H (1993) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marx ES, Hart J, Stevens RG (1999) Soil test interpretation guide. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/14361/ec1478.pdf;jsessionid=3B8749E2C71F904D46997A5669BF6029?sequence=1. Accessed 12 Jan 2012

  • McBride MB (2000) Chemisorption and precipitation reactions. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton

    Google Scholar 

  • McDowell LR (2003) Minerals in animal and human nutrition, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • McKenzie R (1992) Micronutrient requirement of crops. Alberta Agriculture, Food and Rural Development http://www1.agric.gov.ab.ca/$department/deptdocsf/all/agdex713/$file/531-1.pdf?OpenElement. Accessed 25 Jan 2012

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division (Mimeo), Raleigh, NC

    Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Mendel RR, Hansch RJ (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 53(375):1689–1698

    Article  CAS  Google Scholar 

  • Mishra SN, Jaiwal PK, Singh RP, Srivastiva HS (1999) Rhizobium-legume association. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition and plant growth. NH Science Publishers, Inc., Enfield

    Google Scholar 

  • Mulder (1953) Les elements mineurs en culture fruitière, presented at the 1° Congegno Nazionale de Frutticotura, Montan de Saint Vincent. http://www.apal.com.au/site/DefaultSite/filesystem/documents/APAL%20PLANT%20NUTRIENT%20INTERACTIONS%20July%2008.pdf. Accessed 24 Oct 2011

  • Nakagawa H, Jiang C-J, Sakakibara H, Kojima M, Honda I, Ajisaka H, Nishijima T, Koshioka M, Homma T, Mander LN, Takatsuji H (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939

    Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy Inc./Soil Science Society of America Inc., Madison

    Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2005) Soils and environmental quality. CRC Press, New York

    Google Scholar 

  • Powlson DS (1997) Integrating agricultural nutrient management with environmental objectives – current state and future prospects. The Fertiliser Society, York

    Google Scholar 

  • Power JF, Prasad R (1997) Soil fertility management for sustainable agriculture. CRC Press, London

    Book  Google Scholar 

  • Reid R (2007) Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht

    Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PPA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  CAS  Google Scholar 

  • Sims JT, Hodges SC, Davis J (1998) Soil testing for phosphorus: current status and uses in nutrient management programs. In: Sims JT (ed) Soil testing for phosphorus: environmental issues and implications. Southern Cooperative Series Bulletin no. 389. University of Delaware, Delaware

    Google Scholar 

  • Solis P, Torrent J (1989) Phosphate fractions in calcareous vertisols and inceptisols of Spain. Soil Sci Soc Am J 53:462–466

    Article  Google Scholar 

  • Srivastava PC (1997) Biochemical significance of molybdenum in crop plants. In: Gupta UC (ed) Molybdenum in agriculture. Cambridge University Press, New York

    Google Scholar 

  • Sunde RA (2006) Selenium. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition, 9th edn. ILSI Press, Washington, DC

    Google Scholar 

  • Sunderman FW, Oskarsson A (1991) Nickel. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim

    Google Scholar 

  • Takano K (2003) Findings of field-diagnosis based on the Brix of peaches. Kikan Hiryo 94:55–61 (in Japanese)

    Google Scholar 

  • Tamimi YN, Silva JA, Yost RS, Hue NV (1997) Adequate nutrient levels in soils and plants in Hawaii, Honolulu (HI). University of Hawaii (Agronomy and Soils, AS-3)

    Google Scholar 

  • Tempkin MI, Pyzhev V (1940) Kinetic of ammonia synthesis on promoted iron catalysts. Acta Physiochim 12:327–356

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1997) Soil fertility and fertilizers, vol 5. Macmillan Publishing Company, New York

    Google Scholar 

  • Tran TS, Simard RR (1993) Melich III – extractable elements. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Turner BL, Paphazy M, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond Ser B 357:449–469

    Article  CAS  Google Scholar 

  • USEPA (2007) Ground water & drinking water. Consumer fact sheet on nitrates/nitrites. http://www.epa.gov/safewater/contaminants/dw_contamfs/nitrates.html. Accessed 9 Jan 2012

  • Walworth JL, Sumner ME (1987) The diagnosis and recommendation integrated system (DRIS). In: Stewart BA (ed) Advances in soil science, vol 6. Springer, New York

    Chapter  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468–1476

    Article  CAS  Google Scholar 

  • Wang J, Liu WZ, Mu HF, Dang TH (2010) Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere 20(3):304–310

    Article  CAS  Google Scholar 

  • White RE (2006) Principles and practice of soil science: the soil as a natural resource, 4th edn. Blackwell Publishing, Malden

    Google Scholar 

  • Wild A (1996) Soils and the environment. Low Price edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Yienger JJ, Levy H II (1995) Empirical model of global soil biogenic NOx emissions. J Geophys Res 100(11):11447–11464

    Article  CAS  Google Scholar 

  • Yusuf HKM, Rahman AKMM, Chowdhury FP, Mohiduzzaman M, Banu CP, Sattar MA, Islam MN (2008) Iodine deficiency disorders in Bangladesh, 2004–05: ten years of iodized salt intervention brings remarkable achievement in lowering goitre and iodine deficiency among children and women. Asia Pac J Clin Nutr 17(4):620–628

    CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Towhid Osman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osman, K.T. (2013). Plant Nutrients and Soil Fertility Management. In: Soils. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5663-2_10

Download citation

Publish with us

Policies and ethics