Skip to main content

Fagopyrum esculentum

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Acquistucci R, Fornal J (1997) Italian buckwheat (Fagopyrum esculentum) starch: physico-chemical and functional characterization and in vitro digestibility. Nahrung 41(5):281–284

    PubMed  CAS  Google Scholar 

  • Allardice P (1993) A- Z of companion planting. Angus & Robertson, Pymble, p 208

    Google Scholar 

  • Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr 60(Suppl 4):240–257

    PubMed  CAS  Google Scholar 

  • Alvarez-Jubete L, Arendt EK, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21(2):106–113

    CAS  Google Scholar 

  • Amarowicz R, Fornal L (1987) Characteristics of buckwheat grain mineral components and dietary fiber. Fagopyrum 7:3–6

    Google Scholar 

  • Amarowicz R, Dykes GA, Pegg RB (2008) Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia 79(3):217–219

    PubMed  CAS  Google Scholar 

  • Amézqueta S, Galán E, Fuguet E, Carrascal M, Abián J, Torres JL (2012) Determination of D-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI-Q-MS. Anal Bioanal Chem 402(5):1953–1960

    PubMed  Google Scholar 

  • Anonymous (2011) Buckwheat. http://en.wikipedia.org/wiki/Buckwheat

  • Aoyagi Y (2006) An angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour. Phytochem 67(6):618–621

    CAS  Google Scholar 

  • Awatsuhara R, Harada K, Maeda T, Nomura T, Nagao K (2010) Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Mol Med Report 3(1):121–125

    PubMed  CAS  Google Scholar 

  • Baik MC, Hoang HD, Hammer K (1986) A checklist of the Korean cultivated plants. Kulturpflanze 34:69–144

    Google Scholar 

  • Baumgertel A, Grimm R, Eisenbeiß W, Kreis W (2003) Purification and characterization of a flavonol 3-O-β-heterodisaccharidase from the dried herb of Fagopyrum esculentum Moench. Phytochem 64(2):411–418

    CAS  Google Scholar 

  • Belozersky MA, Dunaevsky YE, Voskoboynikova NE (1990) Isolation and properties of a metalloproteinase from buckwheat (Fagopyrum esculentum) seeds. Biochem J 272(3):677–682

    PubMed  CAS  Google Scholar 

  • Belozersky MA, Dunaevsky YE, Musolyamov AK, Egorov TA (1995) Complete amino acid sequence of the protease inhibitor from buckwheat seeds. FEBS Lett 371(3):264–266

    PubMed  CAS  Google Scholar 

  • Belozersky MA, Dunaevsky YE, Musolyamov AK, Egorov TA (1996) Amino acid sequence of anionic protease inhibitors from buckwheat seeds. Biokhimiia 61(10):1743–1750 (In Russian)

    Google Scholar 

  • Belozersky MA, Dunaevsky YE, Musolyamov AK, Egorov TA (2000) Complete amino acid sequence of the protease inhibitor BWI-4a from buckwheat seeds. Biochemistry 65(10):1140–1144

    PubMed  CAS  Google Scholar 

  • Berndt LA, Wratten SD, Hassan PG (2002) Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agric Forest Entomol 4(1):39–45

    Google Scholar 

  • Bharali S, Chrungoo NK (2003) Amino acid sequence of the 26 kDa subunit of legumin-type seed storage protein of common buckwheat (Fagopyrum esculentum Moench): molecular characterization and phylogenetic analysis. Phytochemistry 63(1):1–5

    PubMed  CAS  Google Scholar 

  • Bijlani RL, Sud S, Sahi A, Gandhi BM, Tandon BN (1985) Effect of sieved buckwheat (Fagopyrum esculentum) flour supplementation on lipid profile and glucose tolerance. Indian J Physiol Pharmacol 29(2):69–74

    PubMed  CAS  Google Scholar 

  • Bilgiçli N (2009) Effect of buckwheat flour on cooking quality and some chemical, antinutritional and sensory properties of erişte, Turkish noodle. Int J Food Sci Nutr 60(Suppl 4):70–80

    PubMed  Google Scholar 

  • Bonafaccia G, Gambelli L, Fabjan N, Kreft I (2003a) Trace elements in flour and bran from common and tartary buckwheat. Food Chem 83(1):1–5

    CAS  Google Scholar 

  • Bonafaccia G, Marocchini M, Kreft I (2003b) Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 80(1):9–15

    CAS  Google Scholar 

  • Bown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London, 424 pp

    Google Scholar 

  • Campbell CG (1997) Buckwheat. Fagopyrum esculentum Moench. Promoting the conservation and use of underutilized and neglected crops. 19. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Cawoy V, Ledent JF, Kinet JM, Jacquemart AL (2009) Floral biology of common buckwheat (Fagopyrum esculentum Moench). Eur J Plant Sci Biotechnol 3:1–9

    Google Scholar 

  • Choi SM, Ma CY (2006) Extraction, purification and characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Res Int 39(9):974–981

    CAS  Google Scholar 

  • Choi I, Seog H, Park Y, Kim Y, Choi H (2007) Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine 14(7–8):563–567

    PubMed  CAS  Google Scholar 

  • Dadáková E, Kalinová J (2010) Determination of quercetin glycosides and free quercetin in buckwheat by capillary micellar electrokinetic chromatography. J Sep Sci 33:1633–1638

    PubMed  Google Scholar 

  • Danila A-M, Akira Kotani A, Hideki Hakamata H, Fumiyo Kusu F (2007) Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum Moench by micro-high-performance liquid chromatography with electrochemical detection. J Agric Food Chem 55(4):1139–1143

    PubMed  CAS  Google Scholar 

  • Dietrych-Szostak D, Oleszek W (1999) Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Möench) grain. J Agric Food Chem 47(10):4384–4387

    PubMed  CAS  Google Scholar 

  • Dunaevsky YE, Pavlukova EB, Belozersky MA (1996) Isolation and properties of anionic protease inhibitors from buckwheat seeds. Biochem Mol Biol Int 40(1):199–208

    PubMed  CAS  Google Scholar 

  • Dunaevsky YE, Pavlukova EB, Beliakova GA, Gruban TN, Tsybina TA, Belozersky MA (1998) Protease inhibitors in buckwheat seeds: comparison of anionic and cationic inhibitors. J Plant Physiol 152:696–702

    CAS  Google Scholar 

  • Eggum BO, Kreft I, Javornik B (1980) Chemical-composition and protein-quality of buckwheat (Fagopyrum esculentum Moench). Qual Plant-Plant Foods Hum Nutr 30(3–4):175–179

    CAS  Google Scholar 

  • Eguchi K, Anase T, Osuga H (2009) Development of a high-performance liquid chromatography method to determine the fagopyrin content of tartary buckwheat (Fagopyrum tartaricum Gaertn.) and common buckwheat (F. esculentum Moench). Plant Prod Sci 12(4):475–480

    CAS  Google Scholar 

  • Farooq S, Tahir I (1987) Comparative study of some growth attributes in buckwheats (Fagopyrum sp.) cultivated in Kashmir. Fagopyrum 7:9–12

    Google Scholar 

  • Farooq S, Tahir I (1989) Leaf composition in some buckwheat cultivars (Fagopyrum Gaertn.) grown in Kashmir. Fagopyrum 9:68–70

    Google Scholar 

  • Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench). Biosci Biotechnol Biochem 67(8):1636–1642

    PubMed  CAS  Google Scholar 

  • Gao L, Li YY, Zhang Z, Wang ZH, Wang HW, Zhang L, Zhu L (2007) Apoptosis of HL-60 cells induced by recombinant common buckwheat trypsin inhibitor. Zhongguo Shi Yan Xue Ye Xue Za Zhi 15(1):59–62 (In Chinese)

    PubMed  CAS  Google Scholar 

  • Gómez L, Molinar-Toribio E, Calvo-Torras MA, Adelantado C, Juan ME, Planas JM, Cañas X, Lozano C, Pumarola S, Clapés P, Torres JL (2012) d-Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. Br J Nutr 107(12):1739–1746

    PubMed  Google Scholar 

  • Gorinstein S, Vargas OJM, Jaramillo NO, Salas IA, Ayala ALM, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225(3–4):321–328

    CAS  Google Scholar 

  • Grieve M (1971) A modern herbal. Penguin, 2 vols. Dover publications, New York, 919 pp.

    Google Scholar 

  • Grubben GJH, Siemonsma JS (1996) Fagopyrum esculentum Moench. In: Grubben GJH, Partohardjono S (eds) Plant resources of South-East Asia No 10. Cereals. Backhuys Publishers, Leiden, pp 95–99

    Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops (Except ornamentals). 1st English edn. Springer, Berlin, 3645 pp

    Google Scholar 

  • He J, Klag MJ, Whelton PK, Mo JP, Chen JY, Qian MC, Mo PS, He GQ (1995) Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. Am J Clin Nutr 61(2):366–372

    PubMed  CAS  Google Scholar 

  • Heffler E, Guida G, Badiu I, Nebiolo F, Rolla G (2007) Anaphylaxis after eating Italian pizza containing buckwheat as the hidden food allergen. J Investig Allergol Clin Immunol 17(4):261–263

    PubMed  CAS  Google Scholar 

  • Heffler E, Nebiolo F, Asero R, Guida G, Badiu I, Pizzimenti S, Marchese C, Amato S, Mistrello G, Canaletti F, Rolla G (2011) Clinical manifestations, co-sensitizations, and immunoblotting profiles of buckwheat-allergic patients. Allergy 66(2):264–270

    PubMed  CAS  Google Scholar 

  • Hinneburg I, Kempe S, Rüttinger HH, Neubert RH (2006) Antioxidant and photoprotective properties of an extract from buckwheat herb (Fagopyrum esculentum Moench). Pharmazie 61(3):237–240

    PubMed  CAS  Google Scholar 

  • Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S (2002) Buckwheat – the source of antioxidant activity in functional foods. Food Res Int 35(2–3):207–211

    CAS  Google Scholar 

  • Hong CS, Park HS, Oh SH (1987) Dermatophagoides farinae, an important allergenic substance in buckwheat-husk pillows. Yonsei Med J 28(4):274–281

    PubMed  CAS  Google Scholar 

  • Hung PV, Morita N (2008) Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem 109(2):325–331

    CAS  Google Scholar 

  • Hur SJ, Park SJ, Jeong CH (2011) Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. J Agric Food Chem 59(19):10699–10704

    PubMed  CAS  Google Scholar 

  • Ihme N, Kiesewetter H, Jung F, Hof fmann KH, Birk A, Muller A, Grutzner KI (1996) Leg oedema protection from buckwheat herb tea in patients with chronic venous insufficiency: A single-centre, randomized, doubleblind, placebo-controlled clinical trial. Eur J Clin Pharmacol 50(6):443–447

    PubMed  CAS  Google Scholar 

  • Ikeda S, Kusano T (1978) Isolation and some properties of a trypsin inhibitor from buckwheat grains. Agric Biol Chem 42:309–314

    CAS  Google Scholar 

  • Ikeda K, Kusano T (1983) Purification and properties of the trypsin inhibitors from buckwheat seed. Agric Biol Chem 47:1481–1486

    Google Scholar 

  • Ikeda K, Oku M, Kusano T, Yasumoto K (1986) Inhibitory potency of plant antinutrients towards the in vitro digestibility of buckwheat protein. J Food Sci 51(6):1527–1530

    CAS  Google Scholar 

  • Ikeda K, Shida K, Kishida M (1994) α-amylase inhibitor in buckwheat seed. Fagopyrum 14:3–6

    Google Scholar 

  • Ikeda S, Yamashita Y, Kreft I (2000) Essential mineral composition of buckwheat flour fractions. Fagopyrum 17:57–61

    Google Scholar 

  • Inglett GE, Rose DJ, Chen D, Stevenson DG, Biswas A (2010) Phenolic content and antioxidant activity of extracts from whole buckwheat (Fagopyrum esculentum Möench) with or without microwave irradiation. Food Chem 119(3):1216–1219

    CAS  Google Scholar 

  • Inglett GE, Chen D, Berhow M, Lee S (2011) Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem 125(3):923–929

    CAS  Google Scholar 

  • Ishii S, Katsumura T, Shiozuka C, Ooyauchi K, Kawasaki K, Takigawa S, Fukushima T, Tokuji Y, Kinoshita M, Ohnishi M, Kawahara M, Ohba K (2008) Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci Biotechnol Biochem 72(12):3148–3157

    PubMed  CAS  Google Scholar 

  • Iuorno MJ, Jakubowicz DJ, Baillargeon JP, Dillon P, Gunn RD, Allan G, Nestler JE (2002) Effects of d-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr Pract 8(6):417–423

    PubMed  Google Scholar 

  • Janeš D, Kreft S (2008) Salicylaldehyde is a characteristic aroma component of buckwheat groats. Food Chem 109(2):293–298

    Google Scholar 

  • Janeš D, Kantar D, Kreft S, Prosen H (2009) Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS. Food Chem 112(1):120–124

    Google Scholar 

  • Janeš D, Prosen H, Kreft I, Kreft S (2010) Aroma compounds in buckwheat (Fagopyrum esculentum Moench) groats, flour, bran, and husk. Cereal Chem 87(2):141–143

    Google Scholar 

  • Javornik B (1986) Buckwheat in human diets. In: Buckwheat Research, Proceedings of the 3rd international symposium on buckwheat. Institute of Soil Science and Plant Cultivation, Organizing Committee, Pulway, 51–77 pp

    Google Scholar 

  • Javornik B, Kreft I (1984) Characterization of buckwheat proteins. Fagopyrum 4:30–38

    Google Scholar 

  • Jiang P, Burczynski F, Campbell C, Pierce G, Austria JA, Briggs CJ (2007) Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res Int 40(3):356–364

    CAS  Google Scholar 

  • Joshi BD, Rana RS (1995) Buckwheat (Fagopyrum esculentum). In: Williams JT (ed) Underutilized crops. Cereals and pseudocereals. Chapman & Hall, London, pp 85–127

    Google Scholar 

  • Kalinova J, Vrchotova N (2009) Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J Agric Food Chem 57(7):2719–2725

    PubMed  CAS  Google Scholar 

  • Kalinová J, Tříska J, Vrchotová N (2004) Phenolic compounds in buckwheat herb extract and their biological activity. In: Second European Allelopathy Symposium. “Allelopathy – from understanding to application”, Pulawy, Poland, 3–5 June 2004, p 134

    Google Scholar 

  • Kalinova J, Triska J, Vrchotova N (2006) Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum). J Agric Food Chem 54(15):5330–5335

    PubMed  CAS  Google Scholar 

  • Kalinova J, Vrchotova N, Triska J (2007) Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J Agric Food Chem 55(16):6453–6459

    PubMed  CAS  Google Scholar 

  • Kawa JM, Taylor CG, Przybylski R (1996) Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem 50:443–447

    Google Scholar 

  • Kayashita J, Shimaoka I, Nakajoh M, Yamazaki M, Kato N (1997) Consumption of buckwheat protein lowers plasma cholesterol and raises faecal neutral sterols in cholesterol-fed rats because of its low digestibility. J Nutr 127:1395–1400

    PubMed  CAS  Google Scholar 

  • Kim SK, Hahn TR, Kwon TW, D’Appolonia BL (1977) Physicochemical properties of buckwheat starch. Kor J Food SciTechnol 9:138–143

    CAS  Google Scholar 

  • Kim CD, Lee WK, No KO, Park SK, Lee MH, Lim SR, Roh SS (2003) Anti-allergic action of buckwheat (Fagopyrum esculentum Moench) grain extract. Int Immunopharmacol 3(1):129–136

    PubMed  CAS  Google Scholar 

  • Kim SL, Kim SK, Park CH (2004) Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Int 37(4):319–327

    CAS  Google Scholar 

  • Kim SH, Cui CB, Kang IJ, Kim SY, Ham SS (2007a) Cytotoxic effect of buckwheat (Fagopyrum esculentum Moench) hull against cancer cells. J Med Food 10(2):232–238

    PubMed  Google Scholar 

  • Kim SJ, Maeda T, Sarker MZ, Takigawa S, Matsuura-Endo C, Yamauchi H, Mukasa Y, Saito K, Hashimoto N, Noda T, Saito T, Suzuki T (2007b) Identification of anthocyanins in the sprouts of buckwheat. J Agric Food Chem 55(15):6314–6318

    PubMed  CAS  Google Scholar 

  • Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H (2008) Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem 110(4):814–820

    CAS  Google Scholar 

  • Kim DW, Hwang IK, Lim SS, Yoo KY, Li H, Kim YS, Kwon DY, Moon WK, Kim DW, Won MH (2009) Germinated buckwheat extract decreases blood pressure and nitrotyrosine immunoreactivity in aortic endothelial cells in spontaneously hypertensive rats. Phytother Res 23(7):993–998

    PubMed  CAS  Google Scholar 

  • Kim HJ, Park KJ, Lim JH (2011) Metabolomic analysis of phenolic compounds in buckwheat (Fagopyrum esculentum M.) sprouts treated with methyl jasmonate. J Agric Food Chem 59(10):5707–5713

    PubMed  CAS  Google Scholar 

  • Kreft I, Skrabanja V (2002) Nutritional properties of starch in buckwheat noodles. J Nutr Sci Vitaminol (Tokyo) 48(1):47–50

    CAS  Google Scholar 

  • Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 47(11):4649–4652

    PubMed  CAS  Google Scholar 

  • Kreft I, Fabjan N, Yasumoto K (2006) Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem 98(3):508–512

    CAS  Google Scholar 

  • Krkošková B, Mrázová Z (2005) Prophylactic components of buckwheat. Food Res Int 38(5):561–568

    Google Scholar 

  • Lee JC, Heimpel GC (2005) Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biol Control 34(3):290–301

    Google Scholar 

  • Leung EH, Ng TB (2007) A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J Pept Sci 13(11):762–767

    PubMed  CAS  Google Scholar 

  • Levent H, Bilgiçli N (2011) Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours. Int J Food Sci Nutr 62(7):725–728

    PubMed  CAS  Google Scholar 

  • Li A, Hong S-P (2003) Fagopyrum Miller. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 5, Ulmaceae through Basellaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Li Q, Yang M (1992) Preliminary investigations on buckwheat origin in Yunnan, China. In: Lin R, Zhou MD, Tao Y, Li J, Zhang ZW (eds) Proceeding of the 5th International Symposium on Buckwheat, 20–26 Aug 1992, Taiyuan, China. Agricultural Publishing House, pp 44–48

    Google Scholar 

  • Li W, Lin R, Corke H (1997) Physicochemical properties of common and tartary buckwheat starch. Cereal Chem 74(1):79–82

    CAS  Google Scholar 

  • Licen M, Kreft I (2005) Buckwheat (Fagopyrum esculentum Moench) low molecular weight seed proteins are restricted to the embryo and are not detectable in the endosperm. Plant Physiol Biochem 43(9):862–865

    PubMed  CAS  Google Scholar 

  • Lin LY, Peng CC, Yang YL, Peng RY (2008) Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. J Agric Food Chem 56(4):1216–1223

    PubMed  CAS  Google Scholar 

  • Lin LY, Hsieh YJ, Liu HM, Lee CC, Mau JL (2009) Flavor components in buckwheat bread. J Food Process Pres 33:814–826

    CAS  Google Scholar 

  • Liu CL, Chen YS, Yang JH, Chiang BH, Hsu CK (2007) Trace element water improves the antioxidant activity of buckwheat (Fagopyrum esculentum Moench) sprouts. J Agric Food Chem 55(22):8934–8940

    PubMed  CAS  Google Scholar 

  • Liu CL, Chen YS, Yang JH, Chiang BH (2008) Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. J Agric Food Chem 56(1):173–178

    PubMed  CAS  Google Scholar 

  • Ma Y, Xiong YL (2009) Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. J Agric Food Chem 57(10):4372–4380

    PubMed  CAS  Google Scholar 

  • Maejima Y, Nakatsugawa H, Ichida D, Maejima M, Aoyagi Y, Maoka T, Etoh H (2011) Functional compounds in fermented buckwheat sprouts. Biosci Biotechnol Biochem 75(9):1708–1712

    PubMed  CAS  Google Scholar 

  • Marshall HG, Pomeranz Y (1982) Buckwheat: description, breeding, production and, utilization. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 5. American Association of Cereal Chemists Incorporated, St. Paul, pp 157–210

    Google Scholar 

  • Mattila P, Pihlava J-M, Hellstrom J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53(21):8290–8295

    PubMed  CAS  Google Scholar 

  • Metzger BT, Barnes DM, Reed JD (2007) Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells. J Agric Food Chem 55(15):6032–6038

    PubMed  CAS  Google Scholar 

  • Mezaize S, Chevallier S, Le Bail A, de Lamballerie M (2009) Optimization of gluten-free formulations for French-style breads. J Food Sci 74(3):E140–E146

    PubMed  CAS  Google Scholar 

  • Milisavljević MD, Timotijević GS, Radović SR, Brkljacić JM, Konstantinović MM, Maksimović VR (2004) Vicilin-like storage globulin from buckwheat (Fagopyrum esculentum Moench) seeds. J Agric Food Chem 52(16):5258–5262

    PubMed  Google Scholar 

  • Min B, Lee SM, Yoo SH, Inglett GE, Lee S (2010) Functional characterization of steam jet-cooked buckwheat flour as a fat replacer in cake-baking. J Sci Food Agric 90(13):2208–2213

    PubMed  CAS  Google Scholar 

  • Mukoda T, Sun B, Ishiguro A (2001) Antioxidant activities of buckwheat hull extract toward various oxidative stress in vitro and in vivo. Biol Pharm Bull 24(3):209–213

    PubMed  CAS  Google Scholar 

  • Nam HS, Park CS, Crane J, Siebers R (2004) Endotoxin and house dust mite allergen levels on synthetic and buckwheat pillows. J Korean Med Sci 19(4):505–508

    PubMed  CAS  Google Scholar 

  • Němcová L, Zima J, Barek J, Janovská D (2011) Determination of resveratrol in grains, hulls and leaves of common and tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode. Food Chem 126(1):374–378

    Google Scholar 

  • Nestler JE, Jakubowicz DJ, Reamer P, Gunn RD, Allan G (1999) Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med 340(17):1314–1320

    PubMed  CAS  Google Scholar 

  • Obendorf RL, Steadman KJ, Fuller DJ, Horbowicz M, Lewis BA (2000) Molecular structure of fagopyritol A1 (O-alpha-D-galactopyranosyl-(→3)-D-chiro-inositol) by NMR. Carbohydr Res 328(4):623–627

    PubMed  CAS  Google Scholar 

  • Ohnishi O (1990) Discovery of the wild ancestor of common buckwheat. Fagopyrum 11:5–10

    Google Scholar 

  • Ohnishi O (1998a) Search for the Wild Ancestor of Buckwheat I. Description of new Fagopyrum (polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum 15:18–28

    Google Scholar 

  • Ohnishi O (1998b) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of tatary buckwheat. Econ Bot 52(2):123–133

    Google Scholar 

  • Ohnishi O, Matsuoka Y (1996) Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genet Syst 71(6):383–390

    Google Scholar 

  • Ohsawa R, Tsutsumi T (1995) Inter-varietal variations of rutin content in common buckwheat flour (Fagopyrum esculentum Moench). Euphytica 86:183–189

    CAS  Google Scholar 

  • Okarter N (2012) Phenolic compounds from the insoluble-bound fraction of whole grains do not have any cellular antioxidant activity. Life Sci Med Res 2012:LSMR-37

    Google Scholar 

  • Ölschläger C, Regos I, Zeller FJ, Treutter D (2008) Identification of galloylated propelargonidins and procyanidins in buckwheat grain and quantification of rutin and flavanols from homostylous hybrids originating from F. esculentum  ×  F. homotropicum. Phyto­chemistry 69(6):1389–1397

    PubMed  Google Scholar 

  • Oomah BD, Mazza G (1996) Flavonoids and antioxidant activities in buckwheat. J Agric Food Chem 44:1746–1750

    CAS  Google Scholar 

  • Oomah BD, Campbell CG, Mazza G (1996) Effects of cultivar and environment on phenolic acids in buckwheat. Euphytica 90:73–77

    CAS  Google Scholar 

  • Oplinger ES, Oelke EA, Brinkman MA, Kelling KA (1989) Buckwheat. In: Alternative Field crops Manual. University of Wisconsin Extension, Cooperative, Education, USA

    Google Scholar 

  • Ožbolt L, Kreft S, Kreft I, Germ M, Stibilj V (2008) Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem 110(3):691–696

    Google Scholar 

  • Pandya MJ, Smith DA, Yarwood A, Gilroy J, Richardson M (1996) Complete amino acid sequences of two trypsin inhibitors from buckwheat seed. Phytochemistry 43(2):327–331

    PubMed  CAS  Google Scholar 

  • Park SS, Ohba H (2004) Suppressive activity of protease inhibitors from buckwheat seeds against human T-acute lymphoblastic leukemia cell lines. Appl Biochem Biotechnol 117(2):65–74

    PubMed  CAS  Google Scholar 

  • Park SS, Abe K, Kimura M, Urisu A, Yamasaki N (1997) Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrum esculentum Moench). FEBS Lett 400(1):103–107

    PubMed  CAS  Google Scholar 

  • Peng YY, Liu FH, Ye JN (2004) Determination of phenolic compounds in the hull and flour of buckwheat (Fagopyrum esculentum Moench) by capillary electrophoresis with electrochemical detection. Anal Lett 37(13):2789–2803

    CAS  Google Scholar 

  • Porcher MH et al (1995–2020) Searchable World Wide Web multilingual multiscript plant name database. Published by The University of Melbourne, Australia. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html

  • Pu F, Mishima K, Egashira N, Iwasaki K, Kaneko T, Uchida T, Irie K, Ishibashi D, Fujii H, Kosuna K, Fujiwara M (2004) Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. J Pharmacol Sci 94(4):393–402

    PubMed  CAS  Google Scholar 

  • Qian J, Rayas-Duarte P, Grant L (1998) Partial characterization of buckwheat (Fagopyrum esculentum) starch. Cereal Chem 75(3):365–373

    CAS  Google Scholar 

  • Qin P, Wang Q, Shan F, Hou Z, Ren G (2010) Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int J Food Sci Technol 45:951–958

    CAS  Google Scholar 

  • Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1–2):35–42

    PubMed  CAS  Google Scholar 

  • Samardžić JT, Milisavljević MD, Brkljačić JM, Konstantinović MM, Maksimović VR (2004) Characterization and evolutionary relationship of methionine-rich legumin-like protein from buckwheat. Plant Physiol Biochem 42(2):157–163

    PubMed  Google Scholar 

  • Sedej IJ, Sakaå MB, Mišan AÅ, M a n d i ã AI (2010) Antioxidant activity of wheat and buckwheat flours. Proc Nat Sci Matica Srpska Novi Sad 118:59–68

    CAS  Google Scholar 

  • Shiratori R, Nagata Y (1986) Utilization of buckwheat in modem Japan. Fagopyrum 6:23–46

    Google Scholar 

  • Skrabanja V, Laerke HN, Kreft I (1998) Effects of hydrothermal processing of buckwheat (Fagopyrum esculentum Moench) groats on starch enzymatic availability in vitro and in vivo in rats. J Cereal Sci 28(2):209–214

    CAS  Google Scholar 

  • Skrabanja V, Liljeberg Elmståhl HG, Kreft I, Björck IM (2001) Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. J Agric Food Chem 49(1):490–496

    PubMed  CAS  Google Scholar 

  • Skrabanja V, Kreft I, Golob T, Modic M, Ikeda S, Ikeda K, Kreft S, Bonafaccia G, Knapp M, Kosmelj K (2004) Nutrient content in buckwheat milling fractions. Cereal Chem 81(2):172–176

    CAS  Google Scholar 

  • Steadman KJ, Burgoon MS, Schuster RL, Lewis BA, Edwardson SE, Obendorf RL (2000) Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J Agric Food Chem 48(7):2843–2847

    PubMed  CAS  Google Scholar 

  • Steadman KJ, Fuller DJ, Obendorf RL (2001) Purification and molecular structure of two digalactosyl D-chiro-inositols and two trigalactosyl D-chiro-inositols from buckwheat seeds. Carbohydr Res 331(1):19–25

    PubMed  CAS  Google Scholar 

  • Stember RH (2006) Buckwheat allergy. Allergy Asthma Proc 27(4):393–395

    PubMed  Google Scholar 

  • Sun T, Ho CT (2005) Antioxidant activities of buckwheat extracts. Food Chem 90(4):743–749

    CAS  Google Scholar 

  • Suzuki T, Honda Y, Mukasa Y (2004) Purification and characterization of lipase in buckwheat seed. J Agric Food Chem 52(24):7407–7411

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kim SJ, Mohamed ZI, Mukasa Y, Takigawa S, Matsuura-Endo C, Yamauchi H, Hashimoto N, Noda T, Saito T (2007) Structural identification of anthocyanins and analysis of concentrations during growth and flowering in buckwheat (Fagopyrum esculentum Moench) petals. J Agric Food Chem 55(23):9571–9575

    PubMed  CAS  Google Scholar 

  • Suzuki T, Watanabe M, Iki M, Aoyagi Y, Kim SJ, Mukasa Y, Yokota S, Takigawa S, Hashimoto N, Noda T, Yamauchi H, Matsuura-Endo C (2009) Time  −  course study and effects of drying method on concentrations of γ-aminobutyric acid, flavonoids, anthocyanin, and 2″-hydroxynicotianamine in leaves of buckwheats. J Agric Food Chem 57(1):259–264

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kim SJ, Mukasa Y, Morishita T, Noda T, Takigawa S, Hashimoto N, Yamauchi H, Matsuura-Endo C (2010) Effects of lipase, lipoxygenase, peroxidase and free fatty acids on volatile compound found in boiled buckwheat noodles. J Sci Food Agric 90(7):1232–1237

    PubMed  CAS  Google Scholar 

  • Tahir I, Farooq S (1985) Grain composition in some buckwheat cultivars (Fagopyrum spp.) with particular reference to protein fractions. Plant Foods Human Nutr 35(2):153–158

    CAS  Google Scholar 

  • Takahama U, Tanaka M, Hirota S (2010) Proanthocyanidins in buckwheat flour can reduce salivary nitrite to nitric oxide in the stomach. Plant Foods Hum Nutr 65(1):1–7

    PubMed  CAS  Google Scholar 

  • Tang CH, Wang XY (2010) Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Chem 121(1):119–126

    CAS  Google Scholar 

  • Tang CH, Peng J, Zhen DW, Chen Z (2009) Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem 115(2):672–678

    CAS  Google Scholar 

  • Tian Q, Li D, Patil BS (2002) Identification and determination of flavonoids in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) by high-performance liquid chromatography with electrospray ionisation mass spectrometry and photodiode array ultraviolet detection. Phytochem Anal 13(5):251–256

    PubMed  CAS  Google Scholar 

  • Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr 130(7):1670–1674

    PubMed  CAS  Google Scholar 

  • Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2001) Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Biosci Biotechnol Biochem 65(6):1412–1414

    PubMed  CAS  Google Scholar 

  • Tsybina TA, Dunaevsky YE, Musolyamov AK, Egorov TA, Belozersky MA (2001) Cationic inhibitors of serine proteinases from buckwheat seeds. Biochem (Mosc) 66(9):941–947

    CAS  Google Scholar 

  • Tsybina TA, Dunaevsky YE, Popykina NA, Larionova NI, Belozersky MA (2004) Cationic inhibitors of serine proteinases from buckwheat seeds: study of their interaction with exogenous proteinases. Biochemistry (Mosc) 69(4):441–444

    CAS  Google Scholar 

  • Ueda T, Coseo MP, Harrell TJ, Obendorf RL (2005) A multifunctional galactinol synthase catalyzes the ­synthesis of fagopyritol A1 and fagopyritol B1 in buckwheat seed. Plant Sci 168(3):681–690

    CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA National nutrient database for standard reference, release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Vagi A, Yanagihara Y, Yamada H, Koda A, Shida T, Shioda H, Nishioka I (1982) Isolation and chemical properties of a haptenic substance from buckwheat dialysate. Int J Immunopharmacol 4(6):541–547

    Google Scholar 

  • Verardo V, Arráez-Román D, Segura-Carretero A, Marconi E, Fernández-Gutiérrez A, Caboni MF (2010) Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography–electrospray ionization-time of flight-mass spectrometry (RP-HPLC–ESI-TOF-MS). J Cereal Sci 52(2):170–176

    CAS  Google Scholar 

  • Verardo V, Arraez-Roman D, Segura-Carretero A, Marconi E, Fernandez-Gutierrez A, Caboni MF (2011) Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: effect of thermal processing from farm to fork. J Agric Food Chem 59(14):7700–7707

    PubMed  CAS  Google Scholar 

  • Wang ZH, Gao L, Li YY, Zhang Z, Yuan JM, Wang HW, Zhang L, Zhu L (2007) Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells. Biol Pharm Bull 30(4):783–786

    PubMed  CAS  Google Scholar 

  • Wang L, Zhao F, Li M, Zhang H, Gao Y, Cao P, Pan X, Wang Z, Chang W (2011) Conformational changes of rBTI from buckwheat upon binding to trypsin: implications for the role of the P(8)′ residue in the potato inhibitor I family. PLoS One 6(6):e20950

    PubMed  CAS  Google Scholar 

  • Watanabe M (1998) Catechins as antioxidants from buckwheat (Fagopyrum esculentum Möench) groats. J Agric Food Chem 46(3):839–845

    CAS  Google Scholar 

  • Watanabe M (2007) An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity. Biosci Biotechnol Biochem 71(2):579–582

    PubMed  CAS  Google Scholar 

  • Watanabe M, Ayugase J (2010) Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice. J Food Sci 75(9):H294–H299

    PubMed  CAS  Google Scholar 

  • Watanabe M, Ohshita Y, Tsushida T (1997) Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) hulls. J Agric Food Chem 45(4):1039–1044

    CAS  Google Scholar 

  • Watanabe K, Shimizu M, Adachi T, Yoshida T, Mitsunaga T (1998) Characterization of thiamin-binding protein from buckwheat seeds. J Nutr Sci Vitaminol (Tokyo) 44(2):323–328

    CAS  Google Scholar 

  • Wieslander G, Fabjan N, Vogrincic M, Kreft I, Janson C, Spetz-Nyström U, Vombergar B, Tagesson C, Leanderson P, Norbäck D (2011) Eating buckwheat cookies is associated with the reduction in serum ­levels of myeloperoxidase and cholesterol: a double blind crossover study in day-care centre staffs. Tohoku J Exp Med 225(2):123–130

    PubMed  CAS  Google Scholar 

  • Wojcicki J, Samochowied L, Gonet B, Juzwiak S, Dabrowska-Zamojcin E, Katdonska M, Tustanowski S (1995) Effects of buckwheat extracts on free radical generation in rabbits administered high-fat diet. Phytother Res 9:323–326

    CAS  Google Scholar 

  • Wu SC, Lee BH (2011) Buckwheat polysaccharide exerts antiproliferative effects in THP-1 human leukemia cells by inducing differentiation. J Med Food 14(1–2):26–33

    PubMed  Google Scholar 

  • Yanagihara Y, Koda A (1979) Immunopharmacological study of buckwheat hypersensitivity. Nihon Yakurigaku Zasshi 75(5):459–475 (In Japanese)

    PubMed  CAS  Google Scholar 

  • Yao YP, Tian CR, Cao W (2008) Anti-oxidative constituents of ethanol extract from buckwheat seeds by HPLC-Electro-Spray MS. Agric Sci China 7(3):356–362

    Google Scholar 

  • Yokozawa T, Fujii H, Kosuna K, Nonaka G (2001) Effects of buckwheat in a renal ischemia-reperfusion model. Biosci Biotechnol Biochem 65(2):396–400

    PubMed  CAS  Google Scholar 

  • Yokozawa T, Kim HY, Nonaka G, Kosuna K (2002) Buckwheat extract inhibits progression of renal failure. J Agric Food Chem 50(11):3341–3345

    PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Egashira T, Hanashiro I, Ohinata H, Takase Y, Takeda Y (2004) Molecular structure and some physicochemical properties of buckwheat starches. Cereal Chem 81(4):515–520

    CAS  Google Scholar 

  • Zadernowski R, Pierzynowska-Korniak G, Ciepielewska D, Fornal L (1992) Chemical characteristics and biological functions of phenolic acids of buckwheat and lentil seeds. Fagopyrum 12:27–35

    Google Scholar 

  • Zhang HW, Zhang YH, Lu MJ, Tong WJ, Cao GW (2007) Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolian-Chinese populations in Inner Mongolia, China. Clin Exp Pharmacol Physiol 34(9):838–844

    PubMed  CAS  Google Scholar 

  • Zielinska D, Szawara-Nowak D, Ornatowska A, Wiczkowski W (2007a) Use of cyclic voltammetry, photochemiluminescence, and spectrophotometric methods for the measurement of the antioxidant capacity of buckwheat sprouts. J Agric Food Chem 55(24):9891–9898

    PubMed  CAS  Google Scholar 

  • Zielinska D, Szawara-Nowak D, Zielinski H (2007b) Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J Agric Food Chem 55(15):6124–6131

    PubMed  CAS  Google Scholar 

  • Zieliński H, Michalska A, Piskuła MK, Kozłowska H (2006) Antioxidants in thermally treated buckwheat groats. Mol Nutr Food Res 50:824–832

    PubMed  Google Scholar 

  • Zielinski H, Michalska A, Amigo-Benavent M, del Castillo MD, Piskula MK (2009) Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J Agric Food Chem 57(11):4771–4776

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Fagopyrum esculentum . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_25

Download citation

Publish with us

Policies and ethics